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New SE dynamical core for CESM2

Science changes:

Dry mass vertical coordinates

Condensate loading in dynamical core (recommended as default)

Separate physics grid and CSLAM options (not scientifically supported “yet”)
Eulerian vertical advection no longer supported! Moist vertical coordinates
not supported! (to keep code base simpler)

Other:

Out-of-the-box CESM configurations for idealized setups (Held-Suarez,
moist baroclinic wave with Kessler physics, terminator chemistry, ...)
Performance upgrades from CISL (threading, more efficient SE transport)
Dynamical core is no longer imported from HOMME (High-Order Methods
Modeling Environment) ; code must go through CAM code review
Cleaned up code base: trunk SE has ~61000 lines of code; new SE has
~39000 lines of code (further cleanup in progress ...)
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CAM-SE : dry-mass eta

Consider a ‘moist’ n-coordinate system: The
pressure is given by

p(n) = A(n)po + B(n)ps,

where ps is ‘moist’ surface pressure.
In a floating n-coordinate system, 1 = 0, the
continuity equation for p can be written as
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where SP(q,) is the source/sink term for pressure

(g» = specific humidity).
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where SP(q, ) is the source/sink term for pressure
(qv» = specific humidity).




CAM-SE : dry-mass eta

If one uses a dry mass vertical coordinate

p(na) = A(na)po + B(na)psd,

where psg is dry surface pressure, then the conti-
nuity equation for pressure does not have sources/sinks
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CAM-SE : dry-mass eta

The ng4-coordinate atmospheric primitive equations assuming floating Lagrangian
vertical coordinates [Starr, 1945; Lin, 2004] can be written as
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where @ is the geopotential height (O = - 82, where g is the gravitational constant), ¢,

is the specific heat constant for dry air, k is the unit vector normal to the surface of the

sphere, { = k - VXV is vorticity, f Coriolis parameter, and w = Dp/Dt is the pressure
vertical velocity.
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CAM-SE : dry-mass eta

The n4-coordinate atmospheric primitive equations assuming floating Lagrangian
vertical coordinates [Starr, 1945; Lin, 2004] can be written as
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where @ is the geopotential height (¢ the gravitational constant), ¢,

is the specific heat constant for dr r normal to the surface of the

sphere, { = k - VX¥ is vortici olis parameter. w = Dp/Dt is the pressure
vertical velocity.
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“Correct” Internal Energy

The total internal energy integrated over the entire atmosphere is given by

Lo = fffpcpT dz cos(6)r dA do

Using the hydrostatic balance this equation can be written as
Iior = Z I;,
i

where 1; is the total internal energy of dry air, 7, the total internal energy of water vapor,

etc.:
Iy = —- fffcpdT ( )dnd cos(0)r dA do,
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“Correct” Internal Energy

The total internal energy integrated over the entire atmosphere is given by

Lo = fffpcpT dz cos(6)r dA do

Using the hydrostatic balance

equation can be written as
Lior = Z I;,
L

where 1; is the total inter, Iry air, I, the total internal energy of water vapor,

etc.:

The internal energy in CAM physics is defined as

1AM - f f f cpal (1 +m,) ( )dnd cos(9)r dA db

I.; = —lfffcpclmclT (6 )dnd cos(0)r dAa do,
8 Ona
1 0pa

I.;, = ——fffcpc,-mciT —— | dng cos(0)r dA de.
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“Correct” Internal Energy

The total internal energy integrated over the entire atmosphere is given by

Lior = fffpcpT dz cos(8)r dA do

Enforcing the correct energy in CAM physics is NON-TRIVIAL:

If a parameterization alters water vapor, cloud liquid, and/or
cloud ice then internal energy (and kinetic energy) changes / of water vapor,
The assumption that pressure levels stay fixed during physics
updates is violated unless we switch to dry pressure levels

1 0
I, = —- fffcpvmvT (ﬂ) dna cos(8)r dA d6,
8 ona
1 dpd
—— Cpcimel T | — | dng cos(8)r dA db,
8 Ona

CpciMei T (ﬁ) dng cos(0)rda do.

é\(
~
1

I
OQ:H
—
=

NCAR | National Center for Atmospheric Research

UCAR | Climate & Global Dynamics



Two SE configurations

controlled with namelist: gsize condensate loading = 1,3

1. Set ¢, = cpq and p = pg + py
2. Use ‘correct’ ¢, and p = pg + py + pci + Pei

In dynamics-physics coupling we pass Ap = Ap (1 + m,) to remain consistent with the
physics definition of total energy.

Both configurations have pros and cons:

la. Only difference between #1 and trunk is vertical coordinate

1b. The continuous equations of motion conserve the same “wrong” energy as CAM physics.

1c. The adiabatic momentum equations and thermodynamic equations do not “feel” the
condensates

2a. The continuous equations of motion conserve the “correct” energy but CAM physics will
(through the energy fixer) enforce the “wrong” energy

2b. The adiabatic momentum equations and thermodynamic equations “feel” the
condensates (a.k.a. condensate loading; may be significant at higher resolution)

NCAR | National Center for Atmospheric Research

UCAR | Climate & Global Dynam|cs



Energy budgets in CAM-FV (0.9x0.9)

CAMS5.3 physics; 10 year run

pEFIX =dE/dtenergy fixer (pBP-pBF) : -0.8103 W/m?®
pDMEA = dE/dt dme_adjust (PAM-pAP) : 0.2636 W/m*

Energy fixer fixes dme_adjust (pDMEA), lack of energy conservation in adiabatic
dynamical core (AADIA) and energy lost/gained in physics-dynamics coupling
(dPDO):

-pEFIX = pDMEA+dADIA+dPDC
CAM-FV uses updated state (no “drippling” of tendencies) from physics so dPDC=0

= dADIA = dE/dt adiabatic dynamical core = -pEFIX-pDMEA : -1.0739 W/m?

Aside:

At 2 degree horizontal resolution dE/dt adiabatic dynamical : -1.2738 W/m?



Energy budgets in CAM-SE conflguratlon 1

CAM5.9999 physics; 6 year run; gsize condensate loading =

http://webext.cgd.ucar.edu/FCLIMO/£,e20,F2000 DEV.ne30 ne30.physgrid2d camd 4 96 se gsize l/atm

pEFIX =dE/dtenergy fixer (pBP-pBF) : -0.1913 W/m?
pPDMEA = dE/dt dme_adjust (pPAM-pAP) : 0.3064 W/m?

Energy fixer fixes dme_adjust (pDMEA), lack of energy conservation in adiabatic
dynamical core (AADIA) and energy lost/gained in physics-dynamics coupling
(dPDO):

-pEFIX = pDMEA+dADIA+dPDC

dADIA = dE/dt adiabatic dynamical core = -0.0732 W/m?
(-0.1604 W/m? vertical remapping, 0.0872 W/m? Lagrangian dyn, hypervis V added as heating = 0.7110 W/m?)

dPDC =dE/dt physics-dynamics coupling (ftype=0) = -0.0419 W/m?




Energy budgets in CAM-SE conflguratlon 2

CAM5.9999 physics; 6 year run; gsize condensate loading =

http://webext.cgd.ucar.edu/FCLIMO/£,e20,F2000 DEV.ne30 ne30.physgrid2d camd 4 96 se gsize 3/atm

pEFIX =dE/dtenergy fixer (pBP-pBF) : -0.7070 W/m?
pPDMEA = dE/dt dme_adjust (pPAM-pAP) : 0.3102 W/m?

Energy computations in dynamical use “correct” energy formula,
Energy computations in physics use “wrong” energy formula

=> We can not mix computations done in physics and dynamics but ....

dADIA = dE/dt adiabatic dynamical core =-0.0928 W/m?
PEFIX configuration & - pEFIX configuration 1 = 0.8257 W/m?
i.e. the inconsistency in energy formula is ca. 0.8 W/m? consistent with

Mark Taylors findings.

Even with this inconsistency the energy fixer fixes less than for CAM-FV
=> ] recommend configuration 2 as default in CESMZ2




CAM-SE-CSLAM without moisture

MARCH 2017 LAURITZEN ET AL.

Monthly Weather Review
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;;: CAM-SE-CSLAM without moisture
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CAM-SE-CSLAM with moisture
“This is where the fun begins!” - Staniforth et al. (2006)
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:.5 Scientific Discovery through
&’ Advanced Computing
O, °

Mapping u,v, T, omega from dynamics
grids (GLL) to finite-volume (CSLAM) grid

Temperature (& omega): Integrate basis function representation of dp*T over
physics grid control volumes (high-order remapping; conserves internal energy)
(u,v): Evaluate basis function representation of
08 [ contra-variant velocity components at physics
2 control volume centers (high-order interpolation)
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Mapping u,v, T, omega from dynamics
grids (GLL) to finite-volume (CSLAM) grid

.\ Note that physics grid averages/moves fields
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CAM-SE with “rougher” topography

Held-Suarez fOfClng with real-world topography (6 months spin-up; 2 years and 9 months average )
Note: dry test so no moist physics feedback

bnd_topo —/home/pel/run_scripts/topo/ne30np4_nc3000_Nsw042_Nrs008_Co060_Fi0O01_ZR_test_vX_111416.nc
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CAM-SE-CSLAM

Held-Suarez forCing with real-world topography (6 months spin-up; 2 years and 9 months average )
Note: dry test so no moist physics feedback

bnd_topo —/home/pel/run_scripts/topo/ne30np4_nc3000_Nsw042_Nrs008_Co060_Fi001_ZR_test_vX_111416.nc

CAM-FV topography (rougher than what SE uses)
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CAM-SE-CSLAM configuration

No mapping of
tracers needed
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CAM-SE-CSLAM configuration

“Tendencies from
physics
parameterizations
are low order
+anyway so | can just
use low order

- mapping ...”




Temperature tendency: FT

| | | __ . I |

—4e-05  -2e-05 0 2e-05 4e-05 Ge-05  8e-05 0.0001
(7Z)1dvars (13)2d vars (26)3d vars

Dim: Name: Min: Current: Max: Units:

Scan: time 76.1 1-Apr-1989 0¢ 76.1 days since 1€

lev 3.64347 912.645 992.556 hPa
® 0 |X| interp_dir/cslam-cam5-ape.ave.nc.bilinear_to_nlon360xnlat180.nc
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CAM4 SE-CSLAM-physgrid: linear interpolation phys to dyn: 5 month average
Plot looks similar for standard SE (but less noisy)
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Temperature tendency: FT

B B B B
de-05 Be-05

oe-05 0.0001

CAM-SE-CSLAM with cubic tensor product interpolation from phys to dyn:
18 month average
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CAM-SE- CSLAM w:th cublc tensor product mterpolatlon from phys to dyn:
18 month average
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CAM-SE-CSLAM configuration
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;;: CAM-SE-CSLAM configuration

o

dE/dt energy fixer: -0.50 W/m?
dE/dt dme_adjust : 0.27 W/m?

(from CAM4 aqua-planet simnulations)
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Coarser physics grid Finer physics grid




CAM-S! “SLAM ¢ suration

‘ ‘ - We are getting very close . ‘

to finally do science
LL (beyond numerical - e
methods research) with
CAM-SE-CSLAM

Coa . Fu. id







