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ABSTRACT6

It is the purpose of this short article to analyze mass conservation in high-order rigorous7

remapping schemes, which contrary to flux-based methods, relies on elaborate integral con-8

straints over overlap areas and reconstruction functions. For applications on the sphere these9

integral constraints may be violated primarily due to inexact or ill-conditioned integration10

and we propose a generic, local and multi-tracer efficient method that guarantees that the11

integral constraints are satisfied in discrete space irrespective of the accuracy of the numeri-12

cal integration method and slight inaccuracies in the computation of overlap areas. We refer13

to this method as enforcement of consistency as it is based on integral constraints valid in14

continuous space. The consistency enforcement method is illustrated in idealized transport15

tests with CSLAM in HOMME (Conservative Semi-LAgrangian Multi tracer scheme in the16

High Order Method Modeling Environment) where the analytic integrals, that were found to17

be ill-conditioned at certain resolutions and flow conditions, have been replaced with robust18

quadrature. This violates mass-conservation, however, with the consistency enforcement19

method mass-conservation is inherent even with low-order quadrature and renders rigor-20

ous remap schemes such as CSLAM (that was previously limited to gnomonic cubed-sphere21

grids) mass-conservative on any spherical grid.22
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1. Introduction23

The conservative transfer of quantities from one mesh to another has been extensively24

studied in Lagrangian hydrodynamic applications in Cartesian geometry since the pioneering25

work of Dukowicz (1984). Perhaps its first application to atmospheric transport in Carte-26

sian geometry was by Rančić (1992). Rezoning or remapping on the sphere has also received27

considerable attention in the atmospheric sciences due to its applications in the conservative28

coupling of components in global climate system models (Jones 1999; Lauritzen and Nair29

2008; Ullrich et al. 2009) and conservative semi-Lagrangian tracer transport on global do-30

mains (e.g., Lauritzen et al. 2010). Mass-conservation in rigorous remapping schemes is more31

stringent compared to flux-based discretizations (e.g., Lauritzen et al. 2011b). In flux-form32

discretizations any flux, as long as the flux through a cell edge is the same with opposite sign33

for the neighboring cell sharing that edge, will lead to mass-conservation. Mass-conservation34

in high-order remap schemes relies on satisfying integral constraints for the reconstruction35

function over overlap areas that trivially hold in continuous space; however, in the high-36

order high-resolution parallel implementation of CSLAM (Conservative Semi-LAgrangian37

Multi tracer scheme, Lauritzen et al. 2010) on the cubed-sphere (Erath et al. 2012) it was38

found that these constraints are not necessarily satisfied in discretized space mainly due to39

ill-conditioning of analytic line-integrals on the sphere (involving differencing trigonomet-40

ric functions of similar magnitude). Simply switching integration to more robust quadra-41

ture methods may lead to violation of mass-conservation. This has motivated a rigorous42

analysis of mass-conservation in remap schemes and the derivation of a generic consistency-43

enforcement method that ensures mass-conservation regardless of numerical method chosen44

for the identification and integration of overlap areas. This allows for implementing remap-45

ping schemes which are much more robust against several approximation errors that may46

appear in the implementations of high-resolution high-order remapping algorithms on the47

sphere.48

The content of this paper is organized as follows. Section 2 describes the remapping49
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problem and provides a mass-conservation analysis. In Section 3 we apply the theoretical50

results and introduce the mass consistency enforcement. Numerical examples confirm the51

robustness of our approach. Conclusions can be found in Section 4.52

2. The remapping problem and mass-conservation53

The discussion below focusses on the remap discretization of the transport equation,54

however, the derivations generalize to the more general remapping problem between two55

grids.56

a. High-order remapping57

The upstream remap or cell-integrated Lagrangian discretization of the transport equa-58

tion for a passive and inert scalar ψ in cell k can be written as59

ψ
n+1

k |Ak| =
{∑

`∈Lk

[ ∑

p+q≤h
c
(p,q)
` ω

(p,q)
k`

]}
, (1)

(equation 15 or 38 in Lauritzen et al. 2010), where ψ
n+1

k is the cell-averaged value of ψ at60

time-level (n+1) over cell Ak with corresponding area |Ak|. The definition of c
(p,q)
` and ω

(p,q)
k`61

requires the introduction of more notation.62

The upstream Lagrangian area that arrives at Eulerian cell Ak after one time-step ∆t is63

denoted ak, see Figure 1(a). The overlap area between upstream cell ak and Eulerian cell A`64

is denoted ak` and mathematically defined as65

ak` = ak ∩ A`.

The set of indices for Eulerian cells that ak overlaps is denoted66

Lk = {`|ak` 6= ∅} .

A high-order finite-volume scheme based on rigorous remapping involves a high-order67

reconstruction function in each Eulerian cell Ak (for a review see, e.g., Lauritzen et al.68
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2011b). For simplicity, assume that a polynomial reconstruction on the form69

ψk(x, y) =
∑

p+q≤h
c
(p,q)
k xpyq,

is used, where h is the degree of the polynomial with p, q, h ∈ N0 and c
(p,q)
k are the recon-70

struction coefficients. In Lagrangian remap schemes the constant coefficient c
(0,0)
k is chosen71

such that ψk(x, y) integrated over the Eulerian cell Ak yields the cell-averaged mass ψk|Ak|72

(as is the case in continuous space):73

∑

p+q≤h
c
(p,q)
k m

(p,q)
k |Ak| = ψ

n

k |Ak|, (2)

where m
(p,q)
k is the discretization of the integral74

1

|Ak|

∫

Ak

xpyq dA (3)

over Eulerian cell Ak. For fully two-dimensional polynomial reconstructions of degree 275

(h = 2) choices of c(0,0) are given in Ullrich et al. (2009, 2012).76

The discretization of the integral77

∫

ak`

xpyq dA,

over overlap area ak` is denoted ω
(p,q)
k` . This concludes the description of the terms involved78

in the forecast equation (1).79

b. Conservation of mass in rigorous remapping schemes80

Mass is conserved globally if total mass at time level n+ 1 and n are equal, which simply81

reads82

∑

k

ψ
n+1

k |Ak| =
∑

k

ψ
n

k |Ak|. (4)

In the following we demonstrate what conditions in discretization spaces must be fulfilled83

for mass to be conserved in rigorous remap schemes. First the forecast equation for ψ
n+1

k84

4



given in (1) is substituted on the left-hand side of (4)85

∑

k

ψ
n+1

k |Ak| =
∑

k

{∑

`∈Lk

[ ∑

p+q≤h
c
(p,q)
` ω

(p,q)
k`

]}
. (5)

The right-hand side of (5) may be written as86

∑

k

ψ
n+1

k |Ak| =
∑

k

{∑

`∈Ek

[ ∑

p+q≤h
c
(p,q)
k ω

(p,q)
`k

]}

=
∑

p+q≤h

[∑

k

c
(p,q)
k

∑

`∈Ek
ω
(p,q)
`k

]
.

(6)

Note that the subscript k` have been swapped to `k: instead of summing over Eulerian87

indices that the upstream cell spans we sum over overlap areas that have non-empty overlap88

with Eulerian cell k, see also Figure 2(b),89

Ek = {`|a`k ∩ Ak 6= ∅} . (7)

Note that in the above notation: If90

∑

`∈Ek
ω
(p,q)
`k = m

(p,q)
k |Ak| for p+ q ≤ h. (8)

then the right-hand side of (6) becomes91

∑

k

ψ
n+1

k |Ak| =
∑

p+q≤h

[∑

k

c
(p,q)
k m

(p,q)
k |Ak|

]
, (9)

and if c
(0,0)
k satisfies the ‘mass-conservation constraint’ in (2), we recover (4) by substitut-92

ing (2) on the right-hand side of (9).93

In other words, the discretized scheme must satisfy (8) for mass to be conserved globally94

and locally. For p = q = 0 that is95

∑

`∈Ek
|a`k| = |Ak|,

which simply states that the overlap areas a`k that span the Eulerian cell Ak sum up to the96

area of the Eulerian cell k (a graphical illustration is given in Figure 2). Similar arguments97

hold for the higher-order moments (p+ q > 0).98
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3. Numerical implementation issues99

For numerical implementations of remapping schemes the constraint (8) is crucial for100

inherent mass-conservation. There can be several sources of error for the violation of (8).101

The most obvious source of error is the numerical approximation of the moment integral over102

the Eulerian area (3) which may not exactly equal the same quantity (in continuous space)103

computed in terms of a sum over overlap areas that collectively span the same Eulerian area104

(Figure 2). In other words, the same quantity is inherently computed in two different ways105

in the remap algorithm and they may differ due to:106

• Inexact integration (in particular on the sphere where polynomial reconstruction func-107

tions lead to integration of non-polynomials due to metric terms), such as quadrature108

or ill-conditioned analytic expressions for the integrals. While high-order quadrature109

will accurately approximate the weights, the errors may still be above machine pre-110

cession and lead to a slow accumulation of errors that may result in above machine111

round-off violation of mass-conservation in long simulations.112

• Inaccuracies in the search algorithm that identifies overlap areas (crossings between113

a Lagrangian cell side and a coordinate line may be computed twice by neighboring114

Lagrangian cells and may differ slightly).115

• Parallel implementation errors where it is common practice to compute the same quan-116

tities (in continuous space) on different cores to reduce the number of communications117

to a minimum. In case of a cubed-sphere grid they might be computed on different118

projections, such as departure location for points shared by two cubed-sphere edges.119

While we acknowledge that the two latter items may be eliminated by very careful imple-120

mentations, it is likely going to impact parallel efficiency and lead to increased algorithm121

complexity. In any case we may completely eliminate this source of error by enforcing con-122
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sistency locally, that is, by scaling of ω
(p,q)
`k :123

ω̃
(p,q)
`k = ω

(p,q)
`k

m
(p,q)
k∑

i∈Ek ω
(p,q)
ik

, (10)

so that (8) is fulfilled. In words, it is ensured in discretized space that the integrals of124

any moment over overlap areas (belonging to different upstream Lagrangian cells) that span125

Eulerian cell k sum to the integral of the same moment over the same Eulerian cell k but126

computed as one integral1. We refer to this method as consistency enforcement rather than127

a ‘fixer’ as it is based on fulfilling integral properties that hold in continuous space and thus128

spring from physical constraints and not from ‘ad hoc’ mass-restoration ideas. We stress129

that this enforcement is local and therefore also suitable for parallel codes without having130

an extra expensive communication. Also, the scaling of the weights must only be performed131

once for all fields that are being remapped and it is therefore multi-tracer efficient.132

a. An example133

We illustrate the consistency problem and consistency enforcement method with CSLAM.134

The weights over ak` are computed in terms of line integrals in CSLAM. To ensure mass con-135

servation line integrals overlapping Eulerian lines, see Figure 1(b), were computed analyti-136

cally in the original formulation of CSLAM so that the sum of the line-segments that span an137

Eulerian cell exactly integrate the reconstruction function to the cell-average value2 (2). Un-138

fortunately, these analytical expressions can become ill-conditioned in particular the higher-139

order moments at high resolution (see equation (32) and (33) in Lauritzen et al. 2010). A140

similar analytical expression can be found in Erath et al. (2009) which becomes numerical141

unstable for high resolution meshes. As proposed in Erath et al. (2009) one can replace142

the analytical integral by quadrature to get a robust approximation. As discussed above, in143

1in HOMME-CSLAM the weights for the latter integral are pre-computed as they, contrary to the overlap

areas, are not flow-dependent.
2Note that line-integrals not overlapping grid lines cancel between neighboring Lagrangian cell sides since

the line-integrals are computed in both directions (and are hence equal with opposite sign) and added
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spherical geometry, this can lead to mass-conservation errors unless the general consistency144

enforcement (10) method is used. We illustrate this in the next section.145

b. Numerical experiments146

For the following tests we use the third-order accurate CSLAM implementation in HOMME147

(High Order Method Modeling Environment, Dennis et al. 2005, 2012) which is documented148

in Erath et al. (2012). HOMME is a dynamical core in NCAR’s Community Atmosphere149

Model (CAM). The tests are performed on the sphere with an analytical wind field and150

Gaussian surfaces as initial fields (wind field case 3 in Nair and Lauritzen 2010). We chose151

a time-step of 800 seconds at resolution 1.12◦ resulting in a maximum Courant number of152

0.8. The Gaussian surfaces are infinitely smooth and leads to the optimal convergence rate153

of 3 with CSLAM when no shape-preserving filter is applied (Figure 4 in Lauritzen et al.154

2012). All tests are run on an equi-distant gnomonic grid and air-mass and tracer mass are155

coupled as described in Appendix B of Nair and Lauritzen (2010). We stress that our con-156

sistency enforcement does not affect the coupling since the weights are re-used for both, the157

air-mass and tracer mass. No differences (up to machine precision) can be observed. Conse-158

quently a constant mixing ratio is also preserved with consistency enforcement. A constant159

air-mass, however, is not completely preserved for both variants, the version with analytical160

line integrals and the version with consistency enforcement; e.g., the changes for the scheme161

with our consistency enforcement and two Gaussian points compared to the version with162

analytical line integrals are of order 10−6, which decreases with resolution.163

Since the analytic evaluation of the line-integrals is ill-conditioned, which is manifested164

through simulation instability under certain flow conditions and resolutions, we replace the165

analytic integrals used in the original CSLAM with two or four point Gaussian quadrature166

and run the model with and without consistency enforcement. Figure 3 shows the relative167

mass error as a function of time step index. As expected mass errors with two quadrature168

points are significant: O(10−6) after twelve days of simulation (Figure 3(a)). Increasing the169
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number of quadrature points to four (thereby increasing computational cost) reduces the170

relative mass-errors significantly to O(10−11) (Figure 3(b)); but still above machine round-171

off and the error could potentially accumulate over a typical climate scale simulation on the172

order of 10 years and more. When using the consistency enforcement algorithm the relative173

mass errors are around machine round-off: O(10−13) at day 12 of the simulation.174

To investigate if the consistency enforcement algorithm affects accuracy we compute175

L1, L2, and L∞ error norms at day 12 at resolutions ranging from 2.25◦ to 0.07◦ keeping176

the Courant number with 0.8 fixed (Figure 4). The rates of convergence remain third-177

order without a shape-preserving filter, and (almost) third-order (L1), second-order (L2) and178

3/2-order (L∞) with a shape-preserving filter as for the original (and less robust) CSLAM179

implementation using analytic line-integrals. Shape-preservation and the absolute L1, L2,180

and L∞ errors (up to machine precision) are unaffected by the consistency enforcement181

algorithm (not shown).182

Note that in the original formulation of CSLAM mass-conservation relied on the ana-183

lytical integration along line-segments coinciding with grid lines which was possible on the184

gnomonic cubed-sphere grid (Ullrich et al. 2009). This limited the application of CSLAM185

to a special class of grids. With the consistency enforcement algorithm integration over186

over-lap areas can be replaced with quadrature and thereby allows for CSLAM to be im-187

plemented on any spherical grid and still be inherently mass-conserving. Higher-order edge188

approximations introduced in the context of simplified flux-form CSLAM (Ullrich et al. 2012)189

may also be applied in Lagrangian CSLAM using the consistency enforcement method for190

mass-conservation.191

4. Conclusions192

Based on a rigorous analysis of mass-conservation in remapping schemes we have derived193

a mandatory condition to achieve mass-conservation based on integral constraints valid in194
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continuous space. Our proposed consistency enforcement is generic and applicable in any195

remapping algorithm. The integration over overlap areas can be performed with inexact196

quadrature while still retaining inherent mass-conservation. The consistency enforcement197

is completely local making it also attractive for parallel codes, and shape-preserving fil-198

ters are not affected by the consistency enforcement algorithm. Idealized transport tests199

using CSLAM in HOMME illustrate how conservation of mass is violated when replacing200

analytical line-integrals (that are ill-conditioned under certain flow conditions and resolu-201

tions) with quadrature and that the consistency enforcement algorithm restores inherent202

mass-conservation without degrading simulation accuracy.203

Acknowledgments.204

The first author is funded by DOE BER Program DE-SC0006959. The authors thank205

Ramachandran D. Nair (National Center for Atmospheric Research) and Mark A. Taylor206

(Sandia National Laboratories) for many fruitful discussions. The authors gratefully ac-207

knowledge the three anonymous reviewers for their helpful comments.208

10



209

REFERENCES210

Dennis, J. M., A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, J. Stephen,211

and H. Tufo, 2005: High-Resolution Mesh Convergence Properties and Parallel Efficiency212

of a Spectral Element Atmospheric Dynamical Core. Int. J. High Perform. Comput. Appl.,213

19(3): 225-235.214

Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr,215

M. A. Taylor, and P. H. Worley, 2012: CAM-SE: A scalable spectral element dynamical216

core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26(1):217

74-89.218

Dukowicz, J. K., 1986: Conservative rezoning (remapping) for general quadrilateral meshes.219

J. Comput. Phys., 54(3): 411-424.220

Erath, C., S. Ferraz-Leite, S. A. Funken, and D. Praetorius, 2009: Energy norm based221

a posteriori error estimation for boundary element methods in two dimensions. Appl.222

Numer. Math., 59(11):2713–2734.223

Erath, C., P. H. Lauritzen, J. H. Garcia, and H. M. Tufo, 2012: Integrating a scalable and224

efficient semi-Lagrangian multi-tracer transport scheme in HOMME. Procedia Computer225

Science, 9, 994–1003.226

Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in227

spherical coordinates. Mon. Wea. Rev., 127, 2204–2210.228

Lauritzen, P. H. and R. D. Nair, 2008: Monotone and conservative Cascade Remapping229

between Spherical grids (CaRS): Regular latitude-longitude and cubed-sphere grids. Mon.230

Wea. Rev., 136, 1416–1432.231

11



Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian232

multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys.,233

229, 1401–1424.234

Lauritzen, P. H., W. C. Skamarock, M. J. Prather, and M. A. Taylor, 2012: A standard235

test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev., 5,236

887-901.237

Lauritzen, P. H., P. A. Ullrich, and R. D. Nair, 2011b: Atmospheric transport schemes:238

desirable properties and a semi-Lagrangian view on finite-volume discretizations, in: P.H.239

Lauritzen, R.D. Nair, C. Jablonowski, M. Taylor (Eds.), Numerical techniques for global240

atmospheric models. Lecture Notes in Computational Science and Engineering, Springer,241

2011 , 80.242

Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test cases for linear243

transport problems on the sphere. J. Comput. Phys., 229, 8868–8887.244
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ak. Since reconstruction functions are discontinuous at Eulerian cell bound-255

aries the upstream integral over ak is split into overlap integrals between ak256

and Eulerian cell A`: ak`. (b) Area integration is performed via line-integrals257

in CSLAM. In the original formulation of CSLAM line-integrals overlapping258

Eulerian grid lines where computed analytically on the sphere to ensure global259

mass-conservation. 14260

2 The condition (8), on which the consistency enforcement method is based,261

states that the integral of a moment over the Eulerian cell (a) must equal the262

sum of integrals of that moment over overlap areas that span the Eulerian cell263

(Ak = aak ∪ abk ∪ ack ∪ adk ∪ aek) in (b) to ensure mass conservation. Note264

that the different overlap areas belong to different upstream cells. 15265

3 The relative mass error for CSLAM in HOMME using line integral approxi-266

mation with two and four Gaussian points for a 1.12◦ mesh with and without267

enforcement of consistency (EOC). 16268

4 The plot shows the convergence order of different error norms for our test269

example using line integral approximation with two Gaussian points and ma-270

nipulation the weights, consistency enforcement (10). In particular, the rates271

of convergence remain third-order without a shape-preserving filter, and (al-272

most) third-order (L1), second-order (L2) and 3/2-order (L∞) with a shape-273

preserving filter as for the original (and less robust) CSLAM implementation274

using analytic line-integrals (not shown). 17275
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ak!

Ak

(a) Numerical integral over ak!. (b) Analytical line in-
tegral approach for this
segment.

Fig. 1. (a) A graphical illustration of CSLAM that tracks Eulerian cell Ak upstream ak.
Since reconstruction functions are discontinuous at Eulerian cell boundaries the upstream
integral over ak is split into overlap integrals between ak and Eulerian cell A!: ak!. (b) Area
integration is performed via line-integrals in CSLAM. In the original formulation of CSLAM
line-integrals overlapping Eulerian grid lines where computed analytically on the sphere to
ensure global mass-conservation.
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Fig. 1. (a) A graphical illustration of CSLAM that tracks Eulerian cell Ak upstream ak.
Since reconstruction functions are discontinuous at Eulerian cell boundaries the upstream
integral over ak is split into overlap integrals between ak and Eulerian cell A`: ak`. (b) Area
integration is performed via line-integrals in CSLAM. In the original formulation of CSLAM
line-integrals overlapping Eulerian grid lines where computed analytically on the sphere to
ensure global mass-conservation.
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(b) Overlap Ek of Ak.

Fig. 2. The condition (8), on which the consistency enforcement method is based, states
that the integral of a moment over the Eulerian cell (a) must equal the sum of integrals of
that moment over overlap areas that span the Eulerian cell (Ak = aak ∪ abk ∪ ack ∪ adk ∪ aek)
in (b) to ensure mass conservation. Note that the different overlap areas belong to different
upstream cells.
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Fig. 2. The condition (8), on which the consistency enforcement method is based, states
that the integral of a moment over the Eulerian cell (a) must equal the sum of integrals of
that moment over overlap areas that span the Eulerian cell (Ak = aak ∪ abk ∪ ack ∪ adk ∪ aek)
in (b) to ensure mass conservation. Note that the different overlap areas belong to different
upstream cells.
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(a) Two Gaussian points for line integrals.
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Fig. 3. The relative mass error for CSLAM in HOMME using line integral approxima-
tion with two and four Gaussian points for a 1.12◦ mesh with and without enforcement of
consistency (EOC).
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Fig. 3. The relative mass error for CSLAM in HOMME using line integral approxima-
tion with two and four Gaussian points for a 1.12◦ mesh with and without enforcement of
consistency (EOC).
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Fig. 4. A convergence plot of our test example shows that manipulation the weights, consis-
tency enforcement (10), does not effect the L2 error. In particular, the rate of convergence re-
main third-order without a shape-preserving filter and second-order with a shape-preserving
filter as for the original (and less robust) CSLAM implementation.
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Fig. 4. The plot shows the convergence order of different error norms for our test ex-
ample using line integral approximation with two Gaussian points and manipulation the
weights, consistency enforcement (10). In particular, the rates of convergence remain third-
order without a shape-preserving filter, and (almost) third-order (L1), second-order (L2) and
3/2-order (L∞) with a shape-preserving filter as for the original (and less robust) CSLAM
implementation using analytic line-integrals (not shown).
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