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Abstract

A conservative semi-Lagrangian cell-integrated transport scheme (CSLAM) was

recently introduced, which ensures global mass conservation and allows long timesteps,

multi-tracer efficiency, and shape preservation through the use of reconstruction fil-

tering. This method is fully two-dimensional so that it may be easily implemented on

non-cartesian grids such as the cubed-sphere grid. We present a flux-form implemen-

tation, FF-CSLAM, which retains the advantages of CSLAM while also allowing the

use of flux-limited monotonicity and positivity preservation and efficient tracer sub-

cycling. The methods are equivalent in the absence of flux limiting or reconstruction

filtering.

FF-CSLAM was found to be third-order accurate when an appropriately smooth
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initial mass distribution and flow field (with at least a continuous second derivative)

was used. This was true even when using highly deformational flows and when

the distribution is advected over the singularities in the cubed sphere, the latter a

consequence of the full two-dimensionality of the method. Flux-limited monotonicity

preservation, which is only available in a flux-form method, was found to be both less

diffusive and more efficient than the monotone reconstruction filtering available to

CSLAM. Despite the additional overhead of computing fluxes compared to CSLAM’s

cell integrations, the non-monotone FF-CSLAM was found to be at most only 40%

slower than CSLAM for Courant numbers less than one, with greater overhead for

successively larger Courant numbers.

Keywords:

2000 MSC: 2010 65M08, Advection, Conservation, Flux-form, Monotonicity,
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1. Introduction

Inherently conservative semi-Lagrangian advection has been an active research

subject since the pioneering work of [1] and the further development by [2], [3], [4],

and [5, 6, 7]. Finite-volume semi-Lagrangian schemes enforce local conservation prop-

erties without a posteriori fixers [8], allows timesteps with Courant numbers greater

than 1, and have been shown to be more accurate than traditional non-conservative

semi-Lagrangian schemes in idealized tests [e.g. 9]. Recently, the conservative semi-

Lagrangian schemes have been coupled with the momentum equations using semi-

implicit timestepping to form shallow water models [10, 11, 12] and also extended to

the three-dimensional hydrostatic equations of motion [13].

A locally conservative semi-Lagrangian scheme can be cast as either a dimensionally-

split method or as a fully two-dimensional method. A dimensionally-split method
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[c.f. 14] casts the two-dimensional interpolation problem into multiple applications

of one-dimensional operators. Dimensionally split methods can either be cast as

two one-dimensional sweeps in flow-dependent cascade directions [15], referred to as

cascade interpolation, or in terms of fixed-direction splitting where the operators

are applied along coordinate directions. [17] and [18] extended the non-conservative

cascade interpolation method of [15] to an inherently conservative method. [16, 19]

created a fully two-dimensional scheme from two one-dimensional operators com-

posed in such a way as to eliminate the splitting error and directional bias typically

resulting from dimensional splitting. This scheme is constructed to provide numer-

ous desirable features, such as preserving a constant density field for nondivergent

flows and preserving linear correlations between two scalars. Dimensionally split

methods are easily extended to higher dimensions as only one-dimensional operators

are needed, and can use any of a large number of one-dimensional shape-preservation

methods (i.e. those preserving monotonicity or positive-definiteness) with relatively

low computational cost. This includes recent schemes that are much less diffusive

compared to conventional montonicity-preserving methods [e.g. 20]. The conserva-

tive splitting method of [18] has proven accurate for orthogonal meshes such as the

regular latitude-longitude grid [e.g. 21]. However, extending dimensional splitting to

geometries under consideration for weather and climate applications, such as icosa-

hedral, cubed-sphere or completely unstructured meshes, is not obvious and fully

two-dimensional semi-Lagrangian schemes may be more attractive.

Recently [22] (hereafter referred to as LNU) introduced a general fully two-

dimensional semi-Lagrangian scheme referred to as CSLAM (Conservative Semi-

LAgrangian Multi-tracer scheme), based on tracking Lagrangian cells moving with

the flow and, at the end of each timestep, remapping (conservatively interpolat-

ing) variables back to the regular Eulerian mesh. The Lagrangian areas are simply
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connected polygons over which area integrals can be directly evaluated, although

this requires a complicated algorithm which takes every possible 2D shape into ac-

count [1]. [23] found that the area integrals can be converted into line integrals

using Gauss-Green’s theorem, reducing the problem to finding intersections between

straight lines and so greatly simplifying the integration algorithm. The geometric

computations for defining line segments only has to be done once per timestep and

can be reused for each additional tracer, hence the scheme is a “multi-tracer scheme”

similar to the incremental remapping scheme introduced by [24]. Both multi-tracer

schemes and incremental remapping require more memory and computation time

than a conventional advection scheme for a single tracer, but since the results of the

line integrations can be re-used for other tracers the marginal cost for additional

tracers is much less than for conventional schemes. Indeed, [25] found that for as few

as seven tracer species their incremental remapping scheme was more efficient than a

conventional Eulerian scheme. The efficiency introduced by multi-tracer schemes is

becoming increasingly important in weather and climate applications as the number

of prognostic tracers grows; for example, the chemistry version of NCAR’s Com-

munity Atmospheric Model model [26] uses on the order of 100 prognostic tracers

[27].

Fully two-dimensional transport schemes are more easily extended to non-cartesian

grids compared to dimensionally-split schemes. CSLAM was implemented and tested

for a particular cubed-sphere geometry but can, in theory, be extended to any spher-

ical grid constructed from great-circle arcs such as is being done for icosahedral-type

grids (Mittal et al., manuscript in preparation). CSLAM makes minimal approxima-

tions regarding the spherical geometry: The computational space is the gnomonic

projection where the straight line connecting any two points is a great-circle arc on

the sphere, and the integrals are computed exactly along lines parallel to coordinate
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lines and by using Gaussian quadrature on other lines.

Flux-Form CSLAM, or FF-CSLAM, tracks the flux of mass through each Eulerian

cell wall rather than tracking cells moving with the flow. FF-CSLAM is conceptually

very similar to the incremental remapping scheme introduced by [24] and used on

the sphere by [25], although incremental remapping uses 2D Gaussian quadrature to

evaluate the area integrals instead of converting the area integrals to line integrals.

Incremental remapping also does not allow timesteps for which the Courant number

(defined in Sec. 4a) exceeds unity, and [24] only allowed a maximum Courant number

of one-half to avoid evaluating integrals over non simply-connected regions.

Although CSLAM and FF-CSLAM will be shown to be formally equivalent, there

are advantages of casting the scheme in flux form. In CSLAM shape-preservation

is enforced by scaling the sub-grid-cell reconstruction functions (henceforth referred

to as filtering), but a flux-form scheme may also use flux limiters or flux-corrected

transport methods [28, referred to as limiting] as do Eulerian flux-form schemes2.

Another advantage of a flux-form method is that it allows for timestep sub-cycling

in models that solve the equations of motion with explicit time-differencing [e.g. 29].

Since the transport equation lacks fast wave modes which limit the timestep for

the dynamics, tracer transport can use longer timesteps by accumulating each small

timestep’s fluxes over the long timestep. Sub-cycling is “free-stream” preserving

since the tracer advection solution and the solution to the continuity equation for air

become identical when the mixing ratio for the tracer is one. Models that sub-cycle

air mass with respect to tracers can gain substantial computational savings [e.g. 26].

Other fully-two-dimensional methods have been implemented on the cubed-sphere.

2Reconstruction filtering is often called reconstruction limiting or slope limiting, although neither
are “limiters” in the sense introduced here.
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[30] introduced a scheme which prognoses several moments of the sub-grid-cell tracer

distribution, which is fourth-order-accurate for both tracer advection and shallow-

water problems. However, computing and storing multiple moments causes a sub-

stantial increase in overhead for each additional tracer species, and this method

may become less competitive for large numbers of tracers. [31] uses a discontinuous

Galerkin scheme on the cubed-sphere which is formally highly accurate, but imposes

a severe Courant number restriction for stability—[31] perform some tracer advec-

tion tests with a Courant number as low as 0.005, two to three orders of magnitude

smaller than that used by CSLAM, [30], and others.

This paper concerns the derivation of FF-CSLAM and its shape-preservation

methods. We test several methods for sub-grid-cell reconstruction filtering as well as

for flux limiting. In Section 2 CSLAM is introduced, FF-CSLAM is derived, shown

to be equivalent to CSLAM, and its extension to the cubed-sphere geometry is briefly

discussed. Section 3 describe the limiters and filters used in this paper. Results from

standard as well as novel test cases using FF-CSLAM are presented in Section 4.

Our findings are summarized in Section 5.

2. CSLAM and FF-CSLAM

2.1. Cartesian geometry

We first describe the CSLAM and FF-CSLAM methods in cartesian geometry.

A cell-integrated Lagrangian form of the two-dimensional transport equation for a

passive tracer can be written as

d

dt

∫
A(t)

ψ dA = 0, (1)
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Figure 1: Illustration of the notation used for the (a) cell-integrated Lagrangian form of CSLAM and
(b-e) flux-form version of CSLAM. (a) The Lagrangian area ak (‘brick’ pattern) and the associated
Eulerian area Ak (‘brick pattern’) at which ak ends up after being transported by the flow as a
material surface for one time step. The arrows show the trajectories for the vertices of ak (unfilled
circles) and Ak (filled circles). The cell face numbering ε used in the flux-form version of CSLAM is
shown in (b) and the area swept through each Eulerian cell face during one timestep aεk, ε = 1, 2, 3, 4
is shown in (b), (c), (d) and (e) (shaded area), respectively.
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[e.g. 24] where ψ is the continuous tracer density (typically the product of the air

density and the tracer concentration per unit mass)3, d/dt is the substantive (or

Lagrangian) derivative, and the integration is over an arbitrary Lagrangian area

A(t)—a material area that moves with the flow with no flux through its boundaries—

at time t. A temporal discretization of (1) is given by

∫
A(t+∆t)

ψ dA =

∫
A(t)

ψ dA, (2)

where ∆t is the timestep length.

For a Lagrangian discretization in space, index the cells with subscript k with a

total number of grid cells N . Denote the downstream cell Ak = A(t + ∆t) and the

upstream cell ak = A(t). Here we consider upstream semi-Lagrangian schemes so Ak

is a regular (Eulerian) grid cell and ak is the upstream deformed (Lagrangian) cell

transported to Ak after one timestep ∆t. The discretized continuity equation for cell

k can then be written in the cell-integrated Lagrangian form

ψ
n+1

k ∆Ak = ψ
n

k δak, (3)

where (·)
n+1

refers to the average value of ψ over Ak and (·)
n

is the average value

of ψ over ak. The areas ∆Ak and δak are the areas of Ak and ak, respectively.

Both CSLAM and FF-CSLAM assume the region ak to be simply-connected. A

graphical illustration of the scheme is given in Fig. 1a. In this paper we will assume

a quadrilateral mesh although the method can be extended to more complicated

meshes (such as hexagonal or unstructured grids) provided high-order subgrid-cell

3In this paper we will only consider nondivergent flow with constant, uniform air density, so we
do not need to distinguish tracer mixing ratio and mass (cf. Appendix A and [32]).
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reconstruction functions can be derived and the mesh is constructed from great-circle

arcs. We also assume that the winds are available at the cell vertices, ie. defined on

the Arakawa B-grid, although if they are not interpolated winds can be used.

Instead of integrating the equation of motion over a cell moving with the flow one

may also discretize the continuity equation in Eulerian form, in which rather than

tracking a cell moving with the flow the flux of mass through the Eulerian cell (Ak)

walls are computed. This flux-form discretization can be written as

ψ
n+1

k ∆Ak = ψ
n

k ∆Ak −∆t
4∑
ε=1

(
〈ψk〉~vk · ~n∆l

)
ε
, (4)

[e.g. 14] where · is the time-average over one timestep, < · > is the average in

x or y direction of the cell, nε is the outward-directed unit vector normal to face ε,

and ∆lε is the length of face ε. Each term on the right-hand side of (4) represents

the mass transported through one of the four Eulerian cell faces ε into the cell Ak

during the time step. The area swept through face ε of cell Ak is denoted aεk (see

Fig. 1b–e for a graphical illustration). We will refer to aεk as the “flux-area” for

face ε. An x-flux area is a flux-area with ε = 1 or 3, and a y-flux area is a flux-area

with ε = 2 or 4. Unlike the upstream region ak the flux areas may not be simply

connected, a possibility that must be considered by the solution algorithm.

The flux-form version of CSLAM is based on a semi-Lagrangian discretization of

(4), which can be written as

ψ
n+1

k ∆Ak = ψ
n

k ∆Ak +
4∑
ε=1

sεF ε
k , (5)
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where

sε =

+1 for inflow

−1 for outflow.

(6)

and the magnitude of the individual fluxes through each face is

F ε
k =

∫∫
aεk

ψn(x, y) dA, (7)

where ψn(x, y) is the continuous tracer density at timestep n. Note that sεF ε
k > 0

indicates flux into cell Ak, and represents the increase in mass in that cell from flow

through face ε during a timestep. The example depicted on Fig. 1 has sε = −1 for

ε = 1, 2 and sε = 1 for ε = 3, 4. The notation used in (5) does not cover the special

case where there is both inflow and outflow for a particular face, that is, aεk overlaps

a face, such as in Fig. 2c. In such a situation sε is multi-valued, and must be defined

in terms of the individual overlap areas defined later in (9).

Assuming exact trajectories and an exact spatial distribution of ψ at time-level

n, ψn = ψn(x, y), the equations (3) and (5) are exact solutions to (1). The union of

the areas used on the right-hand side of (4) with positive sign for inflow and negative

sign for outflow equals the upstream Lagrangian area ak:

∆Ak +
4∑
ε=1

(sε · δaεk) = δak, (8)

where δaεk is the area of aεk (see Fig. 1). Hence, as expected, both the flux-form and

cell-integrated Lagrangian version of the discretized continuity equation are identi-

cal4. Guaranteeing mass conservation, whether local or global, in the cell-integrated

4A similar proof of the equivalence between flux-form and cell-integrated semi-Lagrangian
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Figure 2: Examples of flux areas; green arrows represent properly oriented direction of integration,
which in (c) and (d) is after the areas have been split up. Numbers on flux area vertices correspond
to the default ordering of the vertices on the boundary. All other symbols are as in Fig. 1. Note
that the Lagrangian area (brick pattern) in all four panels are simple quadrilaterals. (a) Counter-
clockwise-oriented, convex flux area. (b) Clockwise-oriented, convex flux area; red arrows indicate
incorrect orientation given by the default ordering of the vertices. (c) Non-simple flux area. (d)
Concave flux area. Panels (c) and (d) have been enlarged for clarity.
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Lagrangian version requires taking care that the upstream areas ak span the domain

without gaps or overlaps, while any flux-form scheme is inherently both locally and

globally mass-conservative since the flux of mass into a cell along a face is equal to

the flux out of the neighboring cell with which it shares the face.

Both the semi-Lagrangian (3) and flux-form (5) versions of CSLAM require in-

tegrating over areas ak and aεk, respectively. Since we will use local sub-grid-cell re-

constructions within each cell (that are not necessarily continuous across cell bound-

aries), we need to integrate over the overlapping regions between ak (or aεk) and the

Eulerian grid cells A`, for ` = 1, . . . , N . Define ak` as the non-empty overlap area

between ak and grid cell A` such that

ak` = ak ∩ A`, and ak` 6= ∅; for ` = 1, . . . , Lk and 1 ≤ Lk ≤ N, (9)

where Lk is the number of non-empty overlap areas between cell ak and the Eulerian

grid cells Ak, which depends on the characteristics of the flow and timestep size.

Similarly we define aεk` as the overlap area between the flux-area aεk and Eulerian cell

A`. The number of overlap areas of aεk are denoted Lεk.

If f`(x, y) is the sub-grid-cell distribution in Eulerian cell A` then CSLAM and

FF-CSLAM can be written as

ψ
n+1

k ∆Ak =



∑Lk
`=1

∫∫
ak`

f`(x, y) dA CSLAM

ψ
n

k ∆Ak +
4∑
ε=1

[
Lεk∑̀
=1

sε`F
ε
k`

]
FF-CSLAM,

(10)

schemes can be found in Section 2 of [14], and in [33].
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respectively, where the individual overlap fluxes are

F ε
k` =

∫∫
aεk`

f`(x, y) dA. (11)

We recover (8) when f` = 1 and the two right-hand-sides of (10) are equated. The

sign-function sε` for inflow and outflow for each overlap area is defined as in (6),

although unlike sε, sε` can only be single-valued.

The piecewise-parabolic subgrid cell reconstructions of the tracer field ψ are the

same in FF-CSLAM as in CSLAM, which used fully two-dimensional biquadratic

functions of the form

f`(x, y) =
∑
i+j≤2

c
(i,j)
` xiyj = c

(0,0)
` + c

(1,0)
` x+ c

(0,1)
` y + c

(2,0)
` x2 + c

(0,2)
` y2 + c

(1,1)
` xy, (12)

in each Eulerian cell A`; here, the superscripts on x and y are exponents, not indices.

The coefficients c
(i,j)
` are chosen so that the average value of the reconstruction is

equal to ψn` . (For more details, see LNU and [34].) Integrating these reconstructions

over the overlap area ak` then yields

∫∫
ak`

f`(x, y) dx dy =
∑
i+j≤2

c
(i,j)
`

∫∫
ak`

xiyjdx dy =
∑
i+j≤2

c
(i,j)
` w

(i,j)
k` , (13)

where each term in the sum is a product of a coefficient, which depends only on the

values of the scalar variable, and an area weight w
(i,j)
k` which depends only on the

overlap area. (For notational simplicity, we have suppressed the superscript ε in the

area weights.) Note that the area weights w
(i,j)
k` are separated from the reconstruction

coefficients c
(i,j)
` , implying that the weights can be re-used for each additional tracer;

hence FF-CSLAM is a multi-tracer method.
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The integral in (13) is evaluated not by directly integrating over ak` but instead

converted into a more-easily evaluated line integral through Gauss-Green’s theorem.

Details are given in LNU; however, evaluating the line integrals of the flux areas aεk`

is more difficult than for Lagrangian areas a`. Line integrals are computed assuming

a counter-clockwise orientation of the points, which by default is given by a list of

successive vertices along the boundary of the region being integrated; the numbering

of the vertices used by default CSLAM is shown for several example flux areas in

Fig. 2. Simply-connected Lagrangian areas cannot have the orientations of their

boundaries reversed from those of the corresponding Eulerian areas and will always

be correctly oriented. This is not true for flux areas, for which the orientation depends

on the flow direction. In Fig. 2a, a correctly-oriented flux area is shown: the order

of the vertices on the flux area yields a counter-clockwise boundary. However, when

the flow is reversed in Fig. 2b the resulting flux area is clockwise-oriented by default,

and will need to be re-oriented by reversing the order of the vertices to be correctly

integrated.

The proper orientation is determined by the location of the upstream points

relative to the cell face in question. An x-flux (y-flux) area is counter-clockwise if both

upstream points are leftward (downward) of the Eulerian cell’s face and clockwise if

both are rightward (upward) of the Eulerian cell’s face. This can be seen for an x-flux

area in Fig. 2ab. This method assumes that the flux area is a simple (one whose

edges do not cross) convex quadrilateral; cases in which either assumption is violated

must be handled separately. Fig. 2c depicts a non-simple flux area in which the flow

direction normal to the cell face changes, which must be broken into two triangular

flux areas which are separately oriented. The integration for a triangular area is no

different than for a simply-connected convex quadrilateral. A similar procedure is

carried out when the trajectories cross, which also creates a non-simple flux area.
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Fig. 2d depicts a concave flux area, which is broken into a triangular flux area and

the remaining quadrilateral flux area, both of which are again separately oriented

and integrated. These four cases—counter-clockwise and clockwise convex simply-

connected, concave simply-connected, and non-simple—cover all possible shapes of

a quadrilateral region5. Regions with more sides would require the consideration of

correspondingly more cases.

Of major importance for chemistry models [16] is the ability of an advection

scheme to preserve linear correlations between tracer species. Appendix A presents a

proof that CSLAM and FF-CSLAM satisfy this property, even when monotonicity or

selective monotonicity preservation is used (but not when our positivity preservation

methods are used). A consequence of preserving linear correlations is that a constant

tracer mixing ratio field is also preserved.

2.2. Extension to cubed-sphere geometry

We consider cubed-sphere grids resulting from equi-angular gnomonic (central)

projection

x = r tanα and y = r tan β; α, β ∈
[
−π

4
,
π

4

]
, (14)

[35] where α and β are central angles in each coordinate direction, r = R/
√

3 and

R is the radius of the Earth. The physical domain Ω (sphere) is represented by

the gnomonic (central) projection of the cubed-sphere faces, Ω(ν) = [−1, 1]2, ν =

1, 2, . . . , 6, and

Ω =
6⋃

ν=1

Ω(ν),

5The degenerate case, a flux area with zero area, is simply handled by setting the value of the
corresponding integral to zero.
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where the panel domains Ω(ν) are non-overlapping and the cube edges are discontin-

uous. The gnomonic grid on each panel Ω(ν) constitutes a non-orthogonal curvilinear

coordinate system that is only orthogonal at the center of each panel (6 points). In

the discretized scheme the number of cells along a coordinate axis is denoted Nc so

that the total number of cells in the global domain is 6 × N2
c . Any straight line in

the gnomonic projection corresponds to a great-circle arc on the sphere.

The extension of FF-CSLAM to the sphere is exactly as for CSLAM except

for the handling of flux orientations between panels. Most of the Cartesian FF-

CSLAM algorithm extends trivially to spherical cubed-sphere geometry. The flux

areas aεk are defined as polygons in gnomonic (x, y) coordinates which are spherical

polygons on the sphere, and the straight line sides of the flux areas are now great-

circle arcs on the sphere. However, Gauss-Green’s theorem must be extended to

gnomonic coordinates, the reconstruction functions must be computed on the sphere

in gnomonic coordinates and the six cubed-sphere panels must be coupled. See LNU

for further details.

The coupling of the panels is straightforward since FF-CSLAM is a fully two-

dimensional scheme. The algorithm divides any flux-area aεk into overlap areas aεk`.

If a flux-area aεk spans more than one panel the division of the area into overlap

areas will divide the flux-area into overlapping areas that belong to different panels

(Fig. 10 of LNU). The line-integrals are then performed on the panel that is local

to the overlap area and thereafter the contributions to the flux-areas are collected

across each panel. The collection process is slightly different than that described

in LNU. The direction of the fluxes must be preserved when a flux overlap area

is computed on one cubed-sphere face for a cell face on another cubed-sphere face,

since the direction of basis vectors for each coordinate can change between faces. For

example, in Fig. 3, flux A is in the positive y-direction in the front panel’s coordinate
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system, but in the negative x-direction on the top panel’s coordinate system, and

so a positive y-flux on the front panel becomes a negative x-flux on the top panel

and vice versa. Likewise, flux C is a positive y-flux on the right-hand side panel but

a negative y-flux on the top panel. Flux B needs no such revision as the positive

x-direction is the same on the adjacent panels.

3. Monotonicity and positivity preservation

3.1. Limiters and Filters

A number of techniques exist to enforce monotonicity for solutions of the advec-

tion equation [36, 37, Ch. 5]. These can be classified into those which act a posteriori

on the computed fluxes, and those which act a priori on a subgrid reconstruction

function prior to computing the fluxes or performing an update step. The former

will be referred to as “limiters”, which includes both true flux limiters which act on

a single flux and flux-corrected transport methods which combine a non-monotone

high-order flux and a monotone flux. The a priori methods will be referred to as “fil-

ters”, which have the advantage that they can be applied to both semi-Lagrangian

and flux-form methods, whereas limiters are by definition restricted to flux-form

methods. (Again see Footnote 2 in Sec. 1 about our definitions.)

Since CSLAM is fully two-dimensional, the methods used for monotonicity preser-

vation must also be fully two-dimensional; however, few such methods exist for re-

construction polynomials of greater than second order. LNU used the filter of [38],

which simply scales the subgrid reconstruction in each cell so that its extreme values

are no greater than the maximum and minimum of the surrounding cells’ average

values; such a filter can be applied to reconstruction functions of any order. The filter

first defines ψmin
` , ψmax

` by min`∈K ψ` and max`∈K ψ`, respectively, where K is the set
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C

Figure 3: Three panels of the cubed sphere, with local coordinate systems and example fluxes A,
B, and C. The front, right, and top panels shown here correspond to panels numbered 2, 3, and 6,
respectively, in LNU.

of cells surrounding and including cell `. The filter then replaces the sub-grid-cell

distribution f`(x, y) in cell A` with:

fmono
` (x, y) = σmono

`

(
f`(x, y)− ψ`

)
+ ψ` (15)

where σmono
` is chosen to be the largest value in [0, 1] such that ψmin

` ≤ fmono
` (x, y) ≤

ψmax
` for all (x, y) ∈ A` ; if this cannot be satisfied, σmono

` is set to zero, replacing the

reconstruction with the constant value ψ`. This filter is computationally intensive, as

it must check along each cell face and each corner as well as in the interior of A` for

extreme values. LNU found this filter to be strongly diffusive. The effect of this filter

is illustrated on a sample set of 1D data in Fig 4a; note in particular how the filter

replaces the parabolic reconstruction in the cell containing the global maximum with

a piecewise-constant reconstruction, substantially decreasing the order of accuracy

of the method near that cell. The authors are not aware of any other fully two-

dimensional filters for higher-order reconstruction functions in the literature.
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0

5

a) Monotone filter

0

5

b) Positive definite filter

Figure 4: The effects of various filters (solid lines) on 1D piecewise-parabolic reconstructions (thin
lines) from a set of cell-average values (open circles). (a) Monotone filter (15); (b) Positive-definite
filter (24).
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A few fully two-dimensional limiters exist [e.g. 39, 40]. In this paper, we will use

the limiter of Zalesak [28], which is both easy to implement and is flexible enough

to allow changes which may improve the method [cf. 41, 28, pg. 346–347]. Zalesak’s

limiter uses two fluxes, FF-CSLAM’s unlimited high-order flux

F ε
k =

Lεk∑
`=1

∫∫
aεk`

f`(x, y) dA (16)

and a monotone flux using piecewise-constant reconstructions:

F ε,mono
k =

Lεk∑
`=1

ψ`
n
∫∫
aεk`

dA. (17)

A monotone solution is then computed using the low-order fluxes:

ψ
mono

k ∆Ak = ψ
n

k ∆Ak +
4∑
ε=1

sεF ε,mono
k , (18)

which is then used to compute the flux-corrected solution:

ψ
n+1

k ∆Ak = ψ
ε,mono

k ∆Ak +
4∑
ε=1

sεCε,mono
k (F ε

k − F
ε,mono
k ) , (19)

in which the correction factor Cε,mono
k is defined in Appendix C. In FF-CSLAM,

the weights ωk` have already been computed with the higher-order fluxes, and so

computing the low-order flux requires little additional overhead.

3.2. Selective Limiting and Filtering

While the limiters and filters described in the previous section do avoid over-

shoots and undershoots in the solution, they all will incorrectly damp well-resolved
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extrema. This motivated [42] to perform “selective” limiting or filtering, in which a

limiter or filter is applied only where a smoothness metric exceeds a certain thresh-

old, indicating either a steep gradient or discontinuity in the solution, and thus where

a monotonicity preserving method is needed. [42] found that this procedure could

greatly improve the solution near smooth extrema while causing only miniscule vio-

lations of monotonicity. Most notably, selective methods were found to be nearly as

accurate as the piecewise-cubic monotonic scheme of [20] but about a third faster;

and selective methods were as accurate as the Weighted Essentially Non-Oscillatory

scheme of [43], but more efficient by a factor of 2.5.

The original selectivity metric first computed a smoothness parameter Λ̃ at each

cell face, which is an analogue of a 1D Weighted Essentially Non-Oscillatory smooth-

ness metric [44]. Monotonicity preservation was only applied at cell faces where

Λ̃ > Λmax, in which Λmax is a parameter chosen so as to yield a favorable result in

a range of test cases. [42] only applied selectivity to dimensionally-split methods;

for FF-CSLAM, we present a two-dimensional extension of their smoothness metric.

Define:

γk =
1

2

[(
2∆xk

∂f

∂x k

)2

+

(
∆x2

k

∂2f

∂x2 k

)2

+ (20)

+

(
2∆yk

∂f

∂y k

)2

+

(
∆y2

k

∂2f

∂y2
k

)2

+

(
∆xk∆yk

∂2f

∂x∂y k

)2
]

for cell Ak with dimensions ∆xk by ∆yk. Since CSLAM computes each of the deriva-

tives as part of the subgrid reconstruction process, they can be used directly in

determining γk, without further discretizing (20).

Selectivity is applied differently depending on whether it is applied to a filter or

a limiter. For the selective filter, the smoothness metric is computed for each cell,
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rather than cell face:

Λk =
maxk∈K γk

mink∈K γk + ε
. (21)

where K is the set of indices of the nine cells surrounding and including the cell Ak,

and ε is a small parameter preventing division by zero. If Λk > Λmax in a cell, the

filter is applied to the reconstruction; otherwise the filtering step is simply skipped.

When applying selectivity to the limiter, the smoothness metric is computed at

each cell face:

Λε
k =

maxk∈Kε γk
mink∈Kε γk + ε

. (22)

in which Kε is the set of indices of the cells surrounding the cell immediately upstream

of face ε of cell Ak; the γk are all still defined on the cells and are not interpolated

to the cell faces. The correction factor Cε,mono
k in (19) is then replaced by

Cε,sel
k =

C
ε,mono
k if Λε

k > Λmax

1 otherwise.

(23)

Unlike [42], we use Λmax = 60. For higher-resolution simulations, and in particular

higher-resolution deformational flow cases, the original value of 20 was found to yield

a solution which was too diffusive, while using either 60 or 100 yielded nearly identical

results. We expect the fully 2D Λ to be larger than Λ̃ due to the additional terms in

(20) and in particular the two additional second derivative terms.

3.3. Positive definite schemes

Selectively-limited or filtered schemes guarantee neither strict monotonicity nor

positivity. For applications in which even small negative values are undesirable, a

positive-definite filter or limiter can be applied. A positive-definite limiter is created

by replacing the correction factor Cε,mono
k in the Zalesak limiter (20) by a second
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correction factor Cε,PD
k , defined in Appendix C. The monotone filter (15) can be

made into a positive-definite filter by replacing σmono
` with

σPD
` =

1 if fmin
` ≥ 0

ψ`
ψ`−fmin

`

otherwise,

(24)

in which fmin
` = min(x,y)∈A` f` (x, y). The positive-definite filter is illustrated in

Fig. 4b. Unless otherwise noted, we will always apply the positive-definite limiter

when using either the selective limiter or filter.

4. Results

4.1. Solid-body advection of a cosine bell

A steady, nondivergent wind field that will transport a tracer field around a great

circle without distortion so that one revolution is completed in 12 days, at which time

the exact solution is identical to the initial condition, is given by LNU and [45]:

u = u0 cos θ (cosϕ+ sinϕ cosλ) (25)

v = −u0 sinϕ sinλ,

where λ is the longitude, θ the latitude, u, v the zonal and meridional components

of the wind, respectively, u0 = 2πR/(12 days), ϕ is the rotation angle of the flow (0

for pure zonal flow, π/2 for over-the-pole flow), and R is the radius of the sphere.

Details for the computation of the trajectories used to determine the locations of the

upstream cells and flux areas are given in LNU. Unless otherwise noted, advection is

performed with exact, analytic trajectories, so all of the error is due to remapping.

The initial tracer fields φ all consist of localized disturbances in the center of
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one of the cubed sphere’s equatorial panels. When combined with a flow field using

ϕ = π/4 the disturbances will be advected through four of the corners and along

two of the edges of the cubed sphere, yielding the most difficult test using solid-body

advection. The first initial condition (IC) is a cosine bell, defined as:

ψ(λ, θ) =


ψ0

4

[
1 + cos

(
πRg
Rc

)]2

ifRg ≤ Rc

0 otherwise.

(26)

where Rc = R/3 is the radius of the cone, ψ0 = 1000, and Rg is the great-circle

distance between (λ, θ) and the center of the distribution (λc, θc),

Rg = arccos [sin θc sin θ + cos θc cos θ cos (λ− λc)] ,

and (λc, θc) = (3π/2, 0), the center of an equatorial panel. This IC has continuous

second and third derivatives (i.e. is C3), which differs from the standard cosine

bell defined in [45] and used in LNU, among others. Unless otherwise noted, all

simulations are set up so that the number of cells across each panel scales inversely

with the timestep, as in Table 1, so the Courant number is the same as in a simulation

with Nc = 48 and ∆t = 1800 s. Here, the Courant number is defined as the trajectory

length in a coordinate direction divided by the cell width in that coordinate direction,

yielding an x-Courant number and a y-Courant number; we will always refer to the

greater of the two, particularly when discussing the maximum CFL on the domain.

For Nc = 48 and ∆t = 1800 s, the maximum Courant number is about 0.38. All

simulations will advect the IC once around the sphere.

First, a series of Nc = 48 simulations was performed with and without mono-
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Nc ∆t ∆λ
24 3600 s 3.75◦

48 1800 s 1.87◦

96 900 s 0.937◦

192 450 s 0.469◦

384 225 s 0.234◦

Table 1: Resolutions and timesteps used for simulations, excepting those otherwise noted. Right-
most column gives approximate equatorial cell width in degrees of longitude.

0

ψ0

 12  20  28  36

a) Unlimited

 12  20  28  36

b) Monotone filter/limiter

 12  20  28  36

c) Selective filter/limiter 

Figure 5: East-west cross-sections through the center of the C3 cosine bell with Nc = 48 after one
revolution. Thin solid or dashed line denotes numerical solution, heavy solid line denotes exact
solution. In (b) thin solid line is the solution with the monotone filter, and the thin dashed line is
the solution with the monotone limiter.

E2 E∞ max min
Unlimited 0.036 0.042 0.96 -0.0066

Monotone filter 0.088 0.19 0.81 0
Monotone limiter 0.055 0.13 0.87 0

Selective filter 0.027 0.043 0.96 0
Selective limiter 0.030 0.043 0.96 0

Table 2: Error norms E2 (27) and E∞ (28) for the C3 cosine bell simulations, with Nc = 48.
Maximum and minimum solution values are given in terms of ψ/ψ0.
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E2

Nc 24 48 96 192
Unlimited 0.264 0.0357 3.89× 10−3 3.76× 10−4

Monotone filter 0.422 0.0882 0.0163 3.55× 10−3

Montone limiter 0.325 0.0554 8.24× 10−3 1.40× 10−3

Selective filter 0.243 0.0296 3.92× 10−3 4.84× 10−4

Selective limiter 0.236 0.0309 3.65× 10−3 4.28× 10−4

E∞
Nc 24 48 96 192

Unlimited 0.305 0.0419 3.93× 10−3 4.43× 10−4

Monotone filter 0.550 0.194 0.0654 0.0238
Montone limiter 0.447 0.128 0.0361 0.0108

Selective filter 0.311 0.0433 3.93× 10−3 4.50× 10−4

Selective limiter 0.304 0.0430 3.93× 10−3 4.43× 10−4

Table 3: Error norms E2 (27) and E∞ (28) for the C3 cosine bell simulations plotted in Fig. 6.
(Numerical values for the error norms in other cases in this paper are available upon request to the
author.)

0.0001

0.001

0.01

0.1

 1

24 48 96 192
Nc

E2 E∞

Unlimited 3.18
Mono. limiter 2.63
Mono. filter 2.31
Sel. limiter 3.04
Sel. filter 2.98
2nd/3rd Order

24 48 96 192
Nc

E2 E∞

Unlimited 3.17
Mono. limiter 1.79
Mono. filter 1.52
Sel. limiter 3.17
Sel. filter 3.18
2nd/3rd Order

Figure 6: Error norms E2 (27) and E∞ (28) for the C3 bell as a function of the number of cells
across a cube face. Numbers in legends correspond to the empirically-determined convergence rates
K2 and K∞ (29). Heavy lines correspond to the slopes of second and third-order convergence rates.
Numerical values for the error norms are given in Table. 3.
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tonicity preservation, and their errors compared (Table 2). The error norms are

E2 =

√√√√∑N
`=1

[(
ψ` − ψe`

)
∆A`

]2∑N
`=1

[
ψe`∆A`

]2 (27)

and

E∞ =
max

(
ψ` − ψe`

)
∆A`

maxψe`∆A`
, (28)

where ψe` is the exact solution in grid cell k, and N is the total number of grid

cells6. It is immediately apparent that the unlimited scheme (with no monotonicity

preservation applied)7 preserves more of the amplitude of the original cosine bell than

do either of the monotone schemes, with the monotone filter being more diffusive

than the monotone limiter. Cross-sections through the center of the bell (Fig. 5)

clearly show greater damping when using the monotone methods compared to when

no monotonicity preservation was used. The unlimited scheme does however cause

oscillations outside of the bell, which are not large enough to be apparent in Fig. 5a

but are indicated by the negative minimum value in Table 2. Using the selective

methods (with the positive-definite limiter) not only eliminates the negative values,

but since the peak of the bell is sufficiently well-resolved that Λk never exceeds Λmax,

the selective methods do not apply any monotonicity preservation at that point, and

the amplitude of the bell is preserved as well as when using the unlimited scheme

(Fig. 5c). Note that eliminating the oscillations while preserving the bell’s amplitude

6The E1 error norm, defined by eqn. 41 in LNU, did not yield greatly different results than did
the E2 norm, except that unlimited schemes tended to have higher values of E1 compared to the
selective schemes due to the presence of small oscillations in the unlimited solution, which are more
heavily weighted in the E1 norm than in the E2 norm.

7A solution using the unlimited cell-integrated CSLAM differed from the equivalent flux-form
solution by no more than 2× 10−10ψ0 for this case, demonstrating the equivalence (8) between the
two methods.
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causes the selective methods to yield smaller E2 errors than the unlimited scheme.

To determine if our numerical scheme converges at the expected third-order ac-

curacy, the errors for a series of model runs in which the width of the grid cells is

successively halved (i.e. Nc successively doubled) are presented in Fig. 6. Empiri-

cal convergence rates K2 and K∞, for E2 and E∞, respectively, are determined by

performing a least-squares linear regression of the form

logE2 = A2 −K2 logNc

logE∞ = A∞ −K∞ logNc

(29)

to the data; here, the A’s are constants and are not used in this study. As expected,

the unlimited scheme converges at third order in both error norms (Fig. 6), in spite

of the bell being advected over the singularities at the corners of the cubed sphere.

Tests in which the xy “cross term” in (12) is not used show that when the bell is

advected over the singularities the errors are larger (Table 4) and the convergence rate

slower (2.93 and 2.88 for E2 and E∞, respectively). The decrease in the convergence

rate is easily seen when comparing different resolutions: disregarding the cross-term

increases the error by only about a third at Nc = 48 (Table 4), but the error is

doubled in an Nc = 192 simulation by neglecting the cross term. If over-the-pole

advection is used instead (ϕ = 90◦ in (26)) so that the solution does not encounter

the singularities, using the cross term makes comparatively little difference in the

error (Table 4) and convergence rates; even at Nc = 192 neglecting the cross-term

only increases the error by six percent. The selective methods both converge at third

order, corroborating the result of [42]; there is little difference in the convergence

rate between selectively filtered and selectively limited solutions. The monotone

methods both converge more slowly, as is the case for any monotone scheme, with
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the monotone filter converging at the slowest rate.

What if we were to use the IC of Williamson et al. [45]? This IC is only C1,

and since determining the order of accuracy [cf. 46, for analysis of a similar 1D

method] assumes a solution with at least a smooth second derivative, we cannot

expect that this C1 cosine bell will yield third-order convergence. Indeed, if we

perform the same convergence tests using this IC, even the unlimited simulations

do not converge at third order (Fig. 7) in either error norm. For these simulations,

the oscillations created near the second deriviative’s discontinuity at the base of

the bell eventually become larger than the damping of the bell’s peak as resolution

increases, and dominate the error in both norms. A similar problem is seen for the

selective methods. Similar sub-third-order convergence with this IC was found in the

piecewise-parabolic schemes used by LNU and [47] and by the discontinuous Galerkin

scheme of [31].

4.2. Solid-body advection of a slotted cylinder

A much more difficult test uses an IC with a slotted cylinder [28]. The formulation

we use is

ψ(λ, θ) =



ψ0 if Rg ≤ Rc and |λ− λc| ≥ Rc/6

ψ0

if Rg ≤ Rc and |λ− λc| < Rc/6

and θ − θc < − 5
12
Rc

0 otherwise,

(30)

where ψ0 = 1 and Rc = R/3 is the radius of the cylinder. The width of the slot

is one-sixth the diameter of the cylinder. The cylinder is advected over the corners

of the cubed sphere in the same manner as the cosine bell (ϕ = π/4 in (26)). As

expected, the unlimited scheme causes severe oscillations with this initial condition
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With cross term Without cross term
Nc 48 192 48 192

ϕ = 45◦ 0.036 3.76×10−4 0.051 7.02×10−4

ϕ = 90◦ 0.047 5.45×10−4 0.048 5.80×10−4

Table 4: E2 error for unlimited C3 cosine bell simulations, with and without the cross term in (12)
and at different advection angles.
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2nd/3rd Order

Figure 7: As in Fig. 6, but for the C1 cosine bell.
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(Fig. 8a) when using Nc = 48. Using any of the monotonicity-preserving methods

eliminates the oscillations (Fig. 8b). The selective methods yield roughly the same

solutions as their strictly-monotone counterparts (Fig. 8c), except that there are

some overshoots at the top of the cylinder. Overshoots appearing in the selective

simulations remain smaller than in the unlimited simulation (Table 5).

Since the solution is discontinuous, we do not expect even first-order convergence

in space for any of our methods. This is borne out by the error norms listed in

Table 5: doubling the resolution to Nc = 96 only decreases the E2 norm by about

one-third, and causes little difference in the E∞ norm. Oscillations are still present in

the unlimited case (Fig. 8d); the monotone (Fig. 8e) methods are able to retain most

of the amplitude of the cylinder without any apparent oscillations. The selective

methods (Fig. 8f) also retain the cylinder’s amplitude but again the oscillations are

smaller than for the unlimited simulation.

4.3. Advection by a deformational flow

FF-CSLAM is now tested by moving deformational vortices [48] advected through

the corners of the cubed sphere. This test, identical to that in LNU, begins with

a smooth tracer field that is deformed into narrow vortical filaments by the flow

(Fig. 9), and poses a more difficult test for the numerical schemes than the solid-

body rotation cases. Full details of the flow field, initial condition and exact solution

in this test case are given in LNU, although we have added a constant background

field so that the mean value of the IC is 1, and so that the solution should never

approach zero; as a consequence we do not apply positivity preservation when using

the selective methods in this case. Again, exact trajectories are used. Errors are

primarily due to difficulty resolving the filaments near the end of the simulation and

by the discontinuity in the flow field at the center of the vortex; as a result we do
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Nc = 48 Nc = 96
E2 E∞ max min E2 E∞ max min

Unlimited 0.331 0.643 1.201 -0.0755 0.241 0.625 1.141 -0.166
Monotone filter 0.352 0.677 0.959 0 0.243 0.672 0.995 0

Monotone limiter 0.344 0.660 0.994 0 0.241 0.664 0.996 0
Selective filter 0.340 0.676 1.143 0 0.243 0.676 1.002 0

Selective limiter 0.338 0.672 1.129 0 0.243 0.668 1.114 0

Table 5: Errors for the slotted cylinder simulations.

(a) Unlimited, Nc = 48 (b) Monotone limiter, Nc = 48 (c) Selective limiter, Nc = 48

(d) Unlimited, Nc = 96 (e) Monotone limiter, Nc = 96 (f) Selective limiter, Nc = 96

Figure 8: Solutions (plotted on the sphere) for the slotted cylinder simulations. Contour interval is
0.25ψ0; negative values are shaded light gray, values greater than ψ0 are shaded dark gray. Heavy
black line is the exact solution.
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not expect third-order convergence from this test.

The error in the unlimited simulation (Fig. 10a) is nearly identical to that in the

selectively-limited simulations (not shown), which is expected as the field away from

the vortex center remains smooth throughout the simulation and the smoothness

parameter (21) remains small. The errors become larger when the monotone limiter

is used (Fig. 10b) and larger still when the monotone filter is used (Fig. 10c). Fig. 11

demonstrates the convergence rates for these tests; Nc = 24 is not shown, as by the

end of the simulation the filaments in the vortex are no longer resolved for such a

large cell size. The unlimited and the selectively-limited cases converge at the same

rate in both error norms but fall short of third-order convergence, likely because of

the flow field’s discontinuity. Again, the monotone filtered and limited solutions are

more diffused than either the unlimited or the selectively-limited solutions, and in

particular have higher errors in the E∞ norm.

Few other tests of a deformational flow on the cubed-sphere exist in the litera-

ture. [19] used a monotone Eulerian finite-volume scheme on this test and found a

convergence rate of 1.53, similar to that of our solution with the monotone limiter

in the `∞ norm (and somewhat lower than our solutions using the monotone filter),

but found a convergence rate of 1.67 in the `2 norm, substantially lower than the

convergence rates of either of our monotone simulations. That our scheme improves

upon that of [19] in the `2 norm may indicate smaller phase errors, possibly due to

our scheme’s use of fully two-dimensional operators instead of two one-dimensional

operators. [31] perform a similar test using a non-monotonic discontinuous Galerkin

scheme; although they do not quote a convergence rate, their Fig. 11c indicates a

convergence rate in the `2 norm of at most second order and certainly well short of

third order.

Such a heavily deformational flow could create a heavily deformed flux area which
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may not be closely approximated by a quadrilateral. Instead, a flux area constructed

from a higher-order polygon can be used as suggested by LNU. To do this, consider

an upstream cell with additional points along each of its sides (Fig. 12a), which are

the upstream points from evenly-spaced points along the sides of the Eulerian cell.

We then create flux areas by connecting the corners of the Eulerian cell to the same

points of the upstream cell with straight lines (Fig. 12b), as was done when going

from CSLAM to FF-CSLAM for a quadrilateral. Since CSLAM and FF-CSLAM are

equivalent, any increase in accuracy gained by adding points to the upstream area will

carry over to adding points to the upstream end of the flux area alone. Conversely,

if we were to add points to the sides of the flux areas joining the upstream and

Eulerian areas, there would be no change in the accuracy of the unlimited scheme

since the additional area would be canceled out by the opposing flux area when the

flux divergence is calculated upon taking a timestep. This equivalence of the flux-

form and semi-Lagrangian methods allows us to use more points to define the flux

area without having to consider every possible non-simple shape for a higher-order

polygon.

Error norms when using additional upstream points for the deformational flow

case and FF-CSLAM simulations with no monotonicity preservation are shown in

Fig. 13. The additional points show only minor improvement in either the absolute

error norms or in the convergence rate, and little to no improvement when going

beyond one additional point. We conclude that it is not the error from approximating

the flux area with a quadrilateral that is preventing us from attaining third-order

convergence in our deformational flow simulations but instead the discontinuity in

the flow.

Can third-order convergence be attained if a smooth deformational flow is used?

Towards this end, tests are performed using a recently developed test case [32, test
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Figure 9: Exact solution (plotted on the sphere) for the deformational flow test at t =12 days, the
end of the simulation. Extreme values are 1± tanh (3/5) ≈ 1± 0.54.

(a) Unlimited (b) Monotone limiter (c) Monotone filter

Figure 10: As in Fig. 9, but for the errors in three Nc = 48 simulations.
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Figure 11: As in Fig. 7, but for the deformational flow test case.
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Figure 12: (a) Example of an upstream area defined using additional points. Flux areas defined for
this area are shown for (b) ε = 1 and (c) ε = 2. Shading is as in Fig. 1.
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2], which uses a strongly deformational nondivergent flow similar to that of [39] but

extended to the sphere. The zonal and meridional wind components are

u(λ, θ, t) = u0 cos θ sin2 λ sin 2θ cos (πt/T ) (31)

v(λ, θ, t) = u0 sin 2λ cos θ cos (πt/T ) (32)

respectively, where the period T is 12 days and u0 = 10R/T , in which R is again the

radius of the sphere. The IC is two cosine bells (26) initially centered at (λc, θc) =

(5π/6, 0) and (7π/6, 0) (ICs are depicted in Fig 15 by red contours). The trajectories

for this test case are non-trivial and are computed using high-order Taylor Series

expansions [see 32, for details]. The timestep is ∆t = T/600 for Nc = 48 and is

halved for each successive doubling of Nc so as the Courant number remains constant

across simulations, with a maximum of about 0.6.

The flow is constructed so that flow deforms the tracers into filaments by t = T/2

(Fig 15a), at which time the flow reverses and returns the tracer field to its initial

position at t = T (Fig 15bc). Errors are characterized by deviations from the IC at

the end of the simulation.

The C∞ flow and the C3 IC are sufficiently smooth as to test for third-order

convergence. Indeed, a convergence rate greater than three is found in the absence of

montonicity preservation (Fig. 14), although again the unlimited simulations cause

oscillations in the solution (Fig 15). Some phase error is seen in lower-resolution

simulations (Fig 15b), a consequence of the strong deformation of the flow at t = T/2

(Fig 15a); this is less apparent at higher resolutions (Fig 15c). The monotone filter

and limiter yield particularly poor convergence rates in this test. The selective

methods (used here with positivity preservation) exhibit better convergence rates

than the monotone methods, and better than for the earlier deformational flow case
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(Fig. 11), but fall short of third-order convergence.

4.4. Timing

The various methods presented in this paper can also be tested for their compu-

tational efficiency. Table 6 presents the time needed to complete the C3 cosine bell

simulation for a variety of methods. First, the unlimited flux-form method is only at

most about 40% slower than the unlimited semi-Lagrangian method, in spite of the

fact that the flux-form scheme has to integrate over twice as many flux-areas as the

semi-Lagrangian method does Lagrangian areas. This is presumably because each

flux area tends to have fewer overlap areas than does the Lagrangian area when the

Courant number is as small as in these simulations (0.38). It is also apparent that

the monotone filter is much less efficient than the monotone limiter, as anticipated in

Section 3a; in particular the additional overhead introduced by the flux-form method

is comparatively small compared to that added by monotone filtering. The positive-

definite filter is less efficient than the positive-definite limiter for the same reasons

that the monotone filter is less efficient than the monotone limiter. This severely

slows down selective schemes which use the filter to enforce positive definiteness, as

would be the case in any simulation using the semi-Lagrangian scheme. Note that if

the positive-definite limiter is used, selective filtering is in fact faster than selective

limiting. This is because the time-consuming filtering is only done in the few cells

where Λk > Λmax, while the behavior of selective limiting is not changed until (23) is

applied at the last step of the limiter. This loss of efficiency is however only due to

the particular implementation of selectivity, and it is possible to optimize the selec-

tive limiter by checking the smoothness parameter first, and then only performing

the calculations if the threshold is exceeded.
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Figure 13: As in Fig. 7, but for unlimited simulations of the deformational flow test case with
additional points used to define the upstream end of the flux areas (as in Fig. 12).
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Figure 14: As in Fig. 7, but for the deformational flow test of [32].
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(a) Unlimited Nc = 96 simulation, t = T/2

(b) Unlimited Nc = 96 simulation, t = T

(c) Unlimited Nc = 192 simulation, t = T

Figure 15: Example solutions (on a planar projection of the sphere) for the test case of [32].
Numerical solution given in black with negative values shaded, initial condition/exact solution at
t = T given in red. Contour interval is 0.2ψ0 for positive values. Lines in background are outlines
of the cubed sphere panels.
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Nc 24 48 96
Unlimited (SL) 0.35 2.35 19.2
Unlimited 0.45 3.25 25.5
PD limiter 0.61 4.64 38.4
Monotone limiter 0.85 6.16 53.9
Selective filter, PD limiter 1.30 7.63 53.7
Selective limiter, PD limiter 1.11 9.03 75.6
PD filter (SL) 2.13 12.9 90.3
Monotone filter (SL) 2.08 13.2 90.7
PD filter 2.13 13.8 98.5
Monotone filter 2.14 13.8 101
Selective filter, PD filter (SL) 2.81 15.7 106
Selective filter, PD filter 2.90 16.7 112

Table 6: Time (in seconds) required for the reconstruction, remapping, and limiting (if applied)
steps for the C3 cosine bell solid-body rotation test case. All simulations are flux-form unless
otherwise specified; here, “SL” refers to a semi-Lagrangian simulation and “unlimited” refers to
a simulation with neither filtering nor limiting. Each simulation using the selective methods is
performed with a positive definite (PD) method, either the filter or the limiter. Times are averages
of five identical simulations using compiler-optimized Fortran 90 code on a 2.27 GHz Intel Xeon
processor. Simulations are listed in order of increasing average time for the Nc = 48 case.

41



4.5. Efficiency and accuracy as a function of timestep

While both CSLAM and FF-CSLAM allow us to take longer timesteps than are

allowed for traditional Eulerian methods, longer timesteps result in larger flux areas

with more overlap areas, and computing the integrals may become progressively more

expensive with increasing timestep. To test this, a series of unlimited simulations of

the C3 cosine bell solid-body rotation test case with fixed Nc = 48 were performed

(Table 7). It is apparent in both methods that for Courant numbers less than unity,

doubling the timestep halved the time to complete the simulations, and the flux-form

method is still at most 40% slower than the semi-Lagrangian method. However, as

the Courant number grows beyond unity, the comparative efficiency of the flux-form

method begins to decrease, and by ∆t = 28800 s the flux-form method is actually

slower than for a timestep of 14400 s. As the Courant number exceeds unity the

flux-area will extend beyond the cell adjacent to the original Eulerian cell, increasing

the number of overlap areas which need to be integrated. This decrease in efficiency

at large Courant number does not occur for the semi-Lagrangian method, because

the upstream areas do not enlarge with increasing Courant number. It may be

possible to increase FF-CSLAM’s efficiency by translating the downstream end of

the flux areas upstream an integer number of cells in each direction, similar to the

methods of [16] and [42], among others; further, it is possible to optimize the line

integral computations for Courant numbers smaller than unity since only the nearest

cell upstream of a particular Eulerian cell need to be considered. Both are held for

further research.

Note that as the timestep is increased beyond 1800 s the errors successively

decrease due to the smaller number of remappings that need to be performed, as

was found by LNU. Alternately, for smaller timesteps the error begins to decrease

again. [49] analyzed errors in cell-integrated finite-volume schemes and found that the
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errors were least for integer Courant numbers and greatest for half-integer Courant

numbers. Since at ∆t = 1800 s the Courant number is close to 1/2 (Table 7)

while for smaller timesteps it approaches 0, the decrease in errors with decreasing

timesteps shorter than 1800 s is in line with the results of [49]. For ∆t ≥ 7200 s

crossing trajectories are found in the solid-body advection flow, but this does not

adversely affect either method as the error continues to decrease with timestep in

spite of the crossing trajectories. This is because the in semi-Lagrangian method

the upstream Lagrangian cell is not altered by the crossing of trajectories, and the

flux-form method specifically accounts for crossing trajectories (Sec. 2a).

Time (seconds)
∆t Semi-Lagrangian Flux-form % Increase Max. Courant E2 E∞

450 s 9.26 12.3 33% 0.087 0.0272 0.0304
900 s 4.74 6.12 29% 0.173 0.0324 0.0374

1800 s 2.35 3.25 38% 0.38 0.0357 0.0419
3600 s 1.27 1.68 32% 0.70 0.0251 0.0287
7200 s 0.752 1.07 42% 1.41 0.00512 0.00527

14400 s 0.450 0.938 110% 2.87 0.00369 0.00397
28800 s 0.386 1.25 1500% 5.89 0.00262 0.00240

Table 7: As in Table 6, but for unlimited simulations with Nc = 48 and variable timestep length. “%
Increase” is the increase in time required for the flux-form scheme compared to the semi-Lagrangian
scheme.

5. Conclusion

A flux-form version of the Conservative Semi-Lagrangian Multi-tracer transport

scheme (CSLAM) has been presented on the cubed-sphere grid. This scheme, Flux-

Form CSLAM (FF-CSLAM), retains the advantages of CSLAM such as full two-

dimensionality, multi-tracer efficiency, global mass conservation, and long timesteps,

while adding the advantages of flux-form schemes such as the use of flux-limited
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monotonicity and positivity preservation as well as tracer sub-cycling to increase the

efficiency of time-explicit dynamical solvers. FF-CSLAM yields identical solutions

to CSLAM in the absence of flux limiting.

FF-CSLAM has been tested on a number of problems, including solid-body ro-

tation advection and more stringent deformational flows. It was found that if a

sufficiently-smooth initial condition and flow is used, the method is third-order accu-

rate in space. The full two-dimensionality of the scheme allows third-order accuracy

even when the tracer disturbance is advected over the singularities of the cubed-

sphere grid or when a highly deformational flow is used.

Shape preserving methods in both CSLAM and FF-CSLAM are limited to those

which are fully two-dimensional and can act on reconstructions of arbitrary order.

While CSLAM had only a crude a priori reconstruction filter available to it, several

fully two-dimensional flux limiters are available to FF-CSLAM. Monotone limiting—

which requires a flux-form method—was found to yield lower errors and to better

preserve extrema than CSLAM’s monotone filter. Other methods could also be im-

plemented: selective limiting and filtering were found to both preserve monotonicity

as well as well-resolved extrema while remaining third-order accurate.

Despite the additional overhead required by computing twice as many flux areas

in FF-CSLAM as Lagrangian areas in CSLAM, in the absence of filtering or limiting

the flux-form scheme required at most 40% more computation time than CSLAM for

Courant numbers less than unity. For larger Courant numbers the increasing size of

the flux areas and their greater number of overlap areas can increase this overhead.

This decrease in efficiency over CSLAM is acceptable since flux-form schemes can be

used to perform sub-cycling, allowing the tracer timestep to be as much as several

times longer than the dynamical timestep, compensating for this overhead. The flux

limiters (both monotonicity- and positivity-preserving) available only to a flux-form
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method were also found to be much more efficient than the monotone and positive-

definite filters available to CSLAM.
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Appendix A. Preservation of linear correlations

Preserving linear correlations between two tracer species is an important property

for advection schemes intended for chemistry models. This is discussed at length by

[16] who present examples of methods which do or do not preserve correlations. An

advection scheme preserves linear correlations between the mixing ratios of two tracer

species, p and q, initially related by

qn = αpn + β (A.1)

if at the next timestep qn+1 = αpn+1 + β, where α and β are constants. FF-CSLAM

(and therefore CSLAM) satisfy this property as a consequence of its piecewise-

parabolic reconstructions and the lack of 1D operator splitting which can violate

correlation preservation if not properly constructed [16]. The proof will be for a

model which separately prognoses the air density π and does not assume a nondiver-

gent flow.

45



The flux-form air density equation

∂π

∂t
+∇ · (π~v) = 0, (A.2)

is discretized by FF-CSLAM as

πn+1
k = πnk +

1

∆A

4∑
ε=1

{
Lk∑
`=1

∑
i,j

sε`c
(i,j)
` (π)ω

(i,j)
k`

}
. (A.3)

Here, the c
(i,j)
` (π) are the reconstruction coefficients for π, and other notations are

as in Sec. 2.1. Define the air density flux through face ε by

πεk = sεk

∑Lk
`

∑
i,j c

(i,j)
` (π)ω

(i,j)
k`

δaεk
, (A.4)

for which (A.3) becomes

πn+1
k = πnk +

1

∆A

4∑
ε=1

πεkδa
ε
k. (A.5)

The flux-form tracer continuity equation

∂ (πq)

∂t
+∇ · (πq~v) = 0, (A.6)

is discretized by assuming πεk is uniform along each face as in [16, pg. 2063], for which

FF-CSLAM becomes

πn+1
k qn+1

k = πnk q
n
k +

1

∆A

4∑
ε

πεk

{
Lk∑
`

∑
i,j

c
(i,j)
` (qn)ω

(i,j)
k`

}
, (A.7)
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using (10), (11) and (13). Recalling that by (13) δak =
∑Lk

`=1

∑
i,j c

(i,j)
` (1)ω

(i,j)
k` ,

(A.7) reduces to (A.5) for q = 1, demonstrating consistency in the sense of [16]:

the discretization of a spatially uniform tracer mixing ratio reduces to that for air

density, regardless of whether the flow field is nondivergent.

The reconstruction coefficients satisfy

c
(i,j)
` (αpn + β) = α c

(i,j)
` (pn) + βc

(i,j)
` (1), (A.8)

which is a general property true for piecewise-parabolic and other reconstructions

which are linear in the cell-averaged values, but is not true for schemes such as the

piecewise rational method of [50]. Equation (A.8) holds even if the monotonicity

preserving methods described in this paper are used, since neither the scaling factor

σmono
` or the correction factor Cε,mono

k are altered by replacing ψ with αψ + β (see

Appendix C for a proof of the latter). The selectivity parameter (21), (22) is also

trivially unchanged between a pair of linearly-correlated flows.

Equation (A.7) can be written

πn+1
k qn+1

k = πnk (αpnk + β) +
1

∆A

4∑
ε

πεk

(
Lk∑
`

∑
i,j

(
αc

(i,j)
` (pn) + βc

(i,j)
` (1)

)
ω

(i,j)
k`

)

= α

(
πnk p

n
k +

1

∆A

4∑
ε

πεk

Lk∑
`

∑
i,j

c
(i,j)
` (pn)ω

(i,j)
k`

)

+ β

(
πnk +

1

∆A

4∑
ε

πεk

Lk∑
`

∑
i,j

c
(i,j)
` (1)ω

(i,j)
k`

)
= απn+1

k pn+1
k + πn+1

k β = πn+1
k

(
αpn+1

k + β
)

(A.9)

where we have twice again used (A.7) substituting either p or 1 for q as necessary.

Therefore FF-CSLAM preserves linear correlations even when our monotonicity pre-
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serving methods are used. Numerical tests of solid-body rotation of the C3 cosine bell

with Nc = 48 reveal preservation of initially correlated fields better than to one part

in 104 in unlimited, monotone limited, and selectively limited simulations after one

rotation around the sphere.

As a consequence of preserving linear correlations, a constant tracer field (α = 0)

is also preserved. Note that we have made no assumption of nondivergence upon the

flow field; see Appendix B for a brief discussion of the meaning of nondivergence in

a discretized system.

Our positive-definite methods do not preserve linear correlations, but the positive-

definite limiter can be modified to do so (see Eqn. 43 of [42]). Note that neither

cell-integrated schemes such as FF-CSLAM or Eulerian schemes such as that of

[16] preserve nonlinear correlations, which is also important in modeling chemical

reactions.

Appendix B. Nondivergent flows in cell-integrated semi-Lagrangian schemes

We briefly discuss the conditions under which a flow is nondivergent, i.e. under

which a constant, uniform air density field is preserved. For πεk = sεkπ0 (A.5) becomes

πn+1
k = π0 +

π0

∆A

4∑
ε=1

sεkδa
ε
k

= π0 +
π0

∆A
(δa−∆A)

= π0
δak
∆A

. (B.1)
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in which (8) has been used. Therefore, a constant density field is preserved in a

cell-integrated method if the flow preserves areas, ie. is nondivergent:

δak = ∆A. (B.2)

This condition is analogous to Eq. 2.11 in [16] for their Eulerian scheme, which

is simply that the first-order finite-difference discretization of the flow divergence is

zero. Note that point values from a continuous nondivergent flow need not satisfy

the discrete Eulerian nondivergence condition although such a flow can be easily

constructed by taking finite differences of a streamfunction.

Appendix C. Correction factor for the monotone and positive-definite

limiters

The correction factor Cε,mono
k for the monotone limiter (19), as defined in [28], is

derived by first defining the antidiffusive fluxes

F ε,A
k = F ε

k − F
ε,mono
k .

The net incoming antidiffusive flux P+
k , and outgoing antidiffusive flux P−k , for cell

Ak are computed:

P+
k =

∑4
ε=1 max

(
0, sεF ε,A

k

)
P−k = −

∑4
ε=1 min

(
0, sεF ε,A

k

)
.

We then wish to correct the antidiffusive flux so that the solution (19) for the cells ad-

jacent to the face ε remain in a range of values such that the solution is monotone. If

we define the extreme permissible values ψmin
k , ψmax

k for ψk
n+1

as mink∈K

(
ψk

n
, ψmono

k

)
and maxk∈K

(
ψk

n
, ψmono

k

)
, respectively, where K is the set of cells surrounding and
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including cell Ak, then we define the maximum antidiffusive flux into, and minimum

antidiffusive flux out of, cell Ak so as to preserve monotonicty as:

Q+
k =

(
ψmax
k − ψmono

k

)
∆Ak

Q−k =
(
ψmono
k − ψmin

k

)
∆Ak.

If we then define

R+
k =

min
(
1, Q+

k /P
+
k

)
if P+

k > 0

0 if P+
k = 0

R−k =

min
(
1, Q−k /P

−
k

)
if P−k > 0

0 if P−k = 0,

and then denote kε as the index of the cell sharing face ε with cell k, the correction

factor Cε,mono
k for face ε is given by

Cε,mono
k =

min
(
R+
kε , R

−
k

)
if sεF ε,A ≤ 0

min
(
R−kε , R

+
k

)
if sεF ε,A > 0.

How does the correction factor change between a pair of linearly correlated trac-

ers? Let F (p) and Fmono(p) represent the piecewise-parabolic and monotone fluxes,

respectively, along some cell face for a tracer mixing ratio p. Let q = αp + β as in

Appendix A with α 6= 0. Since both the piecewise-parabolic and monotone fluxes

are linear in the cell-averaged values, and since F (β) = Fmono(β) for any constant
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β, the antidiffusive flux is

FA(q) = F (αp+ β)− Fmono(αp+ β) (C.1)

= α [F (p)− Fmono(p)] + F (β)− Fmono(β) (C.2)

= αFA(p). (C.3)

If α > 0, P+(q) = αP+(p) and similarly for P−; if α < 0 then P+(q) = αP−(p) and

vice versa. Trivially, the same is true for Q+ and Q−. Finally, in the case P+(q) > 0

and α > 0 we have

R+(q) = min
(
1, Q+(q)/P+(q)

)
= min

(
1, Q+(p)/P+(p)

)
= R+(p). (C.4)

The same result holds for R−(q); in turn, Cε,mono
k is the same for both p and q and

therefore our monotone limiter preserves linear correlations. A similar analysis can

be performed for the monotone filter.

The positive-definite correction factor Cε,PD
k is formulated as a modification [37]

of the monotone correction factor which does not use the antidiffusive fluxes. Define

the total outward flux by

PPD
k = −

4∑
ε=1

min (0, sεF ε
k) .

The maximum outward flux permitted, so as to keep the solution positive definite,

is given by

QPD
k = ψnk∆Ak.
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Then,

RPD
k =

min
(
1, QPD

k /PPD
k

)
if PPD

k > 0

0 if PPD
k = 0,

(C.5)

and the correction factor becomes:

Cε,PD
k =

R
PD
k if sεF ε ≤ 0

RPD
kε if sεF ε > 0.
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