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ABSTRACT

Atmospheric modeling with element-based high-order Galerkin methods

presents a unique challenge to the conventional physics-dynamics coupling

paradigm, due to the highly irregular distribution of nodes within an element

and the distinct numerical characteristics of the Galerkin method. The con-

ventional coupling procedure is to evaluate the physical parameterizations

(physics) on the dynamical core grid. Evaluating the physics at the nodal

points exacerbates numerical noise from the Galerkin method, enabling and

amplifying local extrema at element boundaries. Grid imprinting may be sub-

stantially reduced through the introduction of an entirely separate, approx-

imately isotropic finite-volume grid for evaluating the physics forcing. Inte-

gration of the spectral basis over the control-volumes provides an area average

state to the physics, which is more representative of the state in the vicinity of

the nodal points rather than the nodal point itself, and is more consistent with

the notion of a ‘large-scale state’ required by conventional physics packages.

This study documents the implementation of a quasi-equal area physics grid

into NCAR’s Community Atmosphere Model with Spectral Elements, and is

shown to be effective at mitigating grid imprinting in the solution. The physics

grid is also appropriate for coupling to other components within the Commu-

nity Earth System Model, since the coupler requires component fluxes to be

defined on a finite-volume grid, and one can be certain that the fluxes on the

physics grid are indeed, volume-averaged.
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1. Introduction43

An increasing number of numerical methods publications in the atmospheric science literature44

concern transport, shallow-water, and three-dimensional models employing element-based high-45

order Galerkin discretizations such as finite-element and discontinuous Galerkin methods (for an46

introduction to these methods see, e.g., Durran 2010; Nair et al. 2011; Ullrich 2014). Some global47

models based on Galerkin methods have reached a level of maturity for which they are being con-48

sidered for next generation climate and weather models due to their inherent conservation proper-49

ties, high-order accuracy (for smooth problems), high parallel efficiency, high processor efficiency,50

and geometric flexibility facilitating mesh-refinement applications. NCAR’s Community Atmo-51

sphere Model (CAM; Neale et al. 2012) offers a dynamical core based on continuous Galerkin52

finite elements (Taylor and Fournier 2010), referred to as CAM-SE (CAM Spectral Elements;53

Taylor et al. 2008; Dennis et al. 2012; Lauritzen et al. 2018). CAM-SE is, in particular, being54

used for high resolution climate modeling (e.g., Small et al. 2014; Reed et al. 2015; Bacmeister55

et al. 2018) and static mesh-refinement applications (e.g., Fournier et al. 2004; Zarzycki et al.56

2014a,b; Guba et al. 2014b; Rhoades et al. 2016). Other examples of models based on high-order57

Galerkin methods that are being considered for ‘operational’ weather-climate applications are Gi-58

raldo and Restelli (2008), Nair et al. (2009), Brdar et al. (2013) and the Energy Exascale Earth59

System Model (https://e3sm.org/).60

Assumptions inherent to the physical parameterizations (also referred to as physics) require61

the state passed by the dynamical core represent a ‘large-scale state’, for example, in quasi-62

equilibrium-type convection schemes (Arakawa and Schubert 1974; Plant and Craig 2008). In63

finite-volume methods (e.g., Lin 2004), one may think of the dynamical core state as the average64

state of the atmosphere over a control volume, and for resolutions typical of climate simulations65
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is entirely consistent with the notion of a ‘large-scale state’. For finite-difference methods (e.g.,66

Suarez et al. 1983) the point value is thought of as representative for the atmospheric state in the67

vicinity of the point value and one can usually associate a volume with the grid-point. Hence the68

physics grid (the grid on which the state of the atmosphere is evaluated and passed to physics) and69

the dynamics grid (the grid the dynamical core uses) coincide. Having the physics and dynam-70

ics grids coincide is obviously convenient since no interpolation is needed (which could disrupt71

conservation properties) and the number of degrees of freedom on both grids is exactly the same.72

For the regular latitude-longitude, cubed-sphere and icosahedral grids the distance between the73

grid-points is gradually varying for finite-volume/finite-difference discretizations. Examples of74

models that use these grids are CAM-FV (latitude-longitude grid, Lin 2004), FV3 (cubed-sphere75

grid, Putman and Lin 2007) and ICON (icosahedral grid, Wan et al. 2013). For high-order76

element-based Galerkin methods, the dynamical core grid is defined by the quadrature points. In77

CAM-SE, these are the Gauss-Lobatto-Legendre (GLL) quadrature nodes. A unique aspect of the78

high-order quadrature rules is that the nodes within an element are located at the roots of the basis79

set, which may be irregularly spaced. For example, Figure 1 shows GLL points on an individual80

element of a cubed-sphere grid for degree 3 (np⇥ np = 4⇥ 4 quadrature points) and degree 781

(np⇥ np = 8⇥ 8 quadrature points) Lagrange polynomial basis used in CAM-SE. The higher82

the order of the quadrature rule, the greater variance in distance between GLL quadrature points83

within an element. GLL quadrature points cluster near the edges and, in particular, the corners of84

the elements.85

The resolved scales of motion are not determined by the distance between quadrature nodes,86

but rather the degree of the polynomial basis in each element. The nodes may be viewed as87

irregularly spaced samples of an underlying spectrally truncated state. From this perspective, one88

might expect the nodal solutions to be independent of location within an element. While the89
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interior quadrature nodes are C• in CAM-SE (i.e. the basis representation is infinitely smooth90

and all derivatives are continuous), the smoothness of boundary nodes are constrained by the91

need to patch neighboring solutions together to form the global basis set, an operation known as92

the direct stiffness summation (DSS; Maday and Patera 1987; Canuto et al. 2007). The DSS93

operation is attractive because it allows for high-order accuracy with minimal communication94

between elements, but degrades the solution to C0 at element boundaries (i.e., all derivatives are95

discontinuous). Through evaluating the physics at the nodal points, strong grid-scale forcing or96

oscillatory behavior near an element boundary may exacerbate the discontinuity, and our initial97

expectation, that the nodal solutions are independent of within-element location, is unlikely for98

non-smooth problems, e.g., the presence of rough topography or moist physics grid-scale forcing.99

It is the purpose of this paper to document the implementation of an entirely separate, quasi-100

equal area finite-volume physics grid into CAM-SE. The use of a separate physics grid is not101

entirely unheard of; prior studies have utilized the infrastructure developed for global-spectral102

transform methods to experiment with different physics grids (Williamson 1999; Wedi 2014). In103

our framework, the dynamical core state is integrated over control volumes to provide a volume av-104

eraged state to the physics, thereby minimizing the influence of any one particular nodal value on105

the physics forcing. Section 2 provides a thorough explanation of how grid imprinting manifests106

in high-order Galerkin methods for non-smooth problems. The implementation of the physics grid107

configuration into CAM-SE is presented in Section 3. Results from a hierarchy of idealized model108

configurations are presented in Section 4, illustrating the physics grid is effective at mitigating un-109

desirable grid imprinting in the solution. Section 5 contains a discussion of results and concluding110

remarks.111
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2. The Quadrature Node Problem112

Figure 2 is a schematic illustrating in one-dimension how grid-imprinting is enabled by the113

physics, when the dynamical core is built using high-order Galerkin methods. The schematic114

depicts a time-step, starting from smooth initial conditions (Figure 2a), and subsequently advanc-115

ing the dynamics one Runge-Kutta time-step (Figure 2b). Since the boundary nodes of adjacent116

elements overlap one-another, there are now two solutions for each boundary node. The DSS op-117

erator, effectively a numerical flux applied to the element boundaries such that overlapping nodal118

values agree, is applied (Figure 2c), rendering the solutions at element boundaries C0; less-smooth119

than neighboring C• interior nodes. An element boundary discontinuity may be exacerbated if,120

e.g., the physics updates the state at an element boundary (Figure 2d,e), resulting in characteristi-121

cally tighter gradients on the boundary nodes compared to if the physics forcing were applied to122

an interior node (Figure 2g,h).123

To test the degree to which nodal solutions depend on within-element position, an aqua-planet124

simulation (Neale and Hoskins 2000; Medeiros et al. 2016), which consists of an ocean covered125

planet in perpetual equinox, with fixed, zonally symmetric sea surface temperatures idealized after126

the present day climatology, is carried out using CAM-SE, using CAM, version 4 physics (CAM4;127

Neale et al. 2010) and run for one year. The nominal low resolution ne30np4 grid is used, pertain-128

ing to an average equatorial grid spacing of 111.2km. The probability density distribution of the129

upward vertical pressure velocity (w), conditionally sampled based on three categories - ‘interior’,130

‘edge’ and ‘corner’ nodes - is provided in Figure 3a. The motivation for assessing noise in the w131

field comes from its connection with the atmosphere’s divergent modes, as follows from the con-132

tinuity equation in pressure coordinates. These modes are in turn sensitive to the within-element133

inhomogeneity of the pressure gradient that emerges from high-order Galerkin methods. There is134
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an apparent dependence on nodal location, with interior nodes being characteristically sluggish,135

and corner and edge nodes having systematically larger magnitude vertical motion. This behavior136

is consistent with the smoothness properties of the different nodal locations, with discontinuous137

pressure gradients resulting in greater vertical motion at edge and corner nodes. The main division138

of solutions shown in Figure 3a is primarily between whether a node is, or is not situated on an139

element boundary, and is a nuanced signature of high-order element-based Galerkin methods for140

non-smooth problems.141

If the conventional physics-dynamics coupling paradigm is applied to CAM-SE, then the physics142

are to be evaluated at the GLL nodes, and a volume associated with the quadrature point should143

be defined. One approach to construct this grid is to decompose each spectral element into144

(np� 1)⇥ (np� 1) subcells and then take the dual grid of this subcell grid. For cubed-sphere145

meshes, this dual grid will have a control volume associated with each quadrature point. These146

control volumes will be triangles for the cube corner quadrature points and quadrilaterals for all147

remaining quadrature points. Newton iteration can than be used to adjust the corners of these148

control volumes so that their spherical area exactly match the Gaussian weight multiplied by the149

metric term (these weights are used for integrating the basis functions over the elements and can150

therefore, in this context, be interpreted as areas). For cubed-sphere meshes, the Newton itera-151

tion can be replaced by a direct method if some of the quadrilaterals are replaced by pentagons152

giving additional flexibility in matching the spherical area to the quadrature weights. Such a dual153

grid is shown in Figure 4. This grid is used in the NCAR CESM (Community Earth System154

Model) coupler for passing states between ocean, atmosphere and land components since the cur-155

rent remapping method is finite-volume based and therefore requires control volumes (it is noted156

that methods exist that do not require control volumes for conservative interpolation, e.g., Ullrich157

and Taylor (2015)). Hence the components ‘see’ an irregular atmospheric grid. Similarly, the pa-158
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rameterizations in the atmosphere ‘see’ a state that is anisotropically sampled in space (see Figure159

1 and 5 in Kim et al. 2008).160

The quadrature grid in element-based Galerkin methods is defined to perform mathematical161

operations on the basis functions, e.g., computing gradients and integrals, rather than evaluating162

the state variables for physics-dynamics coupling. One may argue that it would be more consistent163

to integrate the basis functions over quasi-equal area control volumes within each element and164

pass those control volume average values to physics rather than irregularly spaced quadrature point165

values. In this case when integrating basis functions over control volumes a grid-cell average value166

is more representative of the values near the extrema at the element boundary than the quadrature167

point value. The relationship between the nodal values, the basis functions and the proposed168

control volumes is illustrated schematically in one-dimension in parts (f) and (i) in Figure 2.169

3. Methods170

Here we focus on CAM-SE, however, in principle the methods apply to any element-based high-171

order Galerkin model. The physics grid in CAM-SE is defined by sub-dividing each element using172

equi-angular gnomonic coordinate lines to define the sides of the physics grid control volumes (see173

the Appendix for details). Note that the element boundaries are defined by equi-angular gnomonic174

grid lines. The notation pg = 3 refers to the configuration where the elements are divided into175

pg⇥ pg = 3⇥3 equi-angular physics grid cells (see Figure 5) resulting in a quasi-equal spherical176

area grid resembling the cubed-sphere. Defining the physics grid by sub-dividing elements makes177

it possible to use the same element infrastructure as already used in CAM-SE, thereby facilitating178

its implementation. Here we make use of the ne30np4 and ne30pg3 grids that use GLL quadrature179

point physics grid (physics and dynamics grid coincide), and the same (pg = 3) resolution quasi180
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equal-area physics grids, respectively. In all configurations we use degree three Lagrange basis181

(np = 4) and ne⇥ne = 30⇥30 elements on each cubed-sphere panel.182

A consequence of separating physics and dynamics grids is that the atmospheric state must be183

mapped to the physics grid and the physics tendencies must be mapped back to the dynamics184

grid. This is discussed in separate sections below. When separating physics and dynamics grids it185

is advantageous to use a vertical coordinate that is static during physics-dynamics coupling. This186

was one motivation to switch to a dry-mass vertical coordinate in CAM-SE (Lauritzen et al. 2018);187

since dry mass remains constant throughout physics the dry-mass vertical coordinate remains fixed188

during physics-dynamics coupling. The dry mass coordinate subsequently evolves as floating189

Lagrangian layers by the dynamics (Lin 2004) periodically mapped back to a reference hybrid-190

sigma-pressure coordinate after Simmons and Burridge (1981). All variables mapped between191

grids are collocated, layer-mean values (Lauritzen et al. 2018).192

a. Mapping state from dynamics grid (GLL) to physics grid (pg)193

The dynamics state is defined on the GLL grid in terms of temperature T (gll), zonal wind com-194

ponent u(gll), meridional wind component v(gll), and dry pressure level thickness Dp(gll). In the195

mapping of the atmospheric state to the physics grid it is important that the following properties196

are met:197

1. conservation of scalar quantities such as mass and dry thermal energy,198

2. for tracers; shape-preservation (monotonicity), i.e., the mapping method must not introduce199

new extrema in the interpolated field, in particular, negatives,200

3. consistency, i.e., the mapping preserves a constant,201
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4. linear correlation preservation, i.e., if field A is a linear function of B, this relationship is still202

preserved (see, e.g, equation 5 in Lauritzen and Thuburn 2012)203

Other properties that may be important, but not pursued here, includes total energy conservation204

and axial angular momentum conservation. Total energy is a quadratic quantity that is inherently205

difficult to conserve unless one maps total energy requiring one to diagnose either temperature or206

momentum components. For example, enforcing total energy conservation locally using, e.g., Lin207

(2004)’s method where total energy and velocity components are remapped and temperature is a208

derived variable, has proven problematic (C. Chen, personal communication). Similarly conserva-209

tion of axial angular momentum is problematic. Conservation of angular momentum requires one210

to interpolate the zonal and meridional components of momentum which creates large errors near211

the poles. To avoid the pole problem we interpolate contra-variant components of the momentum212

vector, which violates axial angular momentum conservation.213

We argue that the most consistent method for mapping scalar state variables from the GLL grid214

to the physics grid is to integrate the Lagrange basis function representation (used by the SE dy-215

namical core) over the physics grid control volumes, i.e., integrate the basis function representation216

of Dp(gll)⇥T (gll) and Dp(gll) over the physics grid control volume (see, e.g., Lauritzen et al. 2017;217

Ullrich and Taylor 2015)218

Dp(pg) =
1

A(pg)

Z

A(pg)
Dp(gll) dA, (1)

T (pg) =
A(pg)Dp(pg)

Z

A(pg)
T (gll)Dp(gll) dA, (2)

where A(pg) is the physics grid area. The integrals are numerically computed using the GLL219

quadrature rule on each physics grid element, which exactly (to machine precision) integrates the220

basis functions over the pg control volumes (Lauritzen et al. 2017). Thermal energy and dry air221

mass is conserved and the mapping is consistent. For the wind, which is a vector, the zonal and222
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meridional wind components are mapped by transforming to contra-variant wind components,223

evaluating the basis function representation thereof at the equi-angular center of the physics grid224

control volumes and then transformed back to latitude-longitude coordinate system winds. All of225

the operations are local to the element and do not require communication between elements.226

The mapping of tracers is more problematic since the SE basis function representation is oscil-227

latory although the shape-preserving filter guarantees shape-preservation at the GLL nodes (Guba228

et al. 2014a). To avoid this issue we use the CAM-SE-CSLAM version of CAM-SE (Conservative229

Semi-Lagrangian Multi-tracer transport scheme Lauritzen et al. 2017), where tracers are advected230

on the pg = 3 physics grid using the inherently mass and linear-correlation preserving CSLAM al-231

gorithm. Note that in CAM-SE-CSLAM the dry mass internally predicted by CSLAM, Dp(cslam),232

is, by design, equal to Dp(gll) integrated over the CSLAM/physics grid control volume (Lauritzen233

et al. 2017). Since the tracer grid and physics grids are co-located and Dp(pg) = Dp(cslam) then the234

mass conservation, correlation preservation, consistency and shape-preservation constraints are235

inherently fulfilled.236

b. Mapping tendencies from physics grid (pg) to dynamics grid (GLL)237

The physics tendencies are computed on the finite-volume physics grid and are denoted238

f (pg)
T , f (pg)

u , f (pg)
v , and f (pg)

m . Note that dry air mass is not modified by physics and hence there239

is no tendency for dry mass, fDp ⌘ 0. Also, it is important to map tendencies and not state from240

the physics grid to GLL grid otherwise one will get spurious tendencies from mapping errors when241

the actual physics tendency is zero (unless a reversible map is used).242

It is important that this process:243

1. for tracers; mass tendency is conserved,244
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2. for tracers; in each tracer grid cell the mass tendency from physics must not exceed tracer245

mass available in tracer grid cell (it is assumed that the physics tendency will not drive tracer246

mixing ratio negative on the physics grid),247

3. linear correlation preservation,248

4. consistency, i.e., the mapping preserves a constant tendency.249

Other properties that may be important, but not pursued here, includes total energy conservation250

(incl. components of total energy) and axial angular momentum conservation. Scalar variables251

are mapped from the physics grid to GLL grid using a tensor-product Lagrange interpolation in252

two dimensions (i.e., we assume that the pressure variations in the vertical are small). The local253

coordinates on a cubed-sphere are discontinuous at the element edges so the interpolation requires254

special attention at the cube corners and edges. The details are provided in the Appendix. Lagrange255

interpolation preserves a constant (including zero) and linear correlations. Tracer and physics grids256

are co-located so tracer mass, tracer shape, and tracer correlations are trivially preserved on the257

tracer grid; and the inconsistency in point 2 above will not appear.258

Mapping from pg to GLL grids while conserving mass was found to be difficult without ex-259

cessive grid imprinting at element edges. Mass-conservation (using conventional finite-volume260

methods) requires a control volume to be defined around the GLL points (see Figure 4 in this261

paper or Figure 8b in Ullrich et al. 2016). These volumes are artificial and not consistent with262

the SE method. Integrating the CSLAM reconstruction of water tracers of such artificial control263

volumes led to GLL node grid imprinting in the mapping and will not preserve a constant mixing264

ratio since the mapping of Dp(pg) to GLL will not yield the GLL node value for dry pressure-level265

thickness (i.e., the maps are not reversible). A reversible map requires that the number of degrees266

of freedom on the source mesh (pg3 has 9 degrees of freedom) equal the number of degrees of267
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freedom on the target mesh (np4 grid has 16 degrees of freedom). This condition is violated by268

construction for individual elements.269

It was also found important to use an interpolator that is smooth across element boundaries.270

Using an algorithm that only uses information from an element of control volumes will (at best)271

be C0 at the element boundaries and therefore lead to boundary node grid imprinting. A stencil that272

extends beyond one element is therefore necessary. After much experimentation, the best results273

in terms of grid-imprinting were obtained with tensor-cubic interpolation (see the Appendix for274

details) and by using the CAM-SE-CSLAM configuration (which requires the same boundary275

exchange/communication as used in CSLAM).276

c. Time splitting and physics-dynamics coupling277

The physics and dynamics are integrated in time using a sequential-update approach (e.g.,278

Williamson 2002). The dynamical core is sub-cycled over the (usually) longer physics time-step,279

Dtphys, e.g., the vertical remapping time-step Dtremap is cycled nsplit times, totaling to Dtphys. In280

CAM-SE, a fraction of the physics forcing, e.g., fq ⇥Dtremap is applied at the beginning of each281

nsplit vertical remap subcycles, such that the full forcing ( fq ⇥Dtphys) is realized over the course282

of a physics time-step. This approach of dribbling the tendencies over sub-intervals has the ad-283

vantage of reducing gravity wave noise (Thatcher and Jablonowski 2016), but may disrupt tracer284

mass conservation (Zhang et al. 2017). In CAM-SE-CSLAM, all but the tracer mass quantities are285

dribbled, with tracer mass receiving the full physics update, e.g., fq ⇥Dtphys, applied only at the286

beginning of the first remap sub-cycle, and thereby conserving tracer mass. This is the f type = 2287

configuration described in detail in Section 3.6.3 in Lauritzen et al. (2018).288

In the SE integration of the equations of motion on the GLL grid the water species are289

needed in the computation of the pressure gradient force and generalized expressions for heat290
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capacity at constant pressure cp, etc. Hence the mixing ratios for water vapor and dynami-291

cally/thermodynamically active condensates (e.g., cloud liquid and cloud ice) are needed on the292

GLL grid. We have chosen to advect the water species on the GLL grid using the SE method as293

well as on the physics grid using CSLAM. Every time physics updates the water species on the294

CSLAM grid, a forcing term (equal to the difference between updated CSLAM water variables and295

the SE values) is applied to the GLL water variables using dribbling so that the CSLAM solution296

and SE solution for water species are tightly coupled.297

4. Results298

A hierarchy of idealized model configurations are presented in order to elucidate the differ-299

ences between CAM-SE and CAM-SE-CSLAM (available from the CESM2.1 release; https:300

//doi.org/10.5065/D67H1H0V). Here, the configurations are presented in order of increasing301

complexity, each with a pair of approximately 1� simulations, pertaining to the ne30np4 (CAM-302

SE) and ne30pg3 (CAM-SE-CSLAM) grids, and a Dtphys = 1800 s.303

a. Moist Baroclinic Wave304

The moist baroclinic wave test case was developed as part of the ‘CESM Simple Models’ project305

(Polvani et al. 2017), and included in the release of CESM2. It is effectively the dry test-case of306

Ullrich et al. (2014), but initialized with moisture and coupled to the Kessler moist physics routine307

(Kessler 1969). For more details on this test case (which was part of the 2016 Dynamical Core308

Model Intercomparison Project, Ullrich et al. 2017), see Section 4.1 in Lauritzen et al. (2018).309

A measure of the uncertainty in the reference solution, the L2 difference norm between two high-310

resolution solutions using different dynamical cores, was also presented in Lauritzen et al. (2018)311

15



and provided again here in Figure 6. The L2 norm between CAM-SE and CAM-SE-CSLAM lies312

below the uncertainty of the reference solution, indicating their differences are insignificant.313

The flow field of the baroclinic wave test is used to drive the terminator “toy”-chemistry test of314

Lauritzen et al. (2015b, 2017). The terminator test is used to assess linear-correlation preservation315

using two reactive species advected across the terminator line. The model is initialized with species316

for which their weighted sum, Cly, is a constant (constant surface pressure and constant mixing317

ratio; Cly = Cl + 2Cl2 = 4⇥ 10�6 kg/kg), such that if tracer correlations are preserved, then the318

column-integrated weighted sum of the species should not vary in time. Figure 7 provides a319

snapshot of the vertically integrated weighted sum of species at day 15. In CAM-SE, the tracer320

correlations are not preserved at day 15 and the field is populated by overshoots and undershoots.321

In contrast, by day 15, CAM-SE-CSLAM still conserves tracer correlations to within machine322

precision, consistent with the previous results of this test-case initialized with a dry baroclinic323

wave (Lauritzen et al. 2017).324

b. Aqua-planets325

Two year long aqua-planet simulations are performed using CAM-SE and CAM-SE-CSLAM,326

using the CAM4 physics package (Neale et al. 2010), as discussed in Section 2. Away from the327

grid-scale, the mean states in the two models are very similar. Figure 8 shows the zonal-mean cli-328

matological precipitation rates in CAM-SE and CAM-SE-CSLAM. Considering how sensitive this329

aqua-planet configuration is to design choices in CAM-SE (Lauritzen et al. 2018), it is somewhat330

unexpected that the zonal means look so similar to one another.331

A plot similar to Figure 3a is constructed for the CAM-SE-CSLAM simulation, a probability332

density distribution of upward w conditionally sampled based on location within the element. Like333

Figure 3a, Figure 3b divides up the control volumes by corner, edge and interior cells. Through the334
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use of the quasi-equal area physics grid, the dynamical core state appears more or less independent335

of location within the element, a marked improvement over CAM-SE. Since the state is approxi-336

mately independent of in-element location, it follows that the physics forcing, which is evaluated337

from the dynamical core state, may be expected to also show an improvement in grid-imprinting.338

The low-level, mean and variance of the temperature tendencies from the physics, on the GLL339

grid, f (gll)
T , in the two simulations are shown in Figure 9. The mean states in the two models340

resemble one another, consistent with the zonal mean precipitation rates (Figure 8). The mean341

physics tendencies contains modest grid imprinting in CAM-SE (barely visible near the storm-342

track regions), while in the variance field, grid imprinting is both ubiquitous and unmistakable.343

The variance is larger on boundary nodes, manifesting as a ‘stitching’ pattern resembling the344

cube-sphere grid. In CAM-SE-CSLAM, the grid imprinting is all but eliminated based on the345

mean and variance of the physics tendencies (Figure 9), consistent with our expectation.346

The global mean and variance of the low-level physics tendencies are marginally lower in CAM-347

SE-CSLAM compared with CAM-SE on the GLL grid (by about 1% and 6% for the mean and348

variance, respectively; Figure 9). While these differences may be small, and potentially insignifi-349

cant, they are consistent with the state on the GLL grid in the two simulations. Through re-creating350

Figure 3a, but using the w field on the GLL grid in the CAM-SE-CSLAM run, the frequency of351

large magnitude w values (less than -1.0 Pa/s) associated with interior, corner and edge nodes is352

slightly lower (not shown). This suggests that the lower magnitude physics forcing in CAM-SE-353

CSLAM impacts the state on the GLL grid, albeit modestly. Therefore the lower frequency of354

large magnitude w in CAM-SE-CSLAM (Figure 3) may not be solely due to the smoothing ef-355

fect of integrating the basis functions over control volumes, but also the lower magnitude physics356

tendencies feeding back onto the dynamical state.357
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As stated in Section 3, the mapping of the state to the physics grid and the reverse interpolation358

of physics tendencies to the GLL grid is not total energy conserving. CAM has a global energy359

fixer (Williamson et al. 2015) which can be used to estimate the errors associated with the mapping360

algorithms. To do so, it is presumed that there are no compensating mapping errors in going to361

and from the physics and dynamics grids, and that CAM-SE-CSLAM and CAM-SE have the same362

energy dissipation rates. Under these assumptions the spurious globally integrated total energy363

errors due to the mapping algorithm is estimated to be approximately 0.0025 W/m2 in the aqua-364

planet simulations. In comparison, the dynamical core total energy dissipation is on the order of365

0.1 W/m2 (Lauritzen et al. 2018).366

c. Held-Suarez with Topography367

Grid imprinting associated with the flow around obstacles is more problematic than that en-368

countered on the aqua-planets. In order to diagnose grid imprinting due to topographic flow, an369

idealized Held-Suarez configuration (Held and Suarez 1994) is outfitted with real world topogra-370

phy after Fox-Rabinovitz et al. (2000); Baer et al. (2006), and run for two years. Figure 10 shows371

the mean w at two different vertical levels in the middle troposphere. The data are presented as a372

raster plot on their respective unstructured grids, in order to delineate whether a particular value is373

associated with an interior, edge or element boundary node.374

At higher latitudes (e.g., the southern Andes), the flow is smooth, conforming reasonably to375

the underlying topography. At lower latitudes, over the Andes (between the equator and 20�S)376

or the Himalayas (from 20�N to 30�N), there is a clear preference for extrema to occur at the377

element boundaries (Figure 10). The vertical structure of w in regions of strong grid-imprinting378

indicates full-troposphere upward/downward motion (not shown). Grid imprinting is therefore379

more common in regions of weak stratification, such as occurs in the deep tropics, with forced up-380
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slope flow facilitating the release of gravitational instability. Resolved updrafts/downdrafts often381

align with the element boundaries due to its systematically tighter pressure gradients.382

Through the use of the quasi-equal area physics grid, grid imprinting due to topographic flow383

is reduced (Figures 10). The native topography lives on the physics grid, and the topography is384

mapped to the nodal points at run-time in CAM-SE-CSLAM. Mapping topography to the quadra-385

ture nodes ensures that no new extrema will be introduced to the boundary nodes, where the386

solution is least smooth. This effect can not be very large, since grid noise over topography is387

similar in CAM-SE and CAM-SE-CSLAM on the GLL grid (not shown). From the perspective388

of the physics grid, CAM-SE-CSLAM clearly mitigates the influence of grid-induced extrema on389

the state. This can be seen by comparing Figures 10a and 10b, and their differences (Figure 10c),390

which shows that the largest differences coincide with the element boundaries. The reduction in391

grid imprinting in this modified Held-Suarez configuration appears to be almost entirely a result392

of the smoothing effect of integrating the basis functions over the control volumes of the physics393

grid.394

d. AMIP type simulations395

A pair of 20 year-long AMIP type simulations are performed, using CAM, version 6 physics396

package (CAM6) and using perpetual year 2000 SST boundary conditions (F2000climo compset397

in CESM2.0; https://doi.org/10.5065/D67H1H0V). Figure 11 shows the climatological pre-398

cipitation fields in CAM-SE (left) and CAM-SE-CSLAM (middle), and over the same mountain-399

ous regions as in Figure 10. The plots have some similar features to the w field in the Held-Suarez400

runs; the greater variance at lower latitudes, and on the windward side of the mountains are broadly401

similar. CAM-SE-CSLAM has a lower spatial variance, e.g., the lack of extrema over the Andes402

at about 15� S compared to CAM-SE, and the grid-scale precipitation peak over the Himalayas403
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at about 30� N. The difference plot (Figure 11; right panel) is more broadly populated by blue,404

purple and white contours, indicating that CAM-SE has, in general, larger magnitude precipitation405

rates over high topography. The difference plots also highlight a couple of zonally aligned strips406

of anomalous precipitation, in particular, near the foot of the Himalayas in CAM-SE. These bands407

are in the same location as the bands of precipitation identified in CAM-SE in Lauritzen et al.408

(2015a) (their Figure 7), but using CAM, version 5 physics, of which they argue are spurious in409

nature.410

To assist in identifying whether a particular precipitation pattern is spurious, an F2000climo411

simulation is carried out using the finite-volume dynamical core that uses a regular latitude-412

longitude 0.9� ⇥ 1.25� grid (CAM-FV; f 09 grid; Neale et al. 2012). CAM-FV is the default413

low resolution model in CESM2.0, and with its smoothly varying grid, does not suffer from the414

Quadrature Node Problem (Section 2). Figure 12 shows the global precipitation fields in CAM-SE,415

CAM-SE-CSLAM and CAM-FV, compared to an observational dataset, the Global Precipitation416

Climatology Project (GPCP; 1979-2003) gridded dataset (Huffman et al. 2001). The magnitude417

of the precipitation rates in all three models are higher than the GPCP dataset, primarily over land418

in the Tropics (note the lack of red contours in the GPCP dataset), which should be interpreted419

cautiously due to widely-accepted issues in constructing a reliable, gridded, global precipitation420

dataset. At lower latitudes, CAM-FV has lower spatial variance, and overall lower magnitudes,421

compared with CAM-SE. The GPCP dataset indicates that perhaps the precipitation rates in low-422

latitude mountainous regions in CAM-FV and CAM-SE are larger than in reality. Following suit,423

the reduction in magnitude and spatial variance in precipitation in these regions in CAM-SE-424

CSLAM may be interpreted as an improvement over CAM-SE.425
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5. Conclusions426

Element-based high-order Galerkin Methods possess many of the attractive qualities recom-427

mended for next generation global atmospheric models. Among these, high-order accuracy is428

achieved with minimal communication between elements, allowing for near perfect scaling on429

massively parallel systems. Element communication amounts to a numerical flux applied to the430

element boundaries, reconciling overlapping solutions of adjacent elements but degrading the431

smoothness of the boundary nodes in the process (to C0). For non-smooth problems, gradients are432

systematically tighter at the element boundaries, and local extrema often characterize the boundary433

nodes. This behavior is illustrated using NCAR’s Community Atmosphere Model with Spectral434

Elements dynamics (CAM-SE) in an aqua-planet configuration, in a Held-Suarez configuration435

with real-world topography and in an AMIP type configuration.436

The authors argue that the conventional physics-dynamics coupling paradigm, in which the437

physical parameterizations are evaluated on the dynamical core grid, exacerbates grid imprinting.438

A separate physics grid is proposed and implemented in CAM-SE, and referred to as CAM-SE-439

CSLAM, through dividing the elements into quasi-equal areas with equivalent degrees of freedom.440

The state is mapped to the physics grid with high-order accuracy through integrating CAM-SE’s441

Lagrange basis functions over the control volumes. Control volumes near element boundaries now442

represent a state in the vicinity of the extrema produced through the boundary exchange, as op-443

posed to the the nodal value itself. These control volumes are also compatible with a ‘large-scale444

state’ as required by the physical parameterizations. The physical parameterizations are evalu-445

ated on the finite volume grid, and the forcing terms are mapped back to the dynamical core grid446

using a cubic tensor-product Lagrange interpolation. In aqua-planet simulations, evaluating the447

parameterizations on the physics grid removes any obvious dependence of proximity to the ele-448
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ment boundary, resulting in a more realistic state with negligible grid imprinting. The mapping449

algorithm does not conserve total energy, but it is estimated that these errors are one to two orders450

of magnitude less than the total energy dissipation from the dynamical core.451

In CAM-SE-CSLAM, the physics grid replaces the default CAM-SE quadrature point-based452

coupler grid (Figure 4) to compute fluxes between model components in the Community Earth453

System Model (CESM). The appeal here is two-fold. Through integrating the Lagrange basis454

functions over control volumes, one can be certain that the fluxes computed from this grid are a455

volume averaged flux. The same can not be said for CAM-SE, where artificial control volumes456

(with sizes proportional quadrature weights) are constructed around nodal values and assumed to457

represent the volume averaged state. The second advantage of the new coupler grid is that extrema458

occurring on boundary nodes may no longer influence other model components in simulations459

without rough topography. While grid imprinting is effectively eliminated in the aqua-planets,460

experiments with real-world topography (Held-Suarez and AMIP type configurations) reduces,461

but does not entirely eliminate, imprinting from the mean state. The quasi-equal area physics grid462

is nonetheless effective at mitigating numerical nuances associated with high-order element-based463

Galerkin methods, for non-smooth problems.464

Future work will focus on the impact of using a coarser, pg⇥ pg = 2⇥2 physics grid configu-465

ration. The coarser physics grid may be more effective at reducing spurious noise over regions of466

rough topography, while potentially reducing the computational overhead. Any advantages of us-467

ing a coarser resolution physics grid will be weighed against any potential reduction in a model’s468

effective resolution.469
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APPENDIX482

The mapping of the physics tendencies from the physics grid to the GLL grid is done with483

tensor-cubic Lagrange interpolation. The elements of the cubed-sphere in SE are created484

from an equi-angular gnomonic projection. Consider one element (a,b ) 2
h
a(elem)

1 ,a(elem)
2

i
⇥485

h
b (elem)

1 ,b (elem)
2

i
, where (a,b ) are central angle coordinates and a(elem)

1 and a(elem)
2 are the min-486

imum and maximum central angles in the a-coordinate direction, respectively, and similarly for487

b . Let Da(elem) = a(elem)
2 �a(elem)

1 and Db (elem) = b (elem)
2 �b (elem)

1 . The physics grid cell central488

angle centers are located at489

(a(pg)
i ,b (pg)

j ) =
h
a(elem)

1 +
�
i� 1

2
�

Da(pg),

b (elem)
1 +

�
j� 1

2
�

Db (pg)
i
, (A1)

where Da(pg) = Db (pg) = Da(elem)

pg = Db (elem)

pg . The interpolation is performed in central-angle co-490

ordinates using tensor product cubic interpolation. For elements located on a cubed-sphere edge491
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or corner the coordinate system for neighboring elements may be on a different panel. To take492

into account this coordinate change the central angle locations of physics grid cell centers located493

on other panels are transformed to the coordinate system of the panel the element in question is494

located on (the transformations are given in, e.g., Nair et al. 2005). An illustration is given in495

Figure 13 for an element located in the lower left corner of a panel. The element in question is496

(x ,c) 2 (�1,1)2 where, for simplicity, we have transformed the element coordinates into normal-497

ized coordinates (x ,c) =

 
2
⇣

a(pg)�a(elem)
1

⌘

Da(elem) �1,
2
⇣

b (pg)�b (elem)
1

⌘

Db (elem) �1

!
; also used internally in the498

SE dynamical core (see, e.g., section 3.3 in Lauritzen et al. 2018). The GLL points are located at499

-1,�1/
p

1, 1/
p

5, and 1 in each coordinate direction. Near the edges/corners of an element cubic500

extrapolation is used if the centered stencil expands beyond the panel.501

References502

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-503

scale environment, Part I. J. Atmos. Sci., 31, 674–701.504

Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. E. Truesdale, N. Rosen-505

bloom, and M. Levy, 2018: Projected changes in tropical cyclone activity under future warm-506

ing scenarios using a high-resolution climate model. Climatic Change, 146, 547–560, doi:507

10.1007/s10584-016-1750-x, URL http://dx.doi.org/10.1007/s10584-016-1750-x.508

Baer, F., H. Wang, J. J. Tribbia, and A. Fournier, 2006: Climate modeling with spectral elements.509

Mon. Wea. Rev., 134, 3610–3624, doi:10.1175/MWR3360.1, URL http://dx.doi.org/10.1175/510

MWR3360.1.511
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(a)

(c) (d)

(b)

FIG. 1. Example of CAM-SE GLL quadrature grids, marked with red filled circles, (a & c) on the cubed-

sphere and (b & d) in an element. (a)-(b) and (c)-(d) use 4⇥ 4 (np = 4) and 8⇥ 8 (np = 8) GLL quadrature

points in each element, respectively. (a) and (c) have the same average grid-spacing at the Equator (7.5�) which is

obtained by using (a) 4⇥4 (ne= 4) and (b) 2⇥2 (ne= 2) elements on each cubed-sphere face/panel, respectively.

The element boundaries are marked with thick light blue lines. The grid configurations shown on (a) and (c) are

referred to as ne4np4 and ne2np8, respectively.
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FIG. 2. A one-dimensional schematic showing the relationship between the basis functions, the quadrature

nodes and the proposed physics grid, over the coarse of a time-step. The filled circles are the GLL quadrature

points in each element, which are connected by a Lagrange polynomials basis (curves). (a) Smooth initial con-

dition are (b) advanced by the dynamics one Runge-Kutta step (blue), and (c) shows the solution after applying

the DSS operator. Applying (d) grid-scale forcing to an element boundary node, (e) the basis representation is

clearly C0 at the element boundary. In contrast, (d) applying grid-scale forcing to an interior node (e) results

in a smooth, C• continuous field. (f),(i) Vertical bars pertain to the values on the physics grid, found through

integrating the basis functions over the control volumes.
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FIG. 3. Probability density distribution of instantaneous upward w in a pair of aqua-planet simulations using

CAM4 physics. Figure is constructed from one year of six hourly data, at all vertical levels. (a) ne30np4

configuration conditionally sampled for interior, edge and corner node control volumes, and similarly (b) for the

ne30pg3 configuration. The curves in (b) are overlain in (a) in grey, and similarly the curves in (a) are overlain

in (b). Note the consistently larger magnitude w for boundary nodes compared with interior nodes in (a), and

that the bias is substantially reduced through mapping to a quasi-equal area physics grid.
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FIG. 4. An example of control volumes constructed around GLL quadrature points (ne4np4) so that the

spherical area of the control volumes exactly match the quadrature weight multiplied by the metric factor.
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pg = 3np = 4

FIG. 5. A schematic illustration of an element, indicating the relationship between (left) the dynamical core

grid, and (right) the proposed quasi-equal area physics grid. The physics grid contains pg⇥ pg = 3⇥3 grid cells

in each element.
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FIG. 6. L2 difference norms of the surface pressure field, ps, in the moist baroclinic wave simulations. L2

values lying within the yellow region fall below the estimate of the uncertainty in the reference solution (black

curve), computed as the difference norm between two approximately 0.25� resolution versions of CAM, the

spectral-element and finite-volume (CAM-FV) dynamical cores.
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FIG. 7. Results of the terminator “toy”-chemistry test. Snapshot of the total column integrated, weighted sum

of the species,
⌦
Cly
↵
= hCli+ h2Cl2i, in kg/kg, at day 15 of the moist baroclinic wave test. (Top) CAM-SE,

(Bottom) CAM-SE-CSLAM.
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FIG. 8. Climatological zonal-mean total precipitation rate in the aqua-planets, computed from a pair of year

long simulations.
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FIG. 9. Mean (left) and variance (right) of the low level temperature tendencies from the physical parameter-

izations on the GLL grid, with the ne30np4 configuration, (top row) and ne30pg3 configuration (bottom row),

in a pair of year-long aqua-planet simulations. Grid imprinting is observed along the element boundaries in

ne30np4, but is absent from the ne30pg3 simulation.
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FIG. 10. Mean w at two model levels in the middle troposphere, in a Held-Suarez configuration outfitted with

real world topography. (Left) CAM-SE state on the GLL grid, ne30np4, (Middle) CAM-SE-CSLAM state on

the physics grid, ne30pg3 and (Right) their differences computed through bi-linear interpolation to a common

latitude-longitude grid. The w fields are computed from a 1200 day Held-Suarez simulation. The data are

contoured according to a ‘cell fill’ approach, in which the coupler grids (e.g, Figure 4) are used to delineate the

vertices of the control volumes.

762

763

764

765

766

767

43



FIG. 11. Climatological total precipitation rate (in mm/day) computed from the final 19 years of a pair of 20

year long AMIP type simulations. (Left) CAM-SE, (middle) CAM-SE-CSLAM and (Right) their differences.
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FIG. 12. Climatological total precipitation rate computed from the final 19 years of a suite of 20 year long

AMIP simulations, using CAM-SE (ne30np4), CAM-SE-CSLAM (ne30pg3) and CAM-FV (f09). The top plot

is an observational product, the gridded GPCP climatological precipitation dataset.
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FIG. 13. Schematic of the coordinate system in which the dimensionally split cubic Lagrange interpolation

is computed. The physics grid centers are marked with asterisks and the GLL points, we are interpolating to,

with solid filled circles. The element in which the GLL points are located is bounded by thick black lines and

located in the lower left corner of a panel. The stippled lines mark the boundaries of the remaining elements.

For simplicity we are using the normalized coordinate centered at the element on which the GLL points we are

interpolating to are located. Note that the coordinates for points on neighboring panels (using a different local

coordinate system) must be transformed to the coordinate system of the element in question.
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