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‘Definition’ of an atmospheric dynamical core

‘Roughly speaking, the dynamical core solves the governing fluid and ther-
modynamic equations on resolved scales, while the parameterizations rep-
resent sub-grid-scale processes and other processes not included in the dy-
namical core such as radiative transfer.” - Thuburn (2008)

<:( Computer code }:>

Dynamics module Physics module

(mostly resolved scale processes) (sub-grid scale processes not in
dynamics module)

+ Numerical approximation to <_>
adiabatic frictionless equations
of motion on resolved scales.

+ Moist processes (convection,
cloud microphysics, ...).

- Sub-grid-scale: Scale-selective + Radiation.
dissipation (explicit or inherent). + Boundary layer turbulence.
- Tracer transport on resolved : gthemlstry.
- Etc.

scales.
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This talk is two-fold

@ a new test case for global dynamical cores and results from the 2008
NCAR colloquium on dynamical cores (Lauritzen et al., 2009a)

@ a new multi-tracer transport scheme on the cubed-sphere based on a
semi-Lagrangian formulation (Lauritzen et al., 2009b)

Lauritzen (NCAR) global dynamical cores Summer 2009 3/62



Major challenges

Preparing our coupled climate system models for massively, distributed
memory computers as well as meeting the ‘needs’/expectations of the user
community.

Some expectations (for global dynamical cores):
e Scalable (order 10* — 10° processors)
o Conservation properties (at least mass; maybe total energy, ....)

o Capable of producing accurate solutions for small-scale (meso-scale)
and large scale flows (synoptic ad global scales)

@ Tracers: Accurate (consistent), efficient for O(100+) tracers

o Capability for regional climate (high regional resolution):

e Through variable resolution grid (e.g., Voronoi)
o Mesh-refinement
e High global resolution

o Etc.
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Selective Mesh Refinement Based on Terrain Height

spherical centroidal
voronoi tessellation

(Michael Duda, MMM)

Mesoscale & Microscale Meteorology Division / ESSL / NCAR

Slide from J. Klemp (NCAR)
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Block refinement

(a) 1 static refinement, finest resolution 2.5° x 2.5°
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Figure courtesy of C. Jablonowski (University of Michigan)
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Next generation global models
The dynamical core is the performance “bottleneck”
in many coupled climate system models

Regular latitude-longitude grids need non-local (global) filters in the
polar regions (e.g., NCAR CAM) or use non-local spectral transform
methods (e.g., ECMWEF IFS).
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Next generation global models
The dynamical core is the performance “bottleneck”
in many coupled climate system models

Regular latitude-longitude grids need non-local (global) filters in the
polar regions (e.g., NCAR CAM) or use non-local spectral transform
methods (e.g., ECMWEF IFS).

Grid patches that reside on different nodes

Rectangular computational space

y
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A solution

Use a more isotropic grid (avoid pole problem, can use full 2D
domain decomposition in horizontal directions, if equations are
solved explicitly there is only nearest neighbor communication):

Regular
Latitude-longitude

Cubed-sphere Icosahedral Yin-Yang

o Soseasta.
SIS
RSN
o ST
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A solution

Use a more isotropic grid (avoid pole problem, can use full 2D
domain decomposition in horizontal directions, if equations are
solved explicitly there is only nearest neighbor communication):

Regular
Latitude-longitude

Cubed-sphere Icosahedral Yin-Yang
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U.S. Department of Energy
. "o
NCAR -

Office of Science
NCAR Summer Colloquium on Dynamical Cores

June 2-13, 2008; Organizers: Lauritzen (NCAR), Jablonowski (University of Michigan), Taylor (Sandia National Laboratories), Nair (NCAR)

“Idea’: Gather global dynamical core community, have them port
their models to NCAR supercomputers and have them oversee the
students run idealized test cases defined by the colloquium organizers.

— 12 models: NCAR (CAM), NASA (GISS, GEOS FV), CSU (CSU GCM),
NCAR/Sandia (HOMME), Duke University (OLAM), NCEP (GEF),
MIT (MITgcm), MPI (ICON), DWD (GME).

— ~ 40 graduate students (North America, Europe, India, Brazil, South Korea, ...);
collectively produced 1.1 TB of data.

-12 keynote lecturers (see upcoming Springer book in Lecture Notes in Computational Science and Engineering series).

@ Sprmger
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NCAR Summer Colloquium on Dynamical Cores
Idealized rotated steady-state test case (Lauritzen et al., 2009)

Run model in adiabatic mode (no physics).
Initialize the dynamical core with analytic initial conditions (balanced & steady state).

(Jablonowski and Williamson, 2006)

Sutace geopotential (5"

Teanperature (K)

Surface pressure:
PS =1000 hPa

Rotate computational grid with respect to the physical flow.

u regularfatdongrid . =0" U regularlationgrid . =45" U regular latdon grid . =90°

Saw: s

Run model: Does it maintain a steady state (flow is baroclinically
unstable so perturbations will grow!)? Dependence on rotation angle?
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Surface pressure day 1 plotted in model coordinates (not geographical coordinates)
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Ps at rotation angles o = 0° (left column), o = 45° (middle column) and o = 0° (right column).

White solid lines: Some of the grid lines for the computational grid (white solid lines)

Arrows: Vector wind field at model level 3 near 14 hPa for the initial condition. The wind vectors are only shown to
indicate the location of the jets with respect to the model grid.
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Surface pressure day 1 plotted in model coordinates (not geographical coordinates)
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@ P at rotation angles o = 0° (left column), o = 45° (middle column) and « = 0° (right column).

White solid lines: Some of the grid lines for the computational grid (white solid lines)

Arrows: Vector wind field at model level 3 near 14 hPa for the initial condition. The wind vectors are only shown to
indicate the location of the jets with respect to the model grid.
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NCAR Summer Colloquium on Dynamical Cores
Idealized rotated steady-state test case (Lauritzen et al., 2009)

Day . ssoronmatly 2 rezonal osoluona cqustor

@ CAM_EUL (NCAR) : Spectral transform
- . 3 CAM_FV (NCAR) : Finite-volume
s n s s amn CAM_ISEN (NCAR) : CAM_FV with isentropic
- - . vertical coordinates
@ GEOS_FV_CUBED
SR <3 (NASA/GFDL) : Finite-volume
I~ = HOMME (NCAR/Sandia)  : Spectral elements
B @ ICON (MPI-M) : Finite difference/volume
B 2« 2 CSU_SGM
. .. (Colorado State University) : Finite-difference
CSU_HYB : CSU_SGM with isentropic vertical

coordinate

- - - @  All models (except CAM_EUL) show “grid-imprinting”.

« Cubed-sphere models: Spurious wavenumber 4 and 2 waves.
@ « Icosahedral models: Spurious wavenumber 5 wave.

* Results “spuriously” vary with rotation angle.
» Amplitude of spurious waves vary significantly among models.

Test case can be used for debugging model

- -- @ code, assess isotropy of numerical methods,
B e assess level of “grid-imprinting”.
WINCAR  &ss1s Climate & Global-Dynamics ! ;_
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NCAR Summer Colloquium on Dynamical Cores

Idealized rotated baroclinic wave test case (Lauritzen et al., 2009)

* Add perturbation to steady-state initial conditions.
« Triggers the growth of a baroclinic wave over 10 days.

PSatday 9

o —

= —
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% s ) I )

« Exact solution not known; an ensemble of high resolution reference solutions provide
an estimate of the true solution and the uncertainty thereof.

CAMFV

Yellow region: Uncertainty
of high resolution reference
solutions.

|, SURFACE PRESSURE (mb)
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NCAR Summer Colloquium on Dynamical Cores
Idealized rotated baroclinic wave test case (Lauritzen et al., 2009)

Baroclinic wave test, approximately 1° and 2° resolution, respectively

Baroclinic wave test, approximately 1° and 2° resolution, respectively
rotonangaa -0 oatonsnge - 45 ntenwnge -0

P o rgn -5 catonarge -
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[re——
et PP

GEOS_FV_CUBED

1 degree 1 degree
(CLIT [0 (RIELT) gececliaion * All cubed-sphere models have converged
CAM_FV (NCAR) : Finite-volume . .
CAM_ISEN (NCAR) : CAM_FV with isentropic to the uncertainty of the reference solutions
feicaltioninzcs at 1 degree; the icosahedral models have not!

(NASA/GFDL) : Finite-volume

HOMME (NCAR/Sandia)  : Spectral elements

ICON (MPI-M) : Finite difference/volume Test case can be used to assess:
CSU_SGM nimal resolution f Ivine baroclini
(Colorado State University) : Finite-difference REIUIARICSOLUIONH ORIeSO VN SN AIDCH ILCRYAVES.

CSU_HYB : CSU_SGM with isentropic vertical | | - isotropy of numerical method.

coordinate
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Final remarks on part |

@ Dynamical cores on non-traditional global spherical grids still have to
prove themselves in global climate modeling! (magnitude of spurious
grid forcing versus ‘physical’ forcings)
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@ Which grid is optimal: We do not know (all of them have problems)!
Time may show ...
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Final remarks on part |

@ Dynamical cores on non-traditional global spherical grids still have to
prove themselves in global climate modeling! (magnitude of spurious
grid forcing versus ‘physical’ forcings)

@ Which grid is optimal: We do not know (all of them have problems)!
Time may show ...

e The NCAR CAM (Community Atmosphere Model):

o The HOMME dynamical core (cubed-sphere) will be available as a
non-supported dynamical core in CAM4 (CAM4 is scheduled to be
released by the end of the year)

o CAM-HOMME is currently being test in ‘AMIP mode’ (in collaboration
with Sandia National Laboratories and Oak Ridge National
Laboratories).

o CAM-FV-cubed: Cubed-sphere version of GFDL/NASA dynamical core
is being ported to CAM (University of Michigan).

o A dynamical core based on an icosahedral grid is being implemented in
CAM as well (Los Alamos National Laboratories and MMM at NCAR)
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

~

Why new transport scheme?

Future (and some current) climate models will have over 100 prognostic tracers.
=> Computational cost of running dynamics will be (is) dominated by tracers.
=> Multi-tracer efficiency is important (as well as conservation, monotonicity, ...).
K=> Scheme needs to be accurate on "fancy geometry’ /

For simplicity I will derive CSLaM scheme in Cartesian geometry
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

d
— WdA =0

where ?7/) density and A(t) arbitrary Lagrangian area (g, machenhaver etal, 2008).

o

N A ’C T
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

/ b dA = / 4 dA
A(t+At) A(t)

where ?7/) density and A(t) arbitrary Lagrangian area.
< 5

i—? | ﬁ’:—A(tJrAt)
A 7 3

BNCAR £ssis Climate & Global-Dynamics _




A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme off the Cubed-Sphere (CSLaM)

Consider two-dimensional transRort equation for a passive tracer:

i7 | ﬁ’:—A(tJrAt)
A 7 3
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

—n—+1

b AAL =PF day

where ?7/) density and A(t) arbitrary Lagrangian area.
< 5

g e
56% T A
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A Conservative Semi-Lagrangian Multi-Tracer
Transporg Scheme on the Cubed-Sphere (CSLaM)

Consider two-dirhensional transport equation for a passive tracer:

—n—+1

P AAp =97 day

where ?7/) density and A(t) arbitrary Lagrangian area.
< 5

g e
56% T A
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

—n—+1

L
—n
G A =00 =Y [ sy dedy
/=1 Qe
where overlap areas are
ape = ar N Ay, ape #0; £=1,..., Ly
| 5 V. | | .
| Ay
|
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equatio 1ve tracer:

—n—+1 —n

where overlap areas are

ape = ag M Ap,

| < .

Use Gauss-Green’s
, theorem to convert area
integrals into line-integrals.
|

y
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

—n—+1

L
(U AAkngZRCSak:Zj{ Pdx+ Qdyl,
(=17 9%kt

where P, () are potentials so that

oP  0Q Ll

| = : A
ay aﬂf fg(fl? y) K‘/ A

:
=
T
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Consider two-dimensional transport equation for a passive tracer:

—n—+1

L
Py AAk:len(Sak:Zj{ Pdx+ Qdyl,
(=17 9%kt

where P, () are potentials so that

S ey = Y ey, e {0.1,2)
i<

i,J D s R (A
and Cé ):Cé )("'7wk—17wk7wk—l—17'“)
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Final CSLaM forecast equation becomes:

Ly,
—n—+1 —n
U AAg =95 da =)
/=1

Z céi’j)w&’j)

(4,5)

where weights w, ,” " are functions of the coordinates of the vertices

of the overlap areas ALy

1+ <2

o -

Ay
Y

P Ay

~ % [ O O—
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Spher€ (CSLaM)

Final CSLaM forecast equation becomes:

S il

1+ <2

(4,5)

where weights w, ,
of the overlap areas

functions of the coordinates of the vertices

3 -
Ay
(" .. ) -— Ay
n (Z 2] ) * ¢
¢~ can be reused for each _ | VRS & -
additional tracer. _J
\§ J
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A Conservative Semi-Lagrangian Multi-Tracer
Transport Scheme on the Cubed-Sphere (CSLaM)

Cubed-sphere faces are “Cartesian-like” so Cartesian algorithm can be reused to a
large extent, except:

» Gauss-Green’s theorem must be converted to gnomonic coordinates and associated
potentials must be computed (doable but a lot of algebra!).

 Consistently couple the panel discretizations for the global domain (since algorithm
is fully two-dimensional this 1s straightforward!).

Lauritzen et al. (2009b)
Ullrich et al. (2009)
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Moving Vortices on the Sphere:
A Test Case for Horizontal Advection Problems

B .75 1 1.25 1.5

Courtesy of R.D. Nair Nair and Jablonowski (2008)
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Moving Vortices on the Sphere:
A Test Case for Horizontal Advection Problems

Exact solution: Initial condition, 1/4, 1/2, 1 revolution, respectively
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Standard error measures for moving vortices test case

Putman and Lin (2008)

CSLaM (Lauritzen et al. 2009b) Cubed-sphere version of widely used Lin-Rood
scheme used at GFDL, NASA, NCAR, MPI-M, ...

1OE-01
1.0E-1 T T T T T

——Linf

Iy, conv.-rate 2.51 —x—
I, conv.-rate 2.59 ---&--
I, conv.-rate 2.61 —e—

——1_1

—O0—12

1.0E-2 |

1.0E-02
@

error norm

N alized E

1.0E-3 | ~ 1.OE-03

1.0E-4

|
1.0E-04 T

768 -

c48 96 c192 c384 c768

Major improvement in accuracy compared to widely used state-of-the-art scheme!

&

* CSLaM to be implemented in HOMME (High-Order Methods Modeling Environment) as

part of DOE proposal to design and implement non-hydrostatic dynamical core in HOMME.
* CSLaM is in theory extendable to other grids (e.g., icosahedral grids).

J
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Final remarks on part 11

» CSLaM properties:

- high-order accurate (+ Lagrangian accuracy)

- preserves linear tracer correlations

- has monotone options (ask me for details)

- multi-tracer efficiency

- general (applicable to any type of spherical grid defined in terms of great circle arcs;
but high-order reconstructions must be provided!)

- Eulerian flux-form version of CSLAM was implemented (f/ .
and tested this summer — .
(Lucas Harris, University of Washington): o/‘*//
(b) ©
Why? o o,//(- O/ 9
- allows for FCT (flux-corrected transport) limiters o o
for monotonicity @ 2 O//
- allows for sub-cycling (large computational A Q 7Y f Q'/
savings) /{'// e
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