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Why focus on transport schemes? Multi-tracer efficiency

Continuity equations in NCAR’s Community Atmosphere Model (CAM) version 5

Air density

Water species: Water vapor, cloud liquid water and ice

Microphysics & Aerosols: number concentrations (cloud water variables, aerosols),
particulate organic matter, dust, sea salt, secondary organic aerosols, ... (total of
22)

Continuity equations in Chemistry version of CAM

Prognoses 126+ chemical species (Lamarque et al., 2008)

↪→ In many atmospheric modeling applications the computational cost of resolved
dynamics is (or is expected to be) dominated by the cost of tracer transport

↪→ Multi-tracer efficiency is becoming increasingly important

Peter Hjort Lauritzen (NCAR) Tracer Transport October 26, 2010 3 / 29



Why focus on transport schemes? Accuracy on ‘fancy grids’

regular latitude-longitude cubed-sphere Voronoi Yin-Yang

Primarily for scalability many groups are considering more isotropic spherical grids
→ challenges schemes in new ways:

Grids are not orthogonal (at least not globally):

⇒ potential loss of accuracy with dimensionally split schemes

Balanced flows are newer always aligned with grid lines; has consequences for
maintaining large scale balances in the flow at low resolution;
Lauritzen, Jablonowski, Taylor, Nair (2010a, Journal of Advances in Modeling Earth Systems)

‘Geometrically flexible’ schemes desirable for ‘fancy grids’, mesh-refinement, etc.
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Why focus on transport schemes? Fields have large gradients ...

Example from CAM5 at 1.9◦ × 2.5◦ resolution

Water variables

10e−4 kg/kg

10e−4 kg/kg
10e−4 kg/kg

10e−4 kg/kg

many fields (water variables, aerosols, chemical species, ...) contain near
grid-scale features

production/loss terms are large, however, locally the advective tendency can
be large (e.g., cloud ice mixing ratio for Cirrus, aerosols, ...)
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Why focus on transport schemes? Fields have large gradients ...

Example mass fields in CAM

Example from CAM5 at ‘standard’ 1.9◦ × 2.5◦ resolution

variation of number concentration with height

Near the surface ‘drastic’ variations in horizontal and vertical!

Large sources and sinks, however, without scavenging (e.g. with precipitation)

aerosols can have long lifetimes (e.g. Saharan dust can be transported 1000s of

miles) ⇒ advective tendencies can locally be the largest signal !

Check you scheme for such fields (especially if limiters use ‘magic numbers’ !)
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Data for these Figures provided by J.F. Lamarque
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Part I
New geometrically flexible multi-tracer scheme
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauritzen, Nair, Ullrich (2010b, JCP)

(a) (b)

Finite-volume Lagrangian form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
ak

ψn
k dxdy =

Lk∑
`=1

∫∫
ak`

f`(x,y)dxdy,

where the ak`’s are non-empty overlap regions:

ak` = ak ∩A`, ak` 6= ∅; ` = 1, . . . ,Lk. (1)
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauritzen, Nair, Ullrich (2010b, JCP)

(a) (b)

Finite-volume Lagrangian form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
ak

ψn
k dxdy =

Lk∑
`=1

∮
∂ak`

[Pdx+Qdy] ,

where ∂ak` is the boundary of ak` and

−
∂P

∂y
+
∂Q

∂x
= f`(x,y) =

∑
i+j62

c
(i,j)
` xiyj.
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauritzen, Nair, Ullrich (2010b, JCP)

(a) (b)

Finite-volume Lagrangian form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
ak

ψn
k dxdy =

Lk∑
`=1

 ∑
i+j62

c
(i,j)
` w

(i,j)
k`

 ,

where weights w(i,j)
k` are functions of the coordinates of the vertices of ak`.
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauritzen, Nair, Ullrich (2010b, JCP)

(a) (b)

Finite-volume Lagrangian form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
ak

ψn
k dxdy =

Lk∑
`=1

 ∑
i+j62

c
(i,j)
` w

(i,j)
k`

 ,

w
(i,j)
k` can be re-used for each additional tracer (Dukowicz and Baumgardner, 2000)

computational cost for each additional tracer is the reconstruction and limiting/filtering.

CSLAM is stable for long time-steps (CFL>1)

CSLAM is fully two-dimensional and can be extended to any spherical grid constructed from great-circle arcs.

Cubed-sphere extension of CSLAM is discussed in detail in Lauritzen, Nair, Ullrich (2010,JCP)

Extension of CSLAM to icosahedral grids discussed in Mittal and Lauritzen (2010, in prep)
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Flux-form CSLAM (FF-CSLAM); Harris,Lauritzen,Mittal (2010,JCP)

a
ε=4

ε=2

ak
ε=1

ka
ak

ε=2

ka ε=3

k
ε=4

ε=3

ε=1

Finite-volume flux-form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
Ak

ψn
k dxdy−

4∑
ε=1

Lε
k∑

`=1

sε
k`

∫∫
aε

k`

f`(x,y)dxdy

 , (1)

where

aε
k = ‘flux-area’ (yellow area) = area swept through face ε

Lε
k = number of overlap areas for aε

k; aε
k` = aε

k ∩Ak

sε
k` = 1 for outflow and -1 for inflow.

All technology developed for CSLAM can be re-used
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Flux-form CSLAM (FF-CSLAM); Harris,Lauritzen,Mittal (2010,JCP)

a
ε=4

ε=2

ak
ε=1

ka
ak

ε=2

ka ε=3

k
ε=4

ε=3

ε=1

Finite-volume flux-form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
Ak

ψn
k dxdy−

4∑
ε=1

Lε
k∑

`=1

sε
k`

∫∫
aε

k`

f`(x,y)dxdy

 , (1)

Note: all the areas involved in forecast (1) ‘sum-up to’ upstream Lagrangian area δak:

∆Ak −

4∑
ε=1

Lε
k∑

`=1

sε
k`δa

ε
k

 = δak. (2)

Aside: in flux-form you’ll conserve mass even when you are ‘sloppy’ about approximating aε
k, that is, effective

upstream areas δak do not need to span the domain without overlaps/gaps as for the Lagrangian scheme!
(However, for consistency and maybe accuracy it should be the case)

⇒ unlimited FF-CSLAM = unlimited CSLAM

→ Why FF-CSLAM?
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Flux-form CSLAM (FF-CSLAM); Harris,Lauritzen,Mittal (2010,JCP)

a
ε=4

ε=2

ak
ε=1

ka
ak

ε=2

ka ε=3

k
ε=4

ε=3

ε=1

Finite-volume flux-form of continuity equation for ψ = ρ,ρφ:∫
Ak

ψn+1
k dxdy =

∫
Ak

ψn
k dxdy−

4∑
ε=1

Lε
k∑

`=1

sε
k`

∫∫
aε

k`

f`(x,y)dxdy

 , (1)

You get mass-conservation no matter how you approximate fluxes!

In CSLAM shape-preservation is enforced by filtering the sub-grid-cell reconstructions (also applicable for
FF-CSLAM)

Casting in flux-form one may also apply flux-limiters such as FCT (Flux-Correct-Transport, Zalesak
1979).

Flux-form allows for super-cycling (also referred to as sub-cycling), that is, transport tracers with longer
time-steps than what is used for the dynamics.

Drawback: For CFL>1 FF-CSLAM is significantly more expensive than CSLAM
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Limiters and filters

In the literature: Many 1D limiters but few fully 2D limiters!

A priori (‘Monotone filtering’): Filter the reconstruction
f` (x,y) so that extreme values lie within the adjacent
cell-average values (Barth and Jespersen, 1989). no filter

monotone filter

A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema in

ψ
n+1

using flux-corrected transport (Zalesak, 1979).

Monotone filters/limiters tend to ‘clip’ physical extrema

0

0

 12  20  28  36

a) Unlimited

 12  20  28  36

b) Monotone filter/limiter

 12  20  28  36

c) Selective filter/limiter 
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Limiters and filters

In the literature: Many 1D limiters but few fully 2D limiters!

A priori (‘Monotone filtering’): Filter the reconstruction
f` (x,y) so that extreme values lie within the adjacent
cell-average values (Barth and Jespersen, 1989). no filter

monotone filter

A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema in

ψ
n+1

using flux-corrected transport (Zalesak, 1979).

Selective filtering/selective limiting (Blossey and Durran, 2008): apply filtering or
limiting only where a WENO-based smoothness metric exceeds a certain threshold:

γ =
1

2

(2∆x
∂f

∂x

)2
+

(
∆x2 ∂2f

∂x2

)2

+

(
2∆y

∂f

∂y

)2
+

(
∆y2 ∂2f

∂y2

)2

+

(
∆x∆y

∂2f

∂x∂y

)2
 (2)

Will render solution non-oscillatory but not strictly monotone (‘miniscule’ under-
and over-shoots)
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Flux-form CSLAM (FF-CSLAM): Results
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Mono. filter 2.31
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third-order convergence in E2 and E∞ for unlimited scheme and when using selective
limiter/filter (for cubed-sphere version of CSLAM)

for icosahedral grid implementation the convergence rates are closer to second than
third-order (least squares reconstruction)!

a robust search algorithm for overlap areas can be cumbersome to code
(although by no means impossible; and the cost of the search will become marginal
for a large number of transported tracers)

what if we get rid of the search for overlap areas?
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Simplified FF-CSLAM (Lauritzen,Erath,Mittal,in prep.)
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Fig. 3. In both subfigures, A1 . . . A4 denote the Eulerian grid. The centered square D1

(red) is the departure cell whereas A4 (blue) presents the corresponding arrival cell. The

velocity v = (vx, vy) is assumed to be constant with vx = vy. The integrals over the

domains F1 and F3 (gray) in Subfigure (a) represent the fluxes through the west (W) and

east (E) side, respectively. In Subfigure (b) we see the corresponding domains F2 and F4

(gray) for the south (W) and north (N) side, respectively.
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Fig. 4. We plot the different factors of the errors esta and esim of (3), respectively. The

ratio (1− µ)/(1− 2µ) shows the factor between esta and esim.
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Figures

Fig. 1.: Each plot shows the squared modulus of the amplification factor for FF-CSLAM

(solid lines) and simplified FF-CSLAM (dashed lines) as a function of the displacement

parameter α and the wavelength L. The contours for the 0.3, 0.6 0.9 0.99 and 1.0 isolines

are shown. The shaded area is were |Γ|2 ≥ 1 for the simplified FF-CSLAM scheme. The

schemes are based on PCM (left), PLM (middle) and PPM (right), respectively.

For the flux-integral for a particular face only the reconstruction in the cell upstream
is used (no search needed)

For CFL60.5 the results in idealized test cases for cubed-sphere FF-CSLAM
improved slightly in terms of standard error norms.
Very counterintuitive (less rigorous and cheaper scheme is better?)!

Von Neumann stability analysis for 1st,2nd, and 3rd reconstruction functions
confirms this!

using 1st- and 2nd-order reconstructions the scheme is only stable for CFL60.5
for 3rd-oder reconstruction functions the stability region expands!

Error analysis in terms of Taylor series confirms this as well

5

Theorem 2.1. The consistency error for the west and east side for the standard and

the simple CS-LAM are

eW,E
sta = i h3 1

2
kµ(µ− 1) +O(h4) and eW,E

sim = i h3 1

2
µ(k − µ(k + l)) +O(h4), (1)

respectively. For the south and north side we get

eS,N
sta = i h3 1

2
lµ(µ− 1) +O(h4) and eS,N

sim = i h3 1

2
µ(l − µ(k + l)) +O(h4), (2)

respectively. Thus the total error is

esta = i h3µ(1− µ)(k + l) +O(h4) and esim = i h3µ(1− 2µ)(k + l) +O(h4). (3)

Proof. The proof is done by a simple calculation of the above integrals with respect to

the origin (0, 0) according to Figure 3 and then write the errors in a Taylor expansion.

All calculations are done by Maple 14.

Remark 2.2. Note that eW,E
sta in (1) is independent of l and eS,N

sta in (2) is independent of

k since the corresponding wave part is parallel to the sides.

The errors esta and esim only differ in one factor, 1− µ versus 1− 2µ. That means,

the absolute error of the simple scheme is indeed better at least for µ in the stability

range µ ∈ (0, 1/2). In other words the absolute value of esim is (1 − µ)/(1 − 2µ)-times

better than esta, see Figure 4. Fig. 4.

3. Summary

a. Acknowledgements

The authors would like to thank
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For the flux-integral for a particular face only the reconstruction in the cell upstream
is used (no search needed)

For CFL60.5 the results in idealized test cases for cubed-sphere FF-CSLAM
improved slightly in terms of standard error norms.
Very counterintuitive (less rigorous and cheaper scheme is better?)!

Von Neumann stability analysis for 1st,2nd, and 3rd reconstruction functions
confirms this!

using 1st- and 2nd-order reconstructions the scheme is only stable for CFL60.5

for 3rd-oder reconstruction functions the stability region expands!

Error analysis in terms of Taylor series confirms this as well
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CSLAM in CAM-HOMME (High-Order Methods Modeling Environment)

 

Spectral Element Method

• Continuous Galerkin Finite Element Method
– Uses quadrilateral elements
– Nodal basis formulation
– Gauss-Lobatto quadrature based inner-product

• Finite Element Method was designed for 
unstructured grids.  CAM-HOMME can use any 
quadrilateral based tiling of the sphere:  
– Cubed-sphere grid for uniform resolution
– Variable resolution grids with smooth transition from 1 

degree global to 1/8 degree over ARM SGP site.  

• Regional climate or forecast capability within a 
single global model?

• Efficient calibration of high-resolution global model
– evaluation of 1/8 degree parametrizations with ARM 

data

Compatibility and Conservation

Discrete DIV and GRAD are adjoints

Discrete CURL is self-adjoint

CURL GRAD = DIV CURL = 0  

Local conservation of mass (or any quantity whose 
equation is written conservation form) requires a 
discrete analog of: 

∫


p∇⋅v∫


v⋅∇ p=∮
∂

pv⋅n

Local conservation of energy (for equations written 
in vector-invariant form) requires a discrete analog 
of: 

∫


∇⋅v=∮
∂

v⋅n

Local conservation of PV (by the advection 
operator)  requires the above and a discrete analog 
of   

∇×∇ p=0
 

CCSM/HOMME Scalability
Time-Slice Configurations 

• BGP (4 cores/node):  Excellent scalability down to 1 element per processor 
(86,200 processors at 0.25 degree resolution).    1/8 degree CCSM running at > 1 
SYPD.  

• JaguarPF (12 cores/node):  2-3x faster per core than BGP, scaling not as good.  
1/8 degree CCSM running at 3 SYPD.  

 

Spectral Element Method

• Continuous Galerkin Finite Element Method
– Uses quadrilateral elements
– Nodal basis formulation
– Gauss-Lobatto quadrature based inner-product

• Finite Element Method was designed for 
unstructured grids.  CAM-HOMME can use any 
quadrilateral based tiling of the sphere:  
– Cubed-sphere grid for uniform resolution
– Variable resolution grids with smooth transition from 1 

degree global to 1/8 degree over ARM SGP site.  

• Regional climate or forecast capability within a 
single global model?

• Efficient calibration of high-resolution global model
– evaluation of 1/8 degree parametrizations with ARM 

data

Scalable spectral element dycore in CAM

fully functional with CAM4 physics; soon with mesh-refinement and CAM5 physics

Conserves total energy to time truncation errors (≈0.014 W/m2 in 1
2

◦
aqua-planet)

Conserves mass at the element level (‘quasi-local’)

Recently filters/limiters have been introduced for shape-preserving tracer transport,
however, reduces the transport operator from formally third-order to second-order.

Under DOE grant we are integrating CSLAM into HOMME for tracer transport:

improve accuracy/efficiency of shape-preserving tracer transport
unique opportunity to compare computational efficiency/accuracy of finite-volume
versus finite-element method within the same framework

CSLAM can take longer ∆t’s but needs a larger halo/stencil
HOMME must communicate between elements 3 times during one ∆t but CSLAM only
needs to communicate once
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Part II
New challenging test cases for transport schemes on the sphere
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Idealized transport test cases for global models in the literature

Solid-body rotation (probably most widely used test case): purely translational

Moving vortices (Nair and Jablonowski, 2008): translation+deformation
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Idealized transport test cases for global models in the literature

Great-circle trajectories (analogous to straight lines on Cartesian plane)
→ this inherently favors most numerical schemes/methods

No divergence/convergence
→ modelers basing their schemes on the flux-form of the continuity equations

∂ρ

∂t
+∇ · (~vρ) = 0, (2)

∂ (ρφ)

∂t
+∇ · (~vρφ) = 0, (3)

are not forced to distinguish between ρφ and φ since

∂φ

∂t
+∇ · (~vφ) = φ∇ ·~v = 0, (4)

for non-divergent flow ∇ ·~v = 0, that is, (3) and (4) take the same functional form.

→ Modelers are not forced to consider the coupling between tracer and air mass

Single tracer tests and associated standard error norms do not address how well
transport schemes preserve pre-existing functional relations between tracers.
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More challenging class of idealized transport test cases for global models

To start addressing these issues we have developed a new class of test cases
(Nair and Lauritzen, 2010)

However, for complex flows where parcel trajectories do not follow great-circle arcs (straight
lines) closed-form analytic solutions are generally unavailable:

so we follow ideas developed by LeVeque (1996): Time-reversing flow field, i.e. the
exact solution at t = T = initial condition (t = 0)

when flow reverses there is a potential for cancellation of errors! (will address this)

parcels follow non-trivial trajectories ⇒ high-order Taylor series expansions are used
to compute ‘exact’ trajectories (‘exact’ for all practical purposes) ⇒ flow can be
used to assess accuracy of trajectory algorithms!
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Flow field 1: non-divergent

The components of the velocity vector V(λ, θ, t) is given by

u(λ, θ, t) = κ sin2(λ ′) sin(2θ) cos(πt/T) + 2π cos(θ)/T (5)

v(λ, θ, t) = κ sin(2λ ′) cos(θ) cos(πt/T), (6)

respectively, where T = 5, κ = 2, and λ ′ = λ− 2πt/T

~u � dk
dt
¼ uðk; h; tÞ

cosðhÞ ¼ 2k sin2ðk=2Þ sinðhÞ cosðpt=TÞ ð37Þ

and the velocity components u and v are given in (18) and (19), respectively. All terms on the right-hand side of (35) and (36)
are evaluated at the arrival point (k(t),h(t)) at time t.

For all the remaining Cases (2–4), the third-order accurate upstream trajectory origins (departure points) (kd,hd) can be
derived similarly:

� For Case-2:

kd ¼ kðt � DtÞ � k� Dt ~u� ðDtÞ2 k sinðkÞ sinðkÞ sinðx tÞx sinðhÞ � 2 ~u cosðx tÞ cosðkÞ sinðhÞ � v sinðkÞ cosðx tÞ cosðhÞf g
ð38Þ

hd ¼ hðt � DtÞ � h� Dt v � ðDtÞ2 k cosðhÞ sinðx tÞx sinðkÞ cosðkÞ � 2 ~u cosðhÞ cosðx tÞðcosðkÞÞ2
n

þ ~u cosðhÞ cosðx tÞ þ v sinðhÞ cosðx tÞ sinðkÞ cosðkÞg: ð39Þ

� For Case-3:

kd ¼ kðt � DtÞ � k� Dt ~uþ ðDtÞ2 sin
k
2

� �
k cosðhÞ sin

k
2

� �
sinðx tÞx cosðhÞ sinðhÞ � ~u cosðx tÞ cosðhÞ cos

k
2

� �
sinðhÞ

�
� 3v sin

k
2

� �
cos x tð ÞðcosðhÞÞ2 þ 2v sin

k
2

� �
cosðx tÞ

�
ð40Þ

hd ¼ hðt � DtÞ

� h� Dt v � ðDtÞ2

4
kðcosðhÞÞ2 sinðkÞ cosðhÞ sinðx tÞx� ~u cosðkÞ cosðhÞ cosðx tÞ þ 3v sinðkÞ cosðx tÞ sinðhÞf g: ð41Þ

Fig. 4. Same as in Fig. 2 but with a zonal background flow.

R.D. Nair, P.H. Lauritzen / Journal of Computational Physics xxx (2010) xxx–xxx 9

Please cite this article in press as: R.D. Nair, P.H. Lauritzen, A class of deformational flow test cases for linear transport problems on the
sphere, J. Comput. Phys. (2010), doi:10.1016/j.jcp.2010.08.014

for general applicability of the test case the wind field is defined in non-dimensional
units (the problem can, of course, be dimensionalized for Earth).

Wind field is formulated in terms of a deformational and translational component
(and easy to implement):
→ translational component added so that potential cancellation of errors when flow
reverses is eliminated
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Flow field 1: non-divergent

The components of the velocity vector V(λ, θ, t) is given by

u(λ, θ, t) = κ sin2(λ ′) sin(2θ) cos(πt/T) + 2π cos(θ)/T (5)

v(λ, θ, t) = κ sin(2λ ′) cos(θ) cos(πt/T), (6)

respectively, where T = 5, κ = 2, and λ ′ = λ− 2πt/T

note that background value is non-zero; traditional test cases usually use zero
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Flow field 1: non-divergent

The components of the velocity vector V(λ, θ, t) is given by

u(λ, θ, t) = κ sin2(λ ′) sin(2θ) cos(πt/T) + 2π cos(θ)/T (5)

v(λ, θ, t) = κ sin(2λ ′) cos(θ) cos(πt/T), (6)

respectively, where T = 5, κ = 2, and λ ′ = λ− 2πt/T

to challenge limiters under challenging flow conditions non-smooth initial condition
can be used
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Flow field 2: divergent

φ ∈ [0.1, 1] ρφ ∈ [0.1, 3.5] since ρ(t) 6= 1

As far as I am aware this is the first global idealized transport test case
using convergent-divergent winds!
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Standard error norms

Since analytical solution is available (=initial conditions) at t = T standard error norms
can be computed:

`2 =

[
I[(φ− φT )

2]

I[(φT )2]

]1/2

,

`∞ =
max∀λ,θ |φ− φT |

max∀λ,θ |φT |
,

where φT , φ0 are , respectively, the true solution and its initial value, and I is the global
integral

These error norms ‘only’ measure global and maximum deviations from the truth!

How do these errors manifest themselves for interrelated species?

important for stratospheric chemistry (next slide)

important for cloud-aerosol interactions
e.g., advection of a cloud boundary in which the spatial gradients of cloud condensation nuclei and cloud droplet mixing ratios are, in general,

reversed (Ovtchinnikov and Easter, 2009)
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Part III
New mixing diagnostic
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Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial struc-
tures on scales ranging from a few to several thousand kilometers, are displayed most
strikingly if the mixing ratio of one is plotted against another, when the data collapse onto
remarkably compact curves. - Plumb (2007)
E.g., when plotting nitrous oxide (N2O) against ‘total odd nitrogen’ (NOy) or chlorofluorocarbon (CFC’s)

[4] While meteorological variables are frequently dis-

played, as in the leftmost maps of Figures 1 and 2, on

surfaces of constant pressure, this is not the best way to

show, nor to think about, stratospheric transport. Diabatic

processes in the stratosphere, where radiation is the only

significant factor, are generally weak, with characteristic

timescales of tens of days [e.g., Andrews et al., 1987].

Consequently, to a first approximation, air parcels move

adiabatically along surfaces of constant specific entropy s.

Conventionally, the entropy variable used in meteorology is

‘‘potential temperature’’ q, defined in terms of temperature

T and pressure p as q = T(p0/p)
k, where p0 = 1000 hPa and

k = R/cp, where R is the gas constant and cp the specific heat

at constant pressure for air. (For a diatomic gas, k = 2/7.) It

is an elementary result of atmospheric thermodynamics that

s = cplnq, to within an arbitrary constant, and that q is

conserved in adiabatic flow. To a first approximation then,

air parcel motions can best be illustrated on isentropic

surfaces (of constant q). As we shall see, the diabatic

component of motion (through the isentropic surfaces) is

typically much slower than the flow within those surfaces.

[5] Despite the simplicity of the geopotential plots,

transport within the stratosphere is chaotic. The middle

map of Figure 1 shows results of a ‘‘reverse domain filling’’

calculation [Sutton et al., 1994; Schoeberl and Newman,

1995], in which 10 day back trajectories have been used to

construct the distribution of a tracer that has been advected,

from a smooth initial condition, on an isentropic surface

Figure 1. Maps for the Southern Hemisphere middle stratosphere on 6 September 1992. (left)
Geopotential height (km) on the 10 hPa isobaric surface (European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data). (middle) Results of a ‘‘reverse domain filling’’ calculation, in
which a tracer whose concentration is initially equal to latitude is advected by winds on the 1100 K
isentropic surface (near 5 hPa and 35 km) for 10 days, ending 6 September (image courtesy of
D. Waugh). (right) Net diurnally averaged diabatic heating rate (K d�1) on the 10 hPa isobaric surface
(data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for this map is shown
at right. The Greenwich meridian is at the right; the outer circle is the equator.

Figure 2. Maps for the Northern Hemisphere lower stratosphere on 28 January 1992. (left) Geopotential
height (km) on the 50 hPa isobaric surface (ECMWF reanalysis data). (middle) Results of a ‘‘reverse
domain filling’’ calculation, in which a tracer whose concentration is initially equal to latitude is advected
by winds on the 480 K isentropic surface (near 60 hPa and 19 km) for 10 days, ending 28 January (image
courtesy of D. Waugh). (right) Diurnally averaged net diabatic heating rate Q (K d�1) on the 50 hPa
isobaric surface (data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for
this map is shown at right. The Greenwich meridian is at the right; the outer circle is the equator.
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time is shown in Figure 6. The dominant feature of the

meteorology is the polar vortex, extending from northwest-

ern Canada across the pole to northern Siberia. Figure 5 left

shows time series along the flight track of q and mixing

ratios of the long-lived chemical tracers N2O, CFC-11

(CCl3F), and NOy. In terms of q the flight profile is

characterized by rapid ascent following takeoff up to about

480 K and a long gentle decline to about 450 K, followed

by a rapid descent prior to landing. Not surprisingly, the

time series of the three tracers show marked and simulta-

neous tendencies during ascent and descent, manifesting the

strong decrease of N2O and CFC-11 and strong increase of

NOy, with q across the tropopause and in the lower

stratosphere. During the cruise phase, N2O increases grad-

ually between 47,500 and 60,500 s, largely a consequence

of the slow descent. However, there is a sudden drop of

about 50 ppbv in the N2O mixing ratio at time t ’ 60,500 s,

which is not accompanied by any corresponding change in
q: what is being detected is a sharp isentropic gradient in the

mixing ratio. This feature, which is located at about (70�N,
39�W), is seen as the aircraft is nearing the edge of the polar

vortex (see Figure 6) and detecting high-latitude air with

lower concentrations of tropospheric source gases. After a

slow increase, there are further sharp reductions at t ’
65,000 s and t ’ 67,000 s. Like the first, these features do

not correspond with sudden changes in q and thus also

represent sharp isentropic gradients of mixing ratio. These

same features are mirrored in the other tracers, as is evident

from their time series. The correspondence between the

tracers is seen most clearly when one is plotted against

another as on Figure 5 right. Figure 5 illustrates the

remarkable correlation between mixing ratios of the tropo-

spheric source gases CFC-11 and N2O and anticorrelation

between those of N2O and the stratospheric source gas NOy.

Despite the considerable range of variability of each species

and the wide range of q and of latitude covered by the

observations the data collapse to remarkably compact

curves for each species pair.

[14] The fact that the data span a range of latitudes and of
q is significant here. The compactness would be much less

significant if the observations comprised vertical profiles at

a single location or latitude profiles on a surface of constant
q, since each mixing ratio would then be a function of a

single variable (latitude or q): Apparently compact functions

of tracer versus tracer would follow from a simple change of

variables. What is significant is that data from near-vertical

and near-isentropic transects collapse in tracer-tracer space

onto the same curve. This is, in fact, another manifestation

of ‘‘equilibrium slopes’’ since if the isosurfaces of the

mixing ratios of two tracers have the same shape, a given

mixing ratio of one tracer is always accompanied by the

same mixing ratio of the second. In fact, the more local

aircraft results make a stronger statement than the climato-

logical one: Plumb and Ko [1992] argued that if compact-

ness is present in the climatology, it is present on shorter

timescales and space scales for these long-lived tracers,

since they are conserved (and their relationship is thus

preserved) under short-term displacement. Building on the

earlier advective-diffusive arguments of Holton [1986] and

Mahlman et al. [1986], Plumb and Ko [1992] also showed

that provided rapid isentropic mixing extends globally, the

net (globally integrated) vertical flux of any species is

diffusive, and, in consequence, the slope of the tracer-tracer

curve between any two species, dc(2)/dc(1), is equal to the

ratio of net global fluxes of the two species, a result that has

been exploited to quantify stratospheric lifetimes of various

Figure 5. Selected data from the ER-2 flight of 14 January 2000. (left) Time series (time is given in
time of day, UTC) of potential temperature (K), mixing ratios of N2O (open triangles (ppbv)), CFC-11
(diamonds (parts per trillion by volume (pptv)), and 10 times the mixing ratio of NOy (dots (ppbv), these
data are offset downward by 100). (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. N2O
and CFC-11 data are from the airborne chromatograph for atmospheric trace species instrument [Elkins et
al., 1996], and NOy data are from the ER-2 NO/NOy instrument [Fahey et al., 1985].
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Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial struc-
tures on scales ranging from a few to several thousand kilometers, are displayed most
strikingly if the mixing ratio of one is plotted against another, when the data collapse onto
remarkably compact curves. - Plumb (2007)
E.g., when plotting nitrous oxide (N2O) against ‘total odd nitrogen’ (NOy) or chlorofluorocarbon (CFC’s)

[4] While meteorological variables are frequently dis-

played, as in the leftmost maps of Figures 1 and 2, on

surfaces of constant pressure, this is not the best way to

show, nor to think about, stratospheric transport. Diabatic

processes in the stratosphere, where radiation is the only

significant factor, are generally weak, with characteristic

timescales of tens of days [e.g., Andrews et al., 1987].

Consequently, to a first approximation, air parcels move

adiabatically along surfaces of constant specific entropy s.

Conventionally, the entropy variable used in meteorology is

‘‘potential temperature’’ q, defined in terms of temperature

T and pressure p as q = T(p0/p)
k, where p0 = 1000 hPa and

k = R/cp, where R is the gas constant and cp the specific heat

at constant pressure for air. (For a diatomic gas, k = 2/7.) It

is an elementary result of atmospheric thermodynamics that

s = cplnq, to within an arbitrary constant, and that q is

conserved in adiabatic flow. To a first approximation then,

air parcel motions can best be illustrated on isentropic

surfaces (of constant q). As we shall see, the diabatic

component of motion (through the isentropic surfaces) is

typically much slower than the flow within those surfaces.

[5] Despite the simplicity of the geopotential plots,

transport within the stratosphere is chaotic. The middle

map of Figure 1 shows results of a ‘‘reverse domain filling’’

calculation [Sutton et al., 1994; Schoeberl and Newman,

1995], in which 10 day back trajectories have been used to

construct the distribution of a tracer that has been advected,

from a smooth initial condition, on an isentropic surface

Figure 1. Maps for the Southern Hemisphere middle stratosphere on 6 September 1992. (left)
Geopotential height (km) on the 10 hPa isobaric surface (European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data). (middle) Results of a ‘‘reverse domain filling’’ calculation, in
which a tracer whose concentration is initially equal to latitude is advected by winds on the 1100 K
isentropic surface (near 5 hPa and 35 km) for 10 days, ending 6 September (image courtesy of
D. Waugh). (right) Net diurnally averaged diabatic heating rate (K d�1) on the 10 hPa isobaric surface
(data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for this map is shown
at right. The Greenwich meridian is at the right; the outer circle is the equator.

Figure 2. Maps for the Northern Hemisphere lower stratosphere on 28 January 1992. (left) Geopotential
height (km) on the 50 hPa isobaric surface (ECMWF reanalysis data). (middle) Results of a ‘‘reverse
domain filling’’ calculation, in which a tracer whose concentration is initially equal to latitude is advected
by winds on the 480 K isentropic surface (near 60 hPa and 19 km) for 10 days, ending 28 January (image
courtesy of D. Waugh). (right) Diurnally averaged net diabatic heating rate Q (K d�1) on the 50 hPa
isobaric surface (data courtesy of J. Rosenfield). White line is the Q = 0 contour, and the color scale for
this map is shown at right. The Greenwich meridian is at the right; the outer circle is the equator.
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time is shown in Figure 6. The dominant feature of the

meteorology is the polar vortex, extending from northwest-

ern Canada across the pole to northern Siberia. Figure 5 left

shows time series along the flight track of q and mixing

ratios of the long-lived chemical tracers N2O, CFC-11

(CCl3F), and NOy. In terms of q the flight profile is

characterized by rapid ascent following takeoff up to about

480 K and a long gentle decline to about 450 K, followed

by a rapid descent prior to landing. Not surprisingly, the

time series of the three tracers show marked and simulta-

neous tendencies during ascent and descent, manifesting the

strong decrease of N2O and CFC-11 and strong increase of

NOy, with q across the tropopause and in the lower

stratosphere. During the cruise phase, N2O increases grad-

ually between 47,500 and 60,500 s, largely a consequence

of the slow descent. However, there is a sudden drop of

about 50 ppbv in the N2O mixing ratio at time t ’ 60,500 s,

which is not accompanied by any corresponding change in
q: what is being detected is a sharp isentropic gradient in the

mixing ratio. This feature, which is located at about (70�N,
39�W), is seen as the aircraft is nearing the edge of the polar

vortex (see Figure 6) and detecting high-latitude air with

lower concentrations of tropospheric source gases. After a

slow increase, there are further sharp reductions at t ’
65,000 s and t ’ 67,000 s. Like the first, these features do

not correspond with sudden changes in q and thus also

represent sharp isentropic gradients of mixing ratio. These

same features are mirrored in the other tracers, as is evident

from their time series. The correspondence between the

tracers is seen most clearly when one is plotted against

another as on Figure 5 right. Figure 5 illustrates the

remarkable correlation between mixing ratios of the tropo-

spheric source gases CFC-11 and N2O and anticorrelation

between those of N2O and the stratospheric source gas NOy.

Despite the considerable range of variability of each species

and the wide range of q and of latitude covered by the

observations the data collapse to remarkably compact

curves for each species pair.

[14] The fact that the data span a range of latitudes and of
q is significant here. The compactness would be much less

significant if the observations comprised vertical profiles at

a single location or latitude profiles on a surface of constant
q, since each mixing ratio would then be a function of a

single variable (latitude or q): Apparently compact functions

of tracer versus tracer would follow from a simple change of

variables. What is significant is that data from near-vertical

and near-isentropic transects collapse in tracer-tracer space

onto the same curve. This is, in fact, another manifestation

of ‘‘equilibrium slopes’’ since if the isosurfaces of the

mixing ratios of two tracers have the same shape, a given

mixing ratio of one tracer is always accompanied by the

same mixing ratio of the second. In fact, the more local

aircraft results make a stronger statement than the climato-

logical one: Plumb and Ko [1992] argued that if compact-

ness is present in the climatology, it is present on shorter

timescales and space scales for these long-lived tracers,

since they are conserved (and their relationship is thus

preserved) under short-term displacement. Building on the

earlier advective-diffusive arguments of Holton [1986] and

Mahlman et al. [1986], Plumb and Ko [1992] also showed

that provided rapid isentropic mixing extends globally, the

net (globally integrated) vertical flux of any species is

diffusive, and, in consequence, the slope of the tracer-tracer

curve between any two species, dc(2)/dc(1), is equal to the

ratio of net global fluxes of the two species, a result that has

been exploited to quantify stratospheric lifetimes of various

Figure 5. Selected data from the ER-2 flight of 14 January 2000. (left) Time series (time is given in
time of day, UTC) of potential temperature (K), mixing ratios of N2O (open triangles (ppbv)), CFC-11
(diamonds (parts per trillion by volume (pptv)), and 10 times the mixing ratio of NOy (dots (ppbv), these
data are offset downward by 100). (right) NOy (triangles) and CFC-11 (dots) plotted against N2O. N2O
and CFC-11 data are from the airborne chromatograph for atmospheric trace species instrument [Elkins et
al., 1996], and NOy data are from the ER-2 NO/NOy instrument [Fahey et al., 1985].
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Transport operators may perturb pre-existing functional relationships
⇒ numerical mixing (may or may not be spurious)
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Interrelated tracers

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Analytical pre-existing functional relationship curve ψ (linear)

ξ = ψ(χ) = a · χ+ b, χ ∈
[
χ(min),χ(max)

]
, (7)

where a and b are constants, and χ and ξ are the mixing ratios of the two tracers
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Interrelated tracers
Consider the measurements of 

atmospheric constituents

N2

 

O

NOy

OBSERVATIONS

Enormous amount of information
• Mixing physics
• Mixing time scales
• Chemical production and loss

These are observations made by 
airplanes.  They are, for all 

practical aspects, instantaneous, 
point measurements.

Spectral method and correlations

N2

 

O

NOy

Spectral Method
(widens over time)

Sources of pathology
• Inability to fit local features
•

 

Inconsistency between tracer and 
fluid continuity equation
• Dispersion errors
• Filtering

Van Leer method and correlations

N2

 

O

NOy

Van Leer Method

Why does this work?
•

 

Consideration of volumes and 
mixing these volumes consistently.

Figures from R.Rood’s talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve ψ (linear)

ξ = ψ(χ) = a · χ+ b, χ ∈
[
χ(min),χ(max)

]
, (7)

where a and b are constants, and χ and ξ are the mixing ratios of the two tracers

→ carefully designed finite-volume schemes preserve linear correlations
(Lin and Rood, 1996; Thuburn and Mclntyre, 1997)
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Interrelated tracers

ξ

χ

ξ

χ(max)

ξ

χ(min)

(min)

(max)

Analytical pre-existing functional relationship curve ψ

ξ = ψ(χ) = a · χ2 + b, (8)

where a and b are constants so that ψ is concave or convex in
[
χ(min),χ(max)

]
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Interrelated tracers

ξ

χ

ξ

χ(max)

ξ

χ(min)

(min)

(max)

Discrete pre-existing functional relation (initial condition)

ξk = ψ(χk) = a · (χk)2 + b, k = 1, ..,K, (8)

where a and b are constants so that ψ is concave or convex in
[
χ(min),χ(max)

]
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Interrelated tracers

χ (max)χ

ξ

χ

ξ

(max)

(min)

(min)

ξ

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

ξn+1
k = T(ξnj ) 6= a · T

(
χnj
)2

+ b, j ∈ H (8)

where T is the transport operator and H the set of indices defining the ‘halo’ for T.
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‘Real’ mixing, e.g., observed during polar vortex breakup (Waugh et al., 1997)

ξ(min)

(max)

χ

ξ

χ(max)

ξ

χ(min)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by
linearly interpolating along mixing lines between pairs of points
→ ideally numerical mixing should = ‘real mixing’ !
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‘Real’ mixing, e.g., observed during polar vortex breakup (Waugh et al., 1997)

ξ(min)

(max)

χ

ξ

χ(max)

ξ

χ(min)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by
linearly interpolating along mixing lines between pairs of points
→ ideally numerical mixing should = ‘real mixing’ !
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Classification of numerical mixing on scatter plots (Lauritzen and Thuburn, in prep.)

χ

ξ

χ(max)

ξ

χ(min)

(min)

(max)

ξ

overshooting
unmixing

overshooting

range−preserving
‘real’ mixing

overshooting
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For definition of mixing diagnostics define dk (Lauritzen and Thuburn, in prep.)
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Mixing diagnostics: 3 categories (Lauritzen and Thuburn, in prep.)

Numerical mixing that resembles ‘real’ mixing in that values are shifted to the concave
side of the pre-existing functional relation only

`r =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ A

0, else
. (9)

Mixing that produces scatter points not in A is numerical unmixing.
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Mixing diagnostics: 3 categories (Lauritzen and Thuburn, in prep.)

Numerical mixing that resembles ‘real’ mixing in that values are shifted to the concave
side of the pre-existing functional relation only

`r =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ A

0, else
. (9)

Mixing that produces scatter points not in A is numerical unmixing.

‘Range-preserving’ unmixing = numerical unmixing within the range of the initial data

`u =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ B,

0, else.
(10)

→ shape-preservation constraint is not necessarily enough to guarantee `u = 0.
→ `u = 0⇔ semi-linear + monotone according to Harten (1983) (Thuburn and Mclntyre, 1997);
→ unfortunately, only first-order schemes will satisfy these constraints (Godunov, 1959).
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Mixing diagnostics: 3 categories (Lauritzen and Thuburn, in prep.)

Numerical mixing that resembles ‘real’ mixing in that values are shifted to the concave
side of the pre-existing functional relation only

`r =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ A

0, else
. (9)

Mixing that produces scatter points not in A is numerical unmixing.

‘Range-preserving’ unmixing = numerical unmixing within the range of the initial data

`u =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ B,

0, else.
(10)

→ shape-preservation constraint is not necessarily enough to guarantee `u = 0.
→ `u = 0⇔ semi-linear + monotone according to Harten (1983) (Thuburn and Mclntyre, 1997);
semi-linear+monotone according to Harten (1983) is probably too strong a constraint!
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Mixing diagnostics: 3 categories (Lauritzen and Thuburn, in prep.)

Numerical mixing that resembles ‘real’ mixing in that values are shifted to the concave
side of the pre-existing functional relation only

`r =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ A

0, else
. (9)

Mixing that produces scatter points not in A is numerical unmixing.

‘Range-preserving’ unmixing = numerical unmixing within the range of the initial data

`u =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ B,

0, else.
(10)

→ shape-preservation constraint is not necessarily enough to guarantee `u = 0.
→ `u = 0⇔ semi-linear + monotone according to Harten (1983) (Thuburn and Mclntyre, 1997);
semi-linear+monotone according to Harten (1983) is probably too strong a constraint!

Overshooting (expanding range mixing)

`o =
1

K

K∑
k=1

{
dk, if (χk, ξk) /∈ A and (χk, ξk) /∈ B,

0, else.
. (11)

A scheme that is shape-preserving will result in `o = 0.
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Mixing diagnostics: 3 categories (Lauritzen and Thuburn, in prep.)

Numerical mixing that resembles ‘real’ mixing in that values are shifted to the concave
side of the pre-existing functional relation only

`r =
1
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K∑
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dk, if (χk, ξk) ∈ A

0, else
. (9)

Mixing that produces scatter points not in A is numerical unmixing.

‘Range-preserving’ unmixing = numerical unmixing within the range of the initial data

`u =
1

K

K∑
k=1

{
dk, if (χk, ξk) ∈ B,

0, else.
(10)

→ shape-preservation constraint is not necessarily enough to guarantee `u = 0.
→ `u = 0⇔ semi-linear + monotone according to Harten (1983) (Thuburn and Mclntyre, 1997);
semi-linear+monotone according to Harten (1983) is probably too strong a constraint!

Overshooting (expanding range mixing)

`o =
1

K

K∑
k=1

{
dk, if (χk, ξk) /∈ A and (χk, ξk) /∈ B,

0, else.
. (11)

`o 6= 0 can be ‘poison’ to parameterizations.
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Mixing diagnostics: Results from CSLAM

Setup

Use deformational (and optionally divergent) flow that develops grid-scale features
from well-resolved initial conditions.
Note: If simply using solid-body advection flow the transport operator is clearly not challenged enough:

 0
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 0  0.2  0.4  0.6  0.8  1

q 2

q1

here we used the nondivergent but strongly deformational flow

cosine bells initial conditions

compute mixing diagnostics half way through simulation (first part of simulation
resembles atmospheric flow, however, not the latter part)

note that mixing diagnostics do not require knowledge of the analytical solution
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Mixing diagnostics: Results from CSLAM

(a) 1st-order version of CSLAM

very diffusive: scatter points accumulate near scatter point for background values

as predicted by theory: `u = 0

scheme is inherently shape-presersing: `o = 0

(b) 3rd-order version of CSLAM

much less diffusive, however, `o 6= 0 and `u 6= 0

(b) 3rd-order version of CSLAM with shape-preserving filter

`o = 0

`r and `u are reduced further!
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Mixing diagnostics: Results from CSLAM

‘Physically’ motivated diagnostics

NOTE: in terms of standard error norms (`2, `∞) shape-preserving CSLAM is less
accurate than unlimited CSLAM whereas it is the other way around in terms of the
mixing diagnostics.

I believe the mixing diagnostics provide a ‘physically’ motivated metric to
complement standard error measures to study numerical mixing, in particular, it
provides an ‘easy’ framework to design better limiters/filters!
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Commercial break
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NCAR Workshop on Tracer Transport in March, 2011
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Future directions

How much ‘real mixing’ is appropriate for climate applications (`r threshold)?
How much ‘unmixing’ can we tolerate (`o threshold)?

Add ‘toy’ chemistry to new idealized test case: Two tracers that react with each
other but should always add up to a constant
Emulate, e.g., Br: Strong diurnal cycle (produced by photolysis)

→ test development in progress - collaboration with NCAR-ACD
(J.F.Lamarque, D. Kinnison)

transport 3 or more tracers that add up to a constant with idealized wind fields
(when advected individually the sum will not match the constant; e.g. total chlorine)
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Questions
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