

Tracer advection in CAM: new scheme and evaluation

Peter Hjort Lauritzen[§], J.-F. Lamarque[§], M.J. Prather[#], Mark Taylor^{*}, A. Conley[§], S. Goldhaber[§], C. Erath[§]

AMWG/CCWG winter meeting, February 11-12, 2013

[§]NCAR *Sandia National Laboratories [#]University of California, Irvine

What's going on?

- Finite-volume transport in CAM-SE
- Specified dynamics option in CAM-SE (PI: J.-F. Lamarque)
- Idealized testing to assess accuracy:

- 2D: prescribed winds, passive transport (large community involvement)

Prescribed 2D passive linear advection option in CAM-SE/FV (PI: J.-F. Lamarque)

- 3D: Transport and mixing of chemical air masses in idealized baroclinic life cycles (L. Polvani); Evaluating CAM-SE and CAM-FV (PI: J.-F. Lamarque)
- Idealized non-linear chemistry test case

What's going on?

- Finite-volume transport in CAM-SE
- Specified dynamics option in CAM-SE (PI: J.-F. Lamarque)
- Idealized testing to assess accuracy:
 - 2D: prescribed winds, passive transport (large community involvement)

Prescribed 2D passive linear advection option in CAM-SE/FV (PI: J.-F. Lamarque)

- 3D: Transport and mixing of chemical air masses in idealized baroclinic life cycles (L. Polvani); Evaluating CAM-SE and CAM-FV (PI: J.-F. Lamarque)

- Idealized non-linear chemistry test case

• Passive and inert tracer transport with CSLAM is now working in HOMME* (Erath et al., 2012) using spectral element winds.

* HOMME is "providing" the spectral element dynamical core to CAM-SE

 Passive and inert tracer transport with CSLAM is now working in HOMME (Erath et al., 2012) using spectral element winds.
- demonstrated multi-tracer efficiency (Erath talk yesterday)

- Passive and inert tracer transport with CSLAM is now working in HOMME (Erath et al., 2012) using spectral element winds.
 - demonstrated multi-tracer efficiency (Erath talk yesterday)
- High resolution ill-conditioning of analytical line-integrals
 - -> change all line-integrals to Gaussian quadrature and locally enforce mass-consistency (Erath et al., 2013, revising)
 - change does not affect locality and accuracy, and scalability

calculated by analytical expression \rightarrow mandatory for mass conservation:

e.g., antiderivative for high order weights:

$$-y \operatorname{arsinh}\left(\frac{x}{\sqrt{1+y^2}}\right) - \operatorname{arccos}\left(\frac{x}{\sqrt{1+x^2}}\frac{y}{\sqrt{1+y^2}}\right)$$

Stability problems!

- Passive and inert tracer transport with CSLAM is now working in HOMME (Erath et al., 2012) using spectral element winds.
 - demonstrated multi-tracer efficiency (Erath talk yesterday)
- High resolution ill-conditioning of analytical line-integrals
 - -> change all line-integrals to Gaussian quadrature and locally enforce mass-consistency (Erath et al., 2013, revising)
 - change does not affect locality and accuracy, and scalability
- So why are we not showing AMIP simulations with CSLAM?

CSLAM coupling with spectral element dynamics (1/2) (work in progress)

• Equiangular finite-volume physics grid in CAM-SE

When I/O and physics on finite-volume grid is working in CAM-SE, CSLAM transport (without SE-CSLAM air density coupling) should be available.

 without SE-CSLAM air density coupling? CSLAM evolves its own density and CAM-SE evolves it own density (this inconsistency appears when using different numerical methods and/or different timesteps for air and tracers)

CSLAM coupling with spectral element dynamics (2/2) (and specified dynamics option in CAM-SE)

• Continuity equation for air and tracer (rho=density, phi=mixing ratio):

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{\nu}\rho) = 0, \text{ CAM-SE}$$
$$\frac{\partial (\rho \phi)}{\partial t} + \nabla \cdot (\vec{\nu}\rho \phi) = 0, \text{ CSLAM}$$

- If phi=1 then tracer equation should reduce to air density equation
- Similarly for specified dynamics: offline data wind-mass balance does not equal the dynamical core wind-mass balance (M. Prather, P. Cameron-Smith)
- A "safe" solution for SE-CSLAM coupling: move to Flux-Form version of CSLAM (FF-CSLAM; Harris et al., 2011) and use well-known and well-tested finite-volume "flux-tricks"

Accuracy of transport

Idealized passive transport test case suite designed to assess:

- numerical order of convergence
- `minimal' resolution

NCAR Earth System Laboratory

- ability to transport 'rough' distributions
- ability to preserve pre-existing functional relations between species,
- ability to preserve filaments

under challenging flow conditions (Lauritzen, Skamarock, Prather and Taylor, 2012) (Nair and Lauritzen, 2010)

Accuracy of transport: workshop

scheme acronym	full scheme name	primary reference	implementation grid	formal order
CAM-FV	Community Atmosphere Model -	Lin and Rood (1996)	Regular latitude-longitude	2
CAM-SE	Community Atmosphere Model -	Dennis et al. (2012)	Gnomonic Cubed-sphere	4
	Spectral Elements	Neale et al. (2010)		
CLAW	Wave propagation algorithm	LeVeque (2002)	two-patch sphere grid	2
	on mapped grids			
CSLAM	Conservative Semi-LAgrangian	Lauritzen et al. (2010)	Gnomonic cubed-sphere	3
	Multi-tracer scheme			
FARSIGHT	Departure-point interpolation	White and Dongarra (2011)	Gnomonic cubed-sphere	2
	scheme with a global mass fixer			
HEL	Hybrid Eulerian Lagrangian	Kaas et al. (2012)	Gnomonic cubed-sphere	3?
HEL-ND	HEL - Non-Diffusive	Kaas et al. (2012)	Gnomonic cubed-sphere	3?
HOMME	High-Order Methods	Dennis et al. (2012)	Gnomonic cubed-sphere	4
	Modeling Environment		(quadrature grid)	
ICON-FFSL	ICOsahedral Non-hydrostatic model -	Miura (2007)	Icosahedral-triangular	2
	Flux-Form semi-Lagrangian scheme			
LPM	Lagrangian Particle Method	Bosler (2013, in prep)	Icosahedral-triangular	?
MPAS	Model for Prediction Across Scales	Skamarock and Gassmann (2011)	Icosahedral-hexagonal	3
SBC	Spectral Bicubic interpolation scheme	Enomoto (2008)	Gaussian latitude-longitude	?
SFF-CSLAM	Simplified Flux-Form CSLAM scheme	Ullrich et al. (2012)	Gnomonic cubed-sphere	3&4
SLFV-SL	Semi-Lagrangian type Slope Limited	Miura (2007)	Icosahedral hexagonal	2
SLFV-ML	Slope Limited Finite Volume scheme	Dubey et al. (2012)	Icosahedral hexagonal	2
	with method of lines		grid	
TTS	Trajectory–Tracking Scheme	Dong and Wang (2012b)	Spherical Centroidal	?
			Voronoi Tessellation	
UCISOM	UC Irvine Second-Order Moments scheme	Prather (1986)	Regular latitude-longitude	2
UCISOM-CS	UC Irvine Second-Order Moments scheme	-	Gnomonic cubed-sphere	2

Accuracy of transport: workshop

	scheme acronym	full scheme name	primary reference	implementation grid	formal order
	CAM-FV	Community Atmosphere Model -	Lin and Rood (1996)	Regular latitude-longitude	2
\Rightarrow	CAM-SE	Community Atmosphere Model - Spectral Elements	Dennis et al. (2012) Neale et al. (2010)	Gnomonic Cubed-sphere	4
	CLAW	Wave propagation algorithm on mapped grids	LeVeque (2002)	two-patch sphere grid	2
	CSLAM	Conservative Semi-LAgrangian Multi-tracer scheme	Lauritzen et al. (2010)	Gnomonic cubed-sphere	3
	FARSIGHT	Departure-point interpolation scheme with a global mass fixer	White and Dongarra (2011)	Gnomonic cubed-sphere	2
	HEL	Hybrid Eulerian Lagrangian	Kaas et al. (2012)	Gnomonic cubed-sphere	3?
	HEL-ND	HEL - Non-Diffusive	Kaas et al. (2012)	Gnomonic cubed-sphere	3?
\Rightarrow	HOMME	High-Order Methods Modeling Environment	Dennis et al. (2012)	Gnomonic cubed-sphere (quadrature grid)	4
	ICON-FFSL	ICOsahedral Non-hydrostatic model - Flux-Form semi-Lagrangian scheme	Miura (2007)	Icosahedral-triangular	2
	LPM	Lagrangian Particle Method	Bosler (2013, in prep)	Icosahedral-triangular	?
	MPAS	Model for Prediction Across Scales	Skamarock and Gassmann (2011)	Icosahedral-hexagonal	3
_/	SBC	Spectral Bicubic interpolation scheme	Enomoto (2008)	Gaussian latitude-longitude	?
	SFF-CSLAM	Simplified Flux-Form CSLAM scheme	Ullrich et al. (2012)	Gnomonic cubed-sphere	3&4
	SLFV-SL	Semi-Lagrangian type Slope Limited	Miura (2007)	Icosahedral hexagonal	2
	SLFV-ML	Slope Limited Finite Volume scheme with method of lines	Dubey et al. (2012)	Icosahedral hexagonal grid	2
	TTS	Trajectory-Tracking Scheme	Dong and Wang (2012b)	Spherical Centroidal Voronoi Tessellation	?
	UCISOM	UC Irvine Second-Order Moments scheme	Prather (1986)	Regular latitude-longitude	2
	UCISOM-CS	UC Irvine Second-Order Moments scheme	-	Gnomonic cubed-sphere	2

NCAR Earth System Laboratory

Accuracy of transport: workshop

 scheme acronym	full scheme name	primary reference	implementation grid	formal order
CAM-FV CAM-SE	Community Atmosphere Model	Lin and Rood (1996)	Regular latitude longitude	2 4
CLAW				2
CSLAM HOMME and CAM-SE codes are identical, however,				
FARSIGHT	JIGHT different hyper-viscosity coefficients and			
HEL-ND HOMME polynomial order:				3? 3? 4
ICON-FFSI CAM-SE is running with default climate setup!				
LPM MPAS SBC			ude	? 3 ?
SFF-CSLAM	Simplined Flux-Form CoLAW scheme	Omicii et al. (2012)	Gnomonic cubed-sphere	3&4
SLFV-SL	Semi-Lagrangian type Slope Limited	Miura (2007)	Icosahedral hexagonal	2
SLFV-ML	Slope Limited Finite Volume scheme with method of lines	Dubey et al. (2012)	Icosahedral hexagonal grid	2
TTS	Trajectory-Tracking Scheme	Dong and Wang (2012b)	Spherical Centroidal Voronoi Tessellation	?
UCISOM	UC Irvine Second-Order Moments scheme	Prather (1986)	Regular latitude-longitude	2
UCISOM-CS	UC Irvine Second-Order Moments scheme		Gnomonic cubed-sphere	2

Lauritzen et al., 2013 (in prep)

Lauritzen et al., 2013 (in prep)

THE TERMINATOR TEST

U.S. Naval Observatory Astronomical Applications Department Simulated view of Earth on Febuary 12, 2013 20:00 UT

THE TERMINATOR TEST

VERY PRELIMINARY DESIGN AND TESTING

Viewed from the Moon

Example: Br

Goal:

- 1. Formulate an idealized test case with non-linear chemistry (relevant for photolysis driven chemistry).
- 2. Use 1. for investigating high-order transport/chemistry coupling

Beyond passive idealized transport testing: "Toy" chemistry

Two Chlorine species (Cl and Cl2) that react non-linearly: k1>>k2 - terminator Total amount of Chlorine (Cly=2*Cl+Cl2) is conserved.

Figure shows k1 (k2 is constant)

```
Cl_2 \rightarrow Cl + Cl : k_1Cl + Cl \rightarrow Cl_2 : k_2
```


0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure illustrating Flow field

Beyond passive transport idealized testing: "Toy" chemistry

Results for CAM-FV

Properties of CSLAM important for chemistry (preserves linear relations even when using shape-preserving limiter)

