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@ CSLAM transport scheme

e formulation

@ air-tracer mass coupling

@ conditions for local mass-conservation

@ extension to there sphere: gnomonic coordinates

@ CSLAM in NCAR's CAM-SE (Community Atmosphere Model - Spectral Element)
© CSLAM-SW: shallow water model

@ semi-implicit time-stepping of tracers

@ treatment of divergence

© CSLAM-NH: non-hydrostatic « — z plane solver
@ preliminary results
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Design (see fuller discussion in Lauritzen et al., 2011)

@ Multi-tracer efficiency

— CAMSb has 31 continuity equations
(micro-physics and convection scheme developers are eager to add more!)

— CAM-Chem has approximately 107 continuity equations
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Design (see fuller discussion in Lauritzen et al., 2011)

o Multi-tracer efficiency
@ Shape-preservation (large gradients, physics)
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Design (see fuller discussion in Lauritzen et al., 2011)

o Multi-tracer efficiency
@ Shape-preservation (large gradients, physics)
o Consistency (air <> tracer)

Consider flux-form continuity equations for air mass and tracer mass:

op

S +V-(p7) =0, 1)
8(;;) + V- (pg?) =0, (2)

where p is air density and q is tracer mixing ratio. ‘Free-stream’ preservation implies that
the discretization scheme for (2) reduces to (1) when ¢ = 1.
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Design (see fuller discussion in Lauritzen et al., 2011)

o Multi-tracer efficiency

@ Shape-preservation (large gradients, physics)
o Consistency (air <> tracer)

@ Correlation accuracy

Relationships between long-lived stratospheric 200 B B
tracers, manifested in similar spatial structures on e :
scales ranging from a few to several thousand kilo- . )
meters, are displayed most strikingly if the mixing 00 \
ratio of one is plotted against another, when the
data collapse onto remarkably compact curves. - " X B
Plumb (2007) ..." CFC-11 A;AA L,

E.g., when plotting nitrous oxide (No O) against ‘total odd nitrogen’ (N Oy ) or
a

N

CFC-11 (pptv)
NOy (ppbv)

chlorofluorocarbon (C F C''s)
200 300
N,0 (ppbv)
v

It is therefore highly desirable that the transport schemes used in chemistry and chemistry-
climate models should not disrupt such functional relations in unphysical ways through
numerical mixing or, indeed, unmixing.’ -(Lauritzen and Thuburn, 2012)

v
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Design (see fuller discussion in Lauritzen et al., 2011)

@ Multi-tracer efficiency

@ Shape-preservation (large gradients, physics)

o Consistency (air <> tracer)

@ Correlation accuracy

o Efficiency on ‘traditional®’ massively parallel machines:

NCAR's Yellowstone is a 1.5-petaflops high-performance computing system with 72,288 processor cores.

1GPUs and Intel MIC architectures??
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Design (see fuller discussion in Lauritzen et al., 2011)

@ Multi-tracer efficiency

@ Shape-preservation (large gradients, physics)
o Consistency (air <> tracer)

@ Correlation accuracy
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Design (see fuller discussion in Lauritzen et al., 2011)

Multi-tracer efficiency

Shape-preservation (large gradients, physics)
Consistency (air <> tracer)

Correlation accuracy

Efficiency on ‘traditional'’ massively parallel machines:
e minimize frequency of message passing: e.g. long At's (semi-Lagrangian)
e minimize message sizes: local computational stencil

NCAR's Yellowstone is a 1.5-petaflops high-performance computing system with 72,288 processor cores.

1GPUs and Intel MIC architectures??
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Design (see fuller discussion in Lauritzen et al., 2011)

Multi-tracer efficiency

Shape-preservation (large gradients, physics)
Consistency (air <> tracer)

Correlation accuracy

Efficiency on ‘traditional'’ massively parallel machines:
e minimize frequency of message passing: e.g. long At's (semi-Lagrangian)
e minimize message sizes: local computational stencil
e minimize memory usage: e.g., 2-time-level, no multi-moment

NCAR's Yellowstone is a 1.5-petaflops high-performance computing system with 72,288 processor cores.
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Design (see fuller discussion in Lauritzen et al., 2011)

@ Multi-tracer efficiency

Shape-preservation (large gradients, physics)
Consistency (air <> tracer)

Correlation accuracy

Efficiency on ‘traditional'’ massively parallel machines:

e minimize frequency of message passing: e.g. long At's (semi-Lagrangian)
o minimize message sizes: local computational stencil
e minimize memory usage: e.g., 2-time-level, no multi-moment

@ Accuracy on non-orthogonal grids (splitting errors) = fully two-dimensional methods

reg. lat-lon cubed-sphere Voronoi Yin-Yang

)
G oot
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Part |
New geometrically flexible multi-tracer scheme
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauitzen et al. c010)

CSLAM is based on pioneering work by Dukowicz (1984), Ramshaw (1985), Dukowicz
and Baumgardner (2000), and Margolin and Shashkov (2003)!

@ (b)

| - oy

{k" Aé ‘ Ak
\

Finite-volume Lagrangian form of continuity equation for 1) = p, p ¢:

Ak

L
ot da dy :/ Ypdrdy = zk:/ fe(z,y) dz dy,
ag =1/ ane
where the axe's are non-empty overlap regions:
are = ar NAg, are#0; £=1,..., L. (1)
For higher-order upstream cell-edge approximations see Ullrich et al. (2013).
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauitzen et al. c010)

() (b)

&
Ak e ‘ Ak
\

Finite-volume Lagrangian form of continuity equation for ¢ = p, p ¢:

Ly
vtdedy = [ wpaedy = > [[ s deay,
ag /=1 £3°%7
where dage is the boundary of axe and

felwy) = Y7 oty

i+5<2

A
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauitzen et al. c010)

(a) (®)

&
Ak = ‘ Ak
\

Finite-volume Lagrangian form of continuity equation for 1) = p, p ¢:

w"“dxdy:/ ¥ da dy Zj{ [Pdz + Qdy],
ag dagy

where Oday, is the boundary of axe and

ap (69 aQ () (i) i
Z[** * o } fewy) = Y o aly’.

- Ay
i+5<2 i+5<2
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Conservative Semi-LAgrangian Multi-tracer (CSLAM); Lauitzen et al. c010)

(@) (b)

&
Ay P ‘ A
\

Finite-volume Lagrangian form of continuity equation for ¢ = p, p ¢:

Ly
oirtaedr= [ rasay = 30| 3 ),
Ak @k =1 |i+j<2

where weights w,(fljj) are functions of the coordinates of the vertices of axs.

w,gil}j) can be re-used for each additional tracer = multi-tracer effciency!
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Air-tracer coupling with cell-integrated Lagrangian schemes

Air density p and tracer mixing ratio ¢ must be coupled carefully to ensure:
@ mass-conservation
o shape-preservation (g is invariant following parcels; not p q)

o ‘free-stream’ preservation

A ‘Lagrangian’ solution (Appendix B of Nair and Lauritzen, 2010)
@ In cell k reconstruct sub-grid-scale distribution for p and g separately:
pley)= > pVa'y  and  glay)= Y ¢“Valy
i+j<2 i+j<2
@ Apply shape-preserving reconstruction filter to g(x,y) (see next slide)

@ In Eulerian cell k tracer mass sub-grid-scale reconstruction is:

pa(,y) = P ak (%, ) + @y, [ox(2,y) — Prl, (1)

where (-) is cell average value; G,=pq,/0s

= g = 1 = reconstruction (1) reduces to reconstruction of air density!
= pq(z,y) is degree 2 (with pg(z,y) = p(z,y) X q(x,y) it would have been 4)

v
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Fully 2D reconstruction filter/limiter (Barth and Jespersen, 1989)

Scale the reconstruction function ¥ (z,y) so that extreme values lie within the adjacent
cell-average values (can be applied selectively for less diffusion, Harris et al., 2010)

=— no filter

'7 — monotone filter
1

Figure: One-dimensional illustration of fully two-dimensional filter

Note that enforcing shape-preservation is ‘harder/stricter’ than for flux-form schemes:
@ For Lagrangian schemes we can’t mix low and high-order fluxes (e.g. Zalesak, 1979)

@ Reconstruction functions must satisfy mass-conservation constraint:

Yr(z,y) dA = ¢ AAy,
Ak

where 1), is cell average value over Ay with area AAy. (more on this in a moment)
v
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Conditions for local mass-conservation (Erath et al., 2013)

o Line-integrals must span the domain without ‘cracks/overlaps':

ZAaik =AA, where &= {l|awNAr #0}={(a,b,c,de)} (2)

€€

o ‘Interior’ line-integrals cancel.

o Line-integrals along boundary of Eulerian cell do not cancel
since the reconstruction function is not continuous across cell
boundaries.

e Boundary line-integrals must integrate f;(x,y) exactly!:
Do X Ay | = dAd, 3)
Le€y |iti<2

Satisfying (3) on sphere can be tricky - next slide!
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Line-integrals on the sphere: gnomonic projection

‘Cartesian-like’ coordinates:
(z,y) = R (tan o, tan 3) (4)

where R radius and o, 8 = [ %, 7] cen-
tral angles.

Line-integrals for 3 constant can be computed exactly (Ullrich et al., 2009):
(note: mass-conservation relies on this!)

1(0,0)  _ _mtan(ﬁ), 1(2,0)
P

@ @ y
—y arcsinh — arccos y
(\/1+y2) (\/1+22 \/1+y2)

7(1,0)  _ arcsinh(\/yi), (0,2) y z y
1+ x2 I\ —x arcsinh — arccos f
Vit a2 Vita? 1442
10D csinn | —— |, @D =
V142

— some integrals ‘ill-conditioned’, in particular, at high resolution!
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Line-integrals on the sphere: gnomonic projection

‘Cartesian-like’ coordinates:

(z,y) = R (tan o, tan j3)

™

where R radius and o, 8 = [— %
tral angles.

(4)

, %] cen-

v

Performing line-integrals along cell boundaries with Gaussian quadrature is much more

robust, however, integrals are not exact!

Lo-

(5)

e o=t Enforce consistency:
! I s’ ] o cally scale weights so that
071 ithout EOC 08| = with EOC /
. o e > = A
ﬂi » M/ €€
4/ and similarly for higher-
RED T T e T order moments.
(a) Two Gaussian points for line integrals.  (b) Four Gaussian points for line integrals. (Erath et al,, 2013)
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Accuracy of linear transport (Lauritzen et al., 2012)

New diagnostics/test case suite designed to
assess:

© numerical order of convergence,
@ ‘minimal’ resolution,

© ability of the transport scheme to
preserve filaments,

@ ability of the transport scheme to
transport ‘rough’ distributions,

@ ability of the transport scheme to
preserve pre-existing functional relations
between tracers,

@ ability of transport scheme to deal with

divergent flows (Nair and Lauritzen,
2010).

Manuscript comparing 17 state-of-
the-art schemes using new standard
test case suite is almost complete
(Lauritzen et al., 2013)
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CSLAM implemented in CAM-SE for ‘offline’ transport (Erath et al., 20

@ SE = spectral element dynamical core in CAM/HOMME (Dennis et al., 2012)
@ SE uses elements and each element has a quadrature grid

@ CSLAM uses an equi-angular gnonomic finite-volume grid

e & e ) |
[
) o o 10) |
|
|
) o) o [0)
|
& e o o I I N

o Figure: (left) ‘CSLAM grid’" and (right) spectral element quadrature grid

@ Infracstructure is being implemented to support coarser or finer finite-volume physics
grid (physics grid may, of course, also simply coincide with CSLAM grid).

Peter Hjort Lauritzen (NCAR) CSLAM July 3, 2013 11 /25



CSLAM implemented in CAM-SE for ‘offline’ transport (Erath et al., 20

o SE = spectral element dynamical core in CAM/HOMME (Dennis et al., 2012)
o SE max. Courant number (CN): CN < 0.28
o CSLAM max. Courant number for SE implementation: CN < 1
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—o |
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e
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NCAR's Cray XT5m

These performance numbers are for exact trajectories!
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coupling CAM-SE with CSLAM -

Constraints: mass-conservation, consistency, shape-preservation

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit
j lit
Tracer mass flux =< ¢ >csram E p(s”g””sp )
j=1
v
P
flow direction
pl'l
time
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coupling CAM-SE with CSLAM -

Constraints: mass-conservation, consistency, shape-preservation

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit

(n-+3 /nsplit)
Tracer mass flux =< q >cscam E PSE
j=1
y
p
flow direction

npn+]J4
p

time
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coupling CAM-SE with CSLAM -

Constraints: mass-conservation, consistency, shape-preservation

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit
j lit
Tracer mass flux =< ¢ >csram E pfg"g’/”s” )
i=1
v
P
flow direction
+2/4
p:pn+:lj4
P

time

FUm A0
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coupling CAM-SE with CSLAM -

: mass-conservation, consistency, sha

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit
j lit
Tracer mass flux =< ¢ >csram E pfg"g’/”s” )
=1
y
P
flow direction
n+3/4
n+2/4 p
+1/4
npn
P

time
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coupling CAM-SE with CSLAM -

: mass-conservation, consistency, sha

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit
j lit
Tracer mass flux =< q >cscam Z p(s"E*””S” i)
j=1

flow direction

time |

' ”*3’4AtA;pu"*mAlAjfu”*MAt%u"At -

Peter Hjort Lauritzen (NCAR) CSLAM



coupling CAM-SE with CSLAM -

: mass-conservation, consistency, sha

CAM-SE predicted psg does, obviously, not match ‘offline’ pcsr am computed by CSLAM!

Possible solutions:
@ overwrite psg With pcsran; unstable?
@ nudge psk towards pcsran; unstable?

@ switch to flux-form version of CSLAM (Harris et al., 2010) and use well-known
finite-volume method for coupling: SE provides accumulated background flux of air
mass and CSLAM provides average flux of ¢ (satisfies all constraints!):

nsplit
j lit
Tracer mass flux =< q >cscam Z p(s"E*””S” i)
j=1

flow direction

time |

' ”*3’4At%u”J'mAl%u”*MAt%u"At -
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Finite-volume approach: Integrate in space

T

semi-Lagrangian form

D
— / P dA = 0.
Dt J )

where A(t) is a Lagrangian® control

volume and
D o]
e s B v/
Dt VY

is the material /total derivative.

Eulerian (flux-form) form

@ | ®

gl [ AFT
o

© | @

A
apd

é
P2 i

Integrate

o L
E‘FV'(#)U)—O

over an Eulerian control volume Aj:

3/ vdA+ [ V. (@7 dA=o.
ot Ay, Ay,

volume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles
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Finite-volume approach: Integrate in space

semi-Lagrangian form Eulerian (flux-form) form

@) | )
AL =

= agll | AFT
: BEET TRC

/ © | (@

e~ A
yZam yZ iy

D
= =0
Dt /A(t) Apply divergence theorem on second term:
where A(t) is a Lagrangian' control 0 / " L
— z/)dA—i-?{ (¥ v) -7idS =0,
volume and ot Ja, 04,
D
— — 2 +7-V, where 0Ay is the boundary of Ay and 7
Dt ot the outward normal vector to 9Ay.
is the material /total derivative. — instantaneous flux of tracer mass

through boundaries of Ag

.‘—volume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles

Peter Hjort Lauritzen (NCAR) July 3, 2013 13/



Finite-volume approach: Integrate in time

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A =

- agl [T
; o T

© | @

|
PO Tz

/ dA = WwdA,
A(t+At) A(t) Apply divergence theorem on second term:
where At is time-step and t = n At. 9
—/ 1pdA+% (¢ 0)-7dS =0,
ot Ja, DA

where 0 Ay is the boundary of Ay and 7
the outward normal vector to 0 A.

whare 6 is average value over cell. — instantaneous flux of tracer mass
through boundaries of Ay

Upstream semi-Lagrangian approach:

—n+1 —n
djk AAk = d}k Aalm
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Finite-volume approach: Integrate in time

semi-Lagrangian form

/ PYdA = P dA,
A(t+At) A(t)

where At is time-step and ¢t = n At.

Upstream semi-Lagrangian approach:

DT AAY = Yy Aag,

where () is average value over cell.

Eulerian (flux-form) form

@ | )

e

el AT
o TR

© | @

e |l
PO T

16)
g ¢dA+}4 ($7) - 7dS =0,
ot Ja, Ay

T TIAA, = P AAL+

(n+1)At
/ 7{ (¥7)-7dS | dt =0,
nAt Ay

— flux of tracer mass through boundaries
of Ay, during t € [nAt, (n + 1)At]
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | o)

agd | AFT
%

/
Ay,
/ © | @

e~ A
%

/ YdA = YdA, 4
0500 A® ARV IE VIS 84
where At is time-step and ¢t = n At. =1

. . where
Upstream semi-Lagrangian approach:

—n-+1

(1) _ (1) / n
= H =13 P (z,y) dA.
Dy AAg =Py Aay, k k al (@)

where () is average value over cell. is flux of mass through face 7 during At,
and s,(;) ==+1

for simplicity assume sz is NOT multi-valued; for multi-valued case see, e.g., Harris et al. (2010).
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

Ay e

( 7
A

© | @

Ax
=

AVA VIR v
N

—n+1 —-n
d]k AAk = 1/% A(lk,

4
—n—+1 —n T
P AAL =P A - > FT,

F=il
y

Note equivalence between Lagrangian cell-integrated and Eulerian flux-form continuity equations:

AA, — 24: (s;:) Aa](;)) = Aay.

=1

i.e. the areas involved in Eulerian forecast equals upstream Lagrangian area ay.
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

Ay

— _
Pr DAy =y Aa, ©_ @

Define a global piecewise continuous (? A

reconstruction function
v A
P(,y) =Y La,¥r(,y),

7/
g
7/

:
¢
At

Y\
¢
NAVERT

k=1 4
—n—+1 _—n (7)
where I 4, is the indicator function Y AAg =P AAg — Z B
F=il
17 (I,y) € Akv
Ia, =
07 (-T,y) ¢ Ak
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

(b)

A

A 7 Ay
an
@ | )
}-{ A e
¢
Ax

—n+1

or T AA, =Py Aag, © | @

A
ar-s

et Ay, = Z P (x, y) dA. jo

A

AVAVEIRA VAN

(=1 %%k¢
where ayy is the non-empty overlap area 4
—n+1 _—n (7)
age = agNAy, ape #0; £=1,..., Ly, Yk AA’“_TZ)’“AA’“_ZF’C Z

=il
where N is the number of cells in the
domain and Lj number of overlap areas.
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

(a) (b)
®) | 1

A " A s arl:
A Zam

© | @

¢ Ter
DT AAy = U Aay, PN A

Ax-t

T an =3 [ wregda T o R
=17 ke ¢ Vi AAk:lpkAAk*ZFk 2
T=1
where ayy is the non-empty overlap area P
L T
ape = axNAg, ape#0; £=1,..., Ly, F(T) Z/ W (2,y) dA,
where N is the number of cells in the
domain and Ly number of overlap areas. where L7 is number of non-empty ‘flux’
overlap areas for face 7.
v
Note that in general: L;, < >%_, Liﬂ J
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Finite-volume approach: Conditions for inherent mass-conservation

semi-Lagrangian form Eulerian (flux-form) form

o @ | ®

Ay t A ( i (7,/ :
k 7 k
* %

© | @

| —
—n+1 _n (ﬁ?/ ﬁf
Y AAg = P Aag,

At

@ ay's span Q without gaps/overlaps n 4
—n+1 —n

N Ur DAL =g AA— > FT,

U ap =9, and ayNay = OV Ek # L. =1

k=1 @ Fluxes for ‘shared’ faces must cancel,
@ Sub-grid-scale representation of v €& 3) )

must integrate to cell-average mass B =-F_

—-_./n
/A Y (z,y) dA = i AA, Any flux, even highly inaccurate fluxes,
k

will NOT violate mass-conservation!
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Finite-volume approach: Enforcing shape-preservation

semi-Lagrangian form Eulerian (flux-form) form

@ | ®
(b) A

Ay 4 WI A ( ;—7/ ~

© | @

—n+1 _n ﬁg// if
Y AAg = P Aag,

4
. . 1 .
The only dlrect.wa}{ of en_forcmg ¢: AAy = ¢Z AAy, — Z F}g‘r)7
shape-preservation is to filter the —_i

sub-grid-scale distribution ¥ (x,y): Shape-preservation can be enforced by

(] fU"y 2D filters (Barth and Jespersen, 1989) P blending monotone and high-order

@ 1D filters for cascade schemes fluxes (e.g., Flux-Corrected Transport Zalesak, 1979)
(Colella and Woodward, 1984; Zerroukat et al., 2005; Lin

@ making ¥ shape-preservin
and Rood, 1996) g ¥ (z,y) pe-p g

(Barth and Jespersen, 1989)
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Part Il
Beyond linear transport: shallow-water model
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Equations of motion

@ Shallow water equations on an f-plane:

%4_ @_A'_ %_f _ 67}7' — 0
ot " Yer "Ver 'V 9% T

@—&—u@—l—v@—i—fu— Oh _ 0
ot "oz " Vor Y9y
oh L

E‘FV(}L’U) = 0
d(hq) T

o +V-(hgt) = 0

where f Coriolis, h height, ¥ = (u,v) horizontal velocity vector, g gravity.

@ Momentum equation solved using traditional two-time-level semi-implicit scheme.
o Continuity equations solved with cell-integrated scheme: CSLAM

e Semi-implicit time-stepping with cell-integrated Lagrangian schemes not straight
forward (consistency, divergence discretization)
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-stepping:

At

—n+1 —n+t1 —nt1 ~n+1
on = (Pr )ezp_7poo (V-0 =V,
where

@ poo a constant reference density

@ (“)exp is the explicit prediction

o 7! velocity extrapolated to time-level (n + 1)

What about tracers?
@ Solving continuity equation for (pq) explicitly

Pa, T AA) = pay Aay,
is NOT ‘free-stream’ preserving!
@ Using ‘traditional’ semi-implicit approach for tracers

At

P, T AA) = gy Aay, — 5

(Pq)oo (V G-V 1~7Z+1) :

is ‘free-stream’ preserving but problematic (Lauritzen et al., 2008).

v
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-
stepping:
—n+1l _ (—n+1 At —n+1 —n—+1 —n ~n+1
P = (Pk )e:z;p T 9 V- (Pk )ezpvk -V (pk)e;cp Uk °
where
@ poo a constant reference density
® (“)ewp is the explicit prediction

e "' velocity extrapolated to time-level (n+1)

Radially propagating gravity wave test
(shallow water in Cartesian geometry; Wong et al.,
2013b)

Initial condition: ¢ =1
Errors are O(1073)

@ Problematic? Even when using a shape-preserving filter
the semi-implicit correction term may render the scheme
oscillatory and non-shape-preserving!

(b) nonlinear case
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-
stepping:
At
—-n+1 _ (—n+1 —n-+1 —m+1 ~n+1
i = (pk )emp 5 {V' [(Pk )ew k ] -V [(pk)exp Vg ]}
where
@ poo a constant reference density
@ (-)exp is the explicit prediction
Znt

° ! velocity extrapolated to time-level (n + 1)

What about tracers?

@ A solution is to formulate the semi-implicit terms in flux-form
—n+1 7n+1 7n+1 —n—+1 ) Zn41
Par = (PG ) .0y — {V [ ) cap O } -V [(qu)exp Uk ]}

so that reference states are eliminated (wong et al., 2013b)
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-
stepping:

P = )y~ 5 {7 [0y ] -V () 5]

(b) Nonlinear perturbation

10 o e Abs Erver o Radially propagating gravity wave test: error
10° || 2 Mean Abs Error 5 measures for g as a function of At
107 1 — solid lines is ‘problematic’ formulation
L, 107 —— dash lines is new formulation
E L . ..
2 10°1 o Initial condition: ¢ =1
[+
£, o o oo - = . .
5107 @ Errors in semi-implicit correction term increase
(TR

with increasing At

107 @ New formulation is ‘free-stream preserving’ and
Q- _ ing!

10 “---g--ﬁrﬁ:ﬂ::aﬁg:ga shape-preserving!

107 e =« @ Both formulations are stable for long At’s

At (s)
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Time-stepping and coupling: mass-conservative semi-implicit approach

Discretization of divergence

In traditional semi-implicit semi-Lagrangian
scheme, divergence is usually discretized with
finite-differences:

= Uit+15 — Uij Vij — Vij
veul U= +1JAJ) z + J+1Ay ]7 (6)

however, cell-integrated schemes ‘see’ a La-
grangian discretization of divergence based on
area change:

1 AAp —6Ax
AAy At (7)

Vigr ¥ =
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Time-stepping and coupling: mass-conservative semi-implicit approach

Simple example graphically illustrating difference between V¢ - ¢ and Vg, - ¢

Fauai—| Figure: Assume the following velocity components at cell
T T  vertices
AvAt
t-——-——--—-- A Usw = (07 0)7
5 1 77NW = (07 U)7
1 =
| VSE = (u7 0)7
1 ine = (u,v),
1 ar 1 where standard compass notation has been used.

veul’ﬁzi"‘i (6)

Lagrangian (cell-integrated) discretization of divergence:

R wv
Vigr - U= Ax + Az Az Ay’ (7)

— differ by non-linear term!
v
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Time-stepping and coupling: mass-conservative semi-implicit approach

Simple example graphically illustrating difference between Ve - ¥ and Vg, - 0

Fauai] Figure: Assume the following velocity components at cell
T T vertices
AvAt
p----- - dsw = (0,0),
= 1 "-_;NW = (07 U)a
1 =
: vsg = (u,0),
I ine = (u,v),

| 3 | .
\ 4 \ where standard compass notation has been used.

v

To have consistency with CSLAM (use V4, - ¥) and retain a Helmholtz equation for the
semi-implicit solve, the continuity equation is discretized as follows

—n ——n At —n —n —— 7 =n
P = ()., — G {Veu - [T T - Vior - [T 77

+ 5 Ve (07, 8] - Vo [0 W} 55 ©

(Lauritzen et al., 2006; Wong et al., 2013b)

v
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Shallow-water channel on the plane: Gaussian jet (ouin and Fier, 2003)

Figure: Vorticity

o (a) Traditional grid-point method
for momentum equations and
CSLAM for mass

o (b) Traditional grid-point method
for momentum and continuity
equations

@ (c) Same as (a) but with
‘problematic’ semi-implicit method
(LKM)

o (d) Eulerian discretization
(semi-implicit leapfrog; Asselin
filter)

Peter Hjort Lauritzen (NCAR)
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allow-water channel Ga ussian jet (Poulin and Flierl, 2003)

(a) Non-shape-preserving CSLAM-SW (b) Shape-preserving LKM (c) Shape-preserving CSLAM-SW

Specific concentration, g

Specific concentration, g Specific concentration, g

@ Note: even with shape-preserving filter on explicit advection the semi-implicit
correction terms render solution non-shape-preserving for the ‘problematic

formulation (LKM)
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Part 1l
A compressible nonhydrostatic cell-integrated semi-Lagrangian semi-implicit solver
(CSLAM-NH) with consistent and conservative transport
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Two-dimensional (z — z) moist Euler equations in Cartesian geometry

%4‘ %Jr %:—%de%@;’l + Fy, (@)
%+u% +w%:—%7Rdaa®{m +pim[ﬁd7rt/—p’m} + Fu, (8)
%+v (©mv) = Fo, 9)
a;: +V - (pav) =0, (10)
6;? V- (Qiv) = Fg,, (11)

RiOm
p_po( 20 )”7 (12)

(Klemp et al., 2007)
@ Equations linearized about hydrostatically balanced background state
@ Momentum equations cast in their advective form
@ All other equations (density, potential temperature, moist species, cast in their
conservative flux-form).
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Density current with mean background flow (Straka et al., 1992)

Wong et al. (2013a):

CSLAM-NH Eulerian Split-Explicit

= 9 E~— = 4|
-16-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 -16-14-12-10-8 -6 -4 2 0 2 4 6 8 10 12 14 16
x (km) x (km)
[ |
2 -4 -6 -8 -10
perturbation 6 (K)

@ Symmetric solutions!
o Stable with 2x split-explicit time-step
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2D squall line (Weisman and Klemp, 1982)

Kessler microphysics scheme: diagnoses ‘warm rain’ (source/sink for water vapour, cloud
water, and rainwater; latent heat release adjusts potential temperature).

CSLAM-NH Eulerian 5th order Eulerian 2nd order
d

T=06h 0 T=06h ! T=06h

=0 q =0. 0 =0.
0 T=08h @ O t-o08h ypop T=08h
%) ‘O T=13h 5 T=13h T=13h
ié ; T=17h \ T=17h
S0 0 10 2 W 4 -0 0 10 2 3 4 -0 0 10 2 30 @

x(am) x (k) x )
[ e——— ]

o Vertical velocity (colored contours); solid contour - convective cloud structure
o CSLAM-NH looks more like 5th-order ‘WRF' solution than 2nd-order
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2D squall line (Weisman and Klemp, 1982)

‘ s 8
2 300 Eulerian 5th—order B
c = Eulerian 2nd-order s 6
%—‘g, 200 —— CSLAM-NH E m_@ .
5 32
8 100 g 2
o 3
<
0 0
o 600 '
©
c
© 7> 400
‘(3 2]
22
S 200
=
o
o
0 .
0 60 120
Time (min)

o Moisture statistics (Wong et al., 2013a)
o M. Wong is currently working on ‘adding’ topography to the CSLAM-NH!
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Questions

"
1
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