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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Overview	  
CAM-‐SE:	  
•  New	  default	  2me-‐stepping	  
•  Axial	  angular	  momentum	  conserva2on	  
•  Physics-‐grid	  and	  CSLAM	  transport	  
•  Capability	  of	  doing	  offline	  simula2ons	  driven	  by	  
meteorological	  analysis	  for	  chemistry	  applica2ons	  

Leaving	  out	  lots	  of	  HOMME	  development:	  	  
non-‐hydrosta2c	  DG	  (R.D.	  Nair	  &	  R.	  KloeMorn),	  non-‐hydrosta2c	  SE	  	  
(R.D.	  Nair	  &	  D.	  Hall),	  implicit	  2me-‐stepping	  (K.	  Evans),	  …	  

Other:	  
•  Energy	  defini2on	  in	  CAM	  (covered	  by	  D.L.	  Williamson)	  
•  Nudging	  (“on	  the	  physics	  2me-‐step”)	  –	  J.T.	  Bacmeister	  
•  MPAS	  in	  CAM	  



Trunk	  changes	  to	  3me-‐stepping	  
•  tstep_type=5:	  	  	  
Switched	  to	  a	  5-‐stage	  Runga-‐KuZa	  2me-‐stepping;	  
based	  on	  Kinnmark	  and	  Gray	  (1984)	  with	  a	  modifica2on	  (Ullrich;	  unpublished)	  to	  
make	  it	  non-‐linearly	  3rd-‐order	  in	  2me	  (implemented	  by	  M.A.	  Taylor)	  

•  User	  confusion	  on	  CAM	  namelist:	  
(e.g.,	  split	  namelist	  variables	  do	  not	  mean	  the	  same	  thing	  in	  CAM-‐SE	  as	  CAM-‐FV)	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
-‐	  assuming	  Lagrangian	  ver2cal	  coordinate	  
	  

h8p://www.cgd.ucar.edu/cms/pel/so=ware/cam-‐se-‐dt-‐table.pdf	  

qsplit=1	  



Axial	 angular	 momentum	 analysis���
Held-Suarez	 forcing	 (flat	 Earth	 =>	 no	 mountain	 torque)	 

CAM-‐FV:	  finite-‐volume	  (Lin,	  2004)	  dynamical	  core	  in	  CAM	  
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Figure 1. Angular momentum diagnostics for CAM-FV in the Held-Suarez setup

[data is from Lebonnois et al., 2012]. First, second, and third column is total angular

momentum (M
r

+ M⌦), time-tendencies of AAM due to the dynamical core ((dM
dt

)
dyn

)

and physical parameterizations (
⇣
dM

dt

⌘

phys

), respectively, as a function of time. Note that

the spurious source/sinks of AAM from the dynamical core (second column) are the same

order of magnitude as the physical sources/sinks of AAM (third column).
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In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:
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. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM. The spurious contributions to AAM should be much smaller

than the physical sources/sinks of AAM:
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NOT	  fulfilled!	  

Lebonnois	  et	  al.,	  (2012)	  

M=global	  integrated	  
	  	  	  	  	  	  axial	  angular	  	  
	  	  	  	  	  	  momentum	  



CAM-‐SE	  results:	  
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Figure 2. First row depicts total or absolute AAM (M , column 1), the ⌦ AAM

(M⌦, column 2), and relative AAM (M
r

, column 3) as a function of time (day 1000

to 1300) for di↵erent polynomial orders and vertical advection schemes. Rows two and

three show time-tendencies of AAM due to the dynamical core ((dM
dt

)
dyn

) and physical

parameterizations (
⇣
dM

dt

⌘

phys

), respectively, with the same partitioning as row one. Note

that the y-axis unit on row one is 1025kg m2
s

�1 whereas the remaining rows are 1.0 ⇥

1019kg m2
s

�2. In the embedded plot (row two, column 1) the unit is 1.0⇥ 1017kg m2
s

�2.
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Lauritzen	  et	  al.	  (2014;	  in	  press)	  

Axial	 angular	 momentum	 analysis���
Held-Suarez	 forcing	 (flat	 Earth	 =>	 no	 mountain	 torque)	 

np=2	  
np=3	  
np=4	  



Current	  physics/“coupler”	  grid	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Finite-‐volume	  equi-‐angular	  gnomonic	  grid	  

Separa2ng	  physics	  and	  dynamics	  grids	  



Separa2ng	  physics	  and	  dynamics	  grids	  
6	  month+	  of	  re-‐engineering	  of	  CAM	  history	  output	  ….	  (S.	  Goldhaber)	  

Main	  tasks:	  	  
-‐	  enable	  output	  on	  an	  arbitrary	  physics	  grid	  (different	  from	  dynamics	  grid)	  	  
-‐	  remove	  assump2ons	  in	  physics	  assuming	  dynamics-‐physics	  points	  co-‐located	  	  
-‐	  interface	  code	  for	  SE	  stored	  en2re	  grid	  on	  every	  MPI	  task	  –	  fixed!	  (should	  help	  
scalability	  on	  small	  memory	  massively	  parallel	  machines)	  
-‐	  dp_coupling	  is	  now	  able	  to	  support	  physics	  grid	  
-‐	  tools	  to	  create	  IC	  files	  with	  different	  grids	  in	  one	  file	  
	  
Current	  physics	  grid	  is	  equal-‐area	  finite-‐volume-‐type	  grid	  in	  each	  element	  	  
(support	  coarser,	  finer,	  or	  similar	  resolu2on	  within	  each	  element)	  
	  
	  

Rotated test cases and dynamical core intercomparisons 13

Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an
element (blue boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines

are the boundary of the cubed-sphere faces.

machine precision) and total energy conservative (to the

truncation error of the time-integration scheme) (Tay-

lor et al. 2007, Taylor et al. 2008). The cubed-sphere

grid consists of elements with boundaries defined by an
equiangular gnomonic grid (Nair et al. 2005) and each

element has (p + 1) × (p + 1) Gauss-Legendre-Lobatto
quadrature points. The positions of the Gauss-Legendre-

Lobatto quadrature points in each element are depicted

in Fig. 4. For the simulations presented here p = 3 is
used and the resolution is determined by h, the num-
ber of elements along a face side. The grid spacing at

the equator is approximately 90◦/(h ∗ p) hence the ap-
proximately 1

◦
solutions use h = 30 and p = 3. The

model applies fourth-order linear horizontal diffusion to

the prognostic variables u, v and T . The diffusion coeffi-
cient is tuned empirically with the help of kinetic energy

spectra as done in CAM EUL.

3.3. Icosahedral grid models
Two icosahedral-grid based models are tested with three

model variants. Among them is the model ICON that is
under development at the Max-Planck Institute for Me-

teorology, Germany, and the German Weather Service

DWD. Some documentation on ICON is given in Wan

(2009). The second model labeled CSU has been de-

veloped at the Colorado State University, Fort Collins,

U.S.. Here two model variant of CSU are assessed that
use different vertical coordinates. The icosahedral grids

are special types of geodesic grids where an icosahedron

inscribed in a sphere is subdivided recursively to form a

quasi-uniform grid of triangles. In the CSU model the

grid resolution is specified in terms of the number of
refinement levels of the icosahedron that initially con-
sists of 20 triangles. Each refinement level subdivides
the mesh, thereby doubling its resolution. The hexago-

nal grid is the dual of the triangular grid. It is created by

connecting the centroids of the triangles sharing a vertex

with great circle arcs. It consists primarily of hexagons

and 12 pentagons. If ℓ is the number of bisections of an
original icosahedral edge the number of hexagonal grid

cells is given by

2 + 10 × 4ℓ. (3.2)

A resolution of approximately 1◦ is obtained with ℓ = 6
(40962 cells) corresponding to a minimum and maxi-

mum grid point distance between the cell centers of 110

km and 132 km, respectively. The number of triangles in

this grid is given by

20 × 4ℓ
(3.3)

which corresponds to 81920 triangles for ℓ = 6. Note
that the ICON results discussed in this paper are based

on a slightly different distribution of the triangular grid

cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,

the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are

introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then

Journal of Advances in Modeling Earth Systems – Discussion
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cells is given by

2 + 10 × 4ℓ. (3.2)
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which corresponds to 81920 triangles for ℓ = 6. Note
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introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then
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Currently	  debugging	  the	  Aqua-‐planet	  run	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



Separa2ng	  physics	  and	  dynamics	  grids	  
6	  month+	  of	  re-‐engineering	  of	  CAM	  history	  output	  ….	  (S.	  Goldhaber)	  

Main	  tasks:	  	  
-‐	  enable	  output	  on	  an	  arbitrary	  physics	  grid	  (different	  from	  dynamics	  grid)	  	  
-‐	  remove	  assump2ons	  in	  physics	  assuming	  dynamics-‐physics	  points	  co-‐located	  	  
-‐	  interface	  code	  for	  SE	  stored	  en2re	  grid	  on	  every	  MPI	  task	  –	  fixed!	  (should	  help	  
scalability	  on	  small	  memory	  massively	  parallel	  machines)	  
-‐	  dp_coupling	  is	  now	  able	  to	  support	  physics	  grid	  
-‐	  tools	  to	  create	  IC	  files	  with	  different	  grids	  in	  one	  file	  
	  
Current	  physics	  grid	  is	  equal-‐area	  finite-‐volume-‐type	  grid	  in	  each	  element	  
	  
Todo:	  
	  -‐flush	  out	  bugs	  …	  
-‐	  longer	  term:	  generalize	  mapping	  to	  support	  arbitrary	  physics	  grids	  
	  	  (for	  example,	  this	  will	  support	  mesh-‐refinement	  in	  the	  dynamical	  core	  and	  run	  physics	  
	  	  	  on	  a	  uniform	  resolu2on	  grid)	  
-‐	  enforce	  total	  energy	  conserva2on	  in	  mapping	  process	  	  
	  



Mul2-‐tracer	  transport	  (CSLAM)	  in	  CAM-‐SE	  

-‐  Stand-‐alone	  Lagrangian	  CSLAM	  scheme	  has	  been	  in	  HOMME	  for	  a	  while	  	  
	  	  (Erath	  et	  al.	  2012);	  also	  other	  op2on:	  SPELT	  (Erath	  and	  Nair,	  2014)	  	  

Allows	  for	  
long	  2me-‐steps	  
	  
=>	  less	  MPI	  
communica2on	  

Compu2ng	  	  
overlap	  areas	  
is	  expensive	  
but	  weights	  
can	  be	  re-‐used	  
for	  each	  
addi2onal	  
tracer	  



Mul2-‐tracer	  transport	  (CSLAM)	  in	  CAM-‐SE	  
Now	  that	  physics	  grid	  infrastructure	  is	  maturing	  we	  can	  start	  focusing	  on	  CSLAM	  
transport	  (CSLAM	  scheme	  is	  using	  a	  finite-‐volume	  (quasi	  equal-‐area)	  grid	  and	  needs	  	  
new	  physics	  grid	  infrastructure	  in	  CAM)	  
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Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an
element (blue boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines

are the boundary of the cubed-sphere faces.

machine precision) and total energy conservative (to the

truncation error of the time-integration scheme) (Tay-

lor et al. 2007, Taylor et al. 2008). The cubed-sphere

grid consists of elements with boundaries defined by an
equiangular gnomonic grid (Nair et al. 2005) and each

element has (p + 1) × (p + 1) Gauss-Legendre-Lobatto
quadrature points. The positions of the Gauss-Legendre-

Lobatto quadrature points in each element are depicted

in Fig. 4. For the simulations presented here p = 3 is
used and the resolution is determined by h, the num-
ber of elements along a face side. The grid spacing at

the equator is approximately 90◦/(h ∗ p) hence the ap-
proximately 1

◦
solutions use h = 30 and p = 3. The

model applies fourth-order linear horizontal diffusion to

the prognostic variables u, v and T . The diffusion coeffi-
cient is tuned empirically with the help of kinetic energy

spectra as done in CAM EUL.

3.3. Icosahedral grid models
Two icosahedral-grid based models are tested with three

model variants. Among them is the model ICON that is
under development at the Max-Planck Institute for Me-

teorology, Germany, and the German Weather Service

DWD. Some documentation on ICON is given in Wan

(2009). The second model labeled CSU has been de-

veloped at the Colorado State University, Fort Collins,

U.S.. Here two model variant of CSU are assessed that
use different vertical coordinates. The icosahedral grids

are special types of geodesic grids where an icosahedron

inscribed in a sphere is subdivided recursively to form a

quasi-uniform grid of triangles. In the CSU model the

grid resolution is specified in terms of the number of
refinement levels of the icosahedron that initially con-
sists of 20 triangles. Each refinement level subdivides
the mesh, thereby doubling its resolution. The hexago-

nal grid is the dual of the triangular grid. It is created by

connecting the centroids of the triangles sharing a vertex

with great circle arcs. It consists primarily of hexagons

and 12 pentagons. If ℓ is the number of bisections of an
original icosahedral edge the number of hexagonal grid

cells is given by

2 + 10 × 4ℓ. (3.2)

A resolution of approximately 1◦ is obtained with ℓ = 6
(40962 cells) corresponding to a minimum and maxi-

mum grid point distance between the cell centers of 110

km and 132 km, respectively. The number of triangles in

this grid is given by

20 × 4ℓ
(3.3)

which corresponds to 81920 triangles for ℓ = 6. Note
that the ICON results discussed in this paper are based

on a slightly different distribution of the triangular grid

cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,

the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are

introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then
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CSLAM	  (nc=4)	  SE	  (np=4)	  



Mul2-‐tracer	  transport	  (CSLAM)	  in	  CAM-‐SE	  
Now	  that	  physics	  grid	  infrastructure	  is	  maturing	  we	  can	  start	  focusing	  on	  CSLAM	  
transport	  (CSLAM	  scheme	  is	  using	  a	  finite-‐volume	  (quasi	  equal-‐area)	  grid	  and	  needs	  	  
new	  physics	  grid	  infrastructure	  in	  CAM)	  

-‐  Stand-‐alone	  Lagrangian	  CSLAM	  scheme	  has	  been	  in	  HOMME	  for	  a	  while	  	  
	  	  (Erath	  et	  al.	  2012).	  However,	  Erath	  et	  al.	  (2012)	  did	  not	  consider	  coupling	  with	  
	  CAM-‐SE	  air	  density	  	  
	  

-‐  To	  couple	  CSLAM	  scheme	  with	  CAM-‐SE	  we	  are	  using	  a	  conven2onal	  flux-‐form	  
methodology	  (used	  in,	  for	  example,	  CAM-‐FV):	  
	  
-‐	  convert	  Lagrangian	  CSLAM	  to	  flux-‐form	  (90%	  done	  in	  HOMME;	  Lauritzen)	  
-‐	  compute	  finite-‐volume	  type	  fluxes	  from	  CAM-‐SE	  	  
	  	  (method	  derived	  by	  Taylor	  and	  Ullrich)	  
	  
NCAR-‐Sandia	  is	  working	  on	  uniform	  resolu2on	  implementa2on	  (Lauritzen-‐Taylor)	  
Argone-‐Sandia	  are	  working	  on	  variable	  resolu2on	  implementa2on	  (PI:	  F.	  Hoffman)	  



Current	  method	  in	  CAM-‐FV	  (CAM-‐Chem):	  Overwrite	  u,v,T,PS	  at	  every	  physics	  2me-‐step	  
and	  apply	  mass-‐fixer	  (direc2onally	  biased)	  to	  enforce	  consistency	  between	  internal	  
mass-‐fluxes	  and	  driving	  data	  
	  

Figure:	  mass	  flux	  adjustment	  coming	  from	  pressure	  fixer	  

Capability	  for	  doing	  offline	  simula2ons	  driven	  by	  
(GEOS5)	  meteorological	  analysis	  in	  CAM-‐SE	  

focus:	  chemistry	  applica3ons	  
J.-‐F.	  Lamarque	  (PI),	  F.	  ViZ,	  A.	  Conley,	  P.H.	  Lauritzen	  



Capability	  for	  doing	  offline	  simula2ons	  driven	  by	  
(GEOS5)	  meteorological	  analysis	  in	  CAM-‐SE	  

focus:	  chemistry	  applica3ons	  
J.-‐F.	  Lamarque	  (PI),	  F.	  ViZ,	  A.	  Conley,	  P.H.	  Lauritzen	  

Method	  implemented	  in	  CAM-‐SE:	  	  
	  
-‐	  Apply	  nudging	  to	  u,v,	  T	  (not	  PS)	  
-‐	  The	  nudging	  is	  implemented	  as	  a	  forcing	  term	  inside	  the	  dynamical	  core	  
	  	  (at	  every	  Runga-‐KuZa	  step	  the	  dynamical	  core	  “feels”	  the	  nudging)	  
	  
	  
	  
Does	  it	  work?	  Is	  PS	  nudged	  towards	  offline	  PS?	  	  
	  
Idealized	  test:	  	  
	  
Ini2al	  condi2on:	  Polvani	  baroclinic	  wave	  at	  2me	  T=10	  days	  
Force	  it	  to	  2me-‐evolving	  solu2on	  star2ng	  from	  day	  0	  



	  	  
	  

-‐	  Temporal	  resolu2on	  of	  meteorology	  is	  the	  largest	  error	  
-‐	  If	  you	  nudge	  weaker	  you	  get	  beZer	  results	  (2me	  evolu2on	  is	  not	  linear).	  
-‐	  Upda2ng	  nudging	  term	  every	  dynamics	  2me-‐step	  (linear	  temporal	  interpola2on	  	  
	  	  between	  met	  field	  updates)	  only	  improves	  results	  if	  met	  fields	  are	  updated	  hourly	  
	  



	  	  
	  

-‐	  Temporal	  resolu2on	  of	  meteorology	  is	  the	  largest	  error	  
-‐	  If	  you	  nudge	  weaker	  you	  get	  beZer	  results	  (2me	  evolu2on	  is	  not	  linear).	  
-‐	  Upda2ng	  nudging	  term	  every	  dynamics	  2me-‐step	  (linear	  temporal	  interpola2on	  	  
	  	  between	  met	  field	  updates)	  only	  improves	  results	  if	  met	  fields	  are	  updated	  hourly	  



“Full”	  model	  results	  FV:1.9x2.5	   SE:	  NE30	  

instantaneous	   instantaneous	  

1-‐month	  average	   1-‐month	  average	  



Filled	  contours:	  CAM-‐SE	  
Black	  contours:	  CAM-‐FV	  

Logarithmic	  contour	  scale:	  factor	  of	  3	  too	  much	  mixing	  over	  Greenland/Equator	  



Nonhydrosta2c	  MPAS-‐Atmosphere	  	  	  
dynamical	  core	  port	  to	  CAM	  

•  Sotware	  engineering	  of	  port	  is	  
complete;	  uses	  CAM5	  physics.	  

•  Held-‐Suarez	  and	  APE	  tes2ng	  is	  
underway.	  

•  AMIP	  tes2ng	  this	  spring.	  
•  NWP	  tes2ng	  in	  hydrosta2c	  
regime	  later	  	  this	  winter.	  

Major	  concern:	  Scale-‐aware	  
physics,	  physics	  (deep	  convec8on,	  
microphysics)	  for	  nonhydrosta8c	  
resolu8ons	  in	  CAM	   Variable-‐resolu2on	  MPAS	  mesh,	  

refinement	  over	  the	  Mari2me	  Con2nent	  
region	  

Slide	  from	  W.C.	  Skamarock	  

W.C.	  Skamarock,	  S.-‐H.	  Park,	  P.H.	  Lauritzen	  





Axial	 angular	 momentum	 
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where r is the radial distance from the center of the planet, ⇢ the fluid density, u is

the zonal velocity component, ✓ the latitude, � longitude, dV = r

2 cos ✓ d� d✓ dr is an

infinitesimal spherical volume, and D is the global domain. We make the shallow atmo-

sphere assumption and hydrostatic assumption so r in (1) is replaced with R (mean radius

of the planet) and dr = � 1
⇢ g

dp (g is the gravitational constant), respectively.

In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

dM

dt

=

 
dM

dt

!

dyn

+

 
dM

dt

!

phys

. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM.
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In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

dM

dt

=

 
dM

dt

!

dyn

+

 
dM

dt

!

phys

. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM. The spurious contributions to AAM should be much smaller

than the physical sources/sinks of AAM:

0 ⇠
 
dM

dt

!

dyn

⌧
 
dM

dt

!

phys

. (4)
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In	  the	  absence	  of	  mountain	  torque:	  



A	 simple	 way	 to	 assess	 
axial	 angular	 momentum	 conservation	 

Held-‐Suarez	  forcing:	  flat-‐Earth	  (no	  mountain	  torque),	  physics	  replaced	  by	  simple	  	  
boundary	  layer	  fric2on	  and	  relaxa2on	  of	  temperature	  toward	  reference	  profile	  	  

Zonally	  and	  2me	  
averaged	  T	  


