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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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  default	
  2me-­‐stepping	
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Trunk	
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  3me-­‐stepping	
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Figure 1. Angular momentum diagnostics for CAM-FV in the Held-Suarez setup

[data is from Lebonnois et al., 2012]. First, second, and third column is total angular

momentum (M
r

+ M⌦), time-tendencies of AAM due to the dynamical core ((dM
dt

)
dyn

)

and physical parameterizations (
⇣
dM

dt

⌘

phys

), respectively, as a function of time. Note that

the spurious source/sinks of AAM from the dynamical core (second column) are the same

order of magnitude as the physical sources/sinks of AAM (third column).
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In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

dM

dt

=

 
dM

dt

!

dyn

+

 
dM

dt

!

phys

. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM. The spurious contributions to AAM should be much smaller

than the physical sources/sinks of AAM:

0 ⇠
 
dM

dt

!

dyn

⌧
 
dM

dt

!

phys

. (4)
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Figure 2. First row depicts total or absolute AAM (M , column 1), the ⌦ AAM

(M⌦, column 2), and relative AAM (M
r

, column 3) as a function of time (day 1000

to 1300) for di↵erent polynomial orders and vertical advection schemes. Rows two and

three show time-tendencies of AAM due to the dynamical core ((dM
dt

)
dyn

) and physical

parameterizations (
⇣
dM

dt

⌘

phys

), respectively, with the same partitioning as row one. Note

that the y-axis unit on row one is 1025kg m2
s

�1 whereas the remaining rows are 1.0 ⇥

1019kg m2
s

�2. In the embedded plot (row two, column 1) the unit is 1.0⇥ 1017kg m2
s

�2.

D R A F T November 14, 2013, 4:43pm D R A F T

X - 22 LAURITZEN ET AL.: CAM-SE ANGULAR MOMENTUM

Figure 2. First row depicts total or absolute AAM (M , column 1), the ⌦ AAM

(M⌦, column 2), and relative AAM (M
r

, column 3) as a function of time (day 1000

to 1300) for di↵erent polynomial orders and vertical advection schemes. Rows two and

three show time-tendencies of AAM due to the dynamical core ((dM
dt

)
dyn

) and physical

parameterizations (
⇣
dM

dt

⌘

phys

), respectively, with the same partitioning as row one. Note

that the y-axis unit on row one is 1025kg m2
s

�1 whereas the remaining rows are 1.0 ⇥

1019kg m2
s

�2. In the embedded plot (row two, column 1) the unit is 1.0⇥ 1017kg m2
s

�2.

D R A F T November 14, 2013, 4:43pm D R A F T

Lauritzen	
  et	
  al.	
  (2014;	
  in	
  press)	
  

Axial	
 angular	
 momentum	
 analysis���
Held-Suarez	
 forcing	
 (flat	
 Earth	
 =>	
 no	
 mountain	
 torque)	
 

np=2	
  
np=3	
  
np=4	
  



Current	
  physics/“coupler”	
  grid	
  

12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an
element (blue boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines

are the boundary of the cubed-sphere faces.

machine precision) and total energy conservative (to the

truncation error of the time-integration scheme) (Tay-

lor et al. 2007, Taylor et al. 2008). The cubed-sphere

grid consists of elements with boundaries defined by an
equiangular gnomonic grid (Nair et al. 2005) and each

element has (p + 1) × (p + 1) Gauss-Legendre-Lobatto
quadrature points. The positions of the Gauss-Legendre-

Lobatto quadrature points in each element are depicted

in Fig. 4. For the simulations presented here p = 3 is
used and the resolution is determined by h, the num-
ber of elements along a face side. The grid spacing at

the equator is approximately 90◦/(h ∗ p) hence the ap-
proximately 1

◦
solutions use h = 30 and p = 3. The

model applies fourth-order linear horizontal diffusion to

the prognostic variables u, v and T . The diffusion coeffi-
cient is tuned empirically with the help of kinetic energy

spectra as done in CAM EUL.

3.3. Icosahedral grid models
Two icosahedral-grid based models are tested with three

model variants. Among them is the model ICON that is
under development at the Max-Planck Institute for Me-

teorology, Germany, and the German Weather Service

DWD. Some documentation on ICON is given in Wan

(2009). The second model labeled CSU has been de-

veloped at the Colorado State University, Fort Collins,

U.S.. Here two model variant of CSU are assessed that
use different vertical coordinates. The icosahedral grids

are special types of geodesic grids where an icosahedron

inscribed in a sphere is subdivided recursively to form a

quasi-uniform grid of triangles. In the CSU model the

grid resolution is specified in terms of the number of
refinement levels of the icosahedron that initially con-
sists of 20 triangles. Each refinement level subdivides
the mesh, thereby doubling its resolution. The hexago-

nal grid is the dual of the triangular grid. It is created by

connecting the centroids of the triangles sharing a vertex

with great circle arcs. It consists primarily of hexagons

and 12 pentagons. If ℓ is the number of bisections of an
original icosahedral edge the number of hexagonal grid

cells is given by

2 + 10 × 4ℓ. (3.2)

A resolution of approximately 1◦ is obtained with ℓ = 6
(40962 cells) corresponding to a minimum and maxi-

mum grid point distance between the cell centers of 110

km and 132 km, respectively. The number of triangles in

this grid is given by

20 × 4ℓ
(3.3)

which corresponds to 81920 triangles for ℓ = 6. Note
that the ICON results discussed in this paper are based

on a slightly different distribution of the triangular grid

cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,

the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are

introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then

Journal of Advances in Modeling Earth Systems – Discussion
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km and 132 km, respectively. The number of triangles in

this grid is given by

20 × 4ℓ
(3.3)

which corresponds to 81920 triangles for ℓ = 6. Note
that the ICON results discussed in this paper are based

on a slightly different distribution of the triangular grid

cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,

the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are

introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then
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Currently	
  debugging	
  the	
  Aqua-­‐planet	
  run	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



Separa2ng	
  physics	
  and	
  dynamics	
  grids	
  
6	
  month+	
  of	
  re-­‐engineering	
  of	
  CAM	
  history	
  output	
  ….	
  (S.	
  Goldhaber)	
  

Main	
  tasks:	
  	
  
-­‐	
  enable	
  output	
  on	
  an	
  arbitrary	
  physics	
  grid	
  (different	
  from	
  dynamics	
  grid)	
  	
  
-­‐	
  remove	
  assump2ons	
  in	
  physics	
  assuming	
  dynamics-­‐physics	
  points	
  co-­‐located	
  	
  
-­‐	
  interface	
  code	
  for	
  SE	
  stored	
  en2re	
  grid	
  on	
  every	
  MPI	
  task	
  –	
  fixed!	
  (should	
  help	
  
scalability	
  on	
  small	
  memory	
  massively	
  parallel	
  machines)	
  
-­‐	
  dp_coupling	
  is	
  now	
  able	
  to	
  support	
  physics	
  grid	
  
-­‐	
  tools	
  to	
  create	
  IC	
  files	
  with	
  different	
  grids	
  in	
  one	
  file	
  
	
  
Current	
  physics	
  grid	
  is	
  equal-­‐area	
  finite-­‐volume-­‐type	
  grid	
  in	
  each	
  element	
  
	
  
Todo:	
  
	
  -­‐flush	
  out	
  bugs	
  …	
  
-­‐	
  longer	
  term:	
  generalize	
  mapping	
  to	
  support	
  arbitrary	
  physics	
  grids	
  
	
  	
  (for	
  example,	
  this	
  will	
  support	
  mesh-­‐refinement	
  in	
  the	
  dynamical	
  core	
  and	
  run	
  physics	
  
	
  	
  	
  on	
  a	
  uniform	
  resolu2on	
  grid)	
  
-­‐	
  enforce	
  total	
  energy	
  conserva2on	
  in	
  mapping	
  process	
  	
  
	
  



Mul2-­‐tracer	
  transport	
  (CSLAM)	
  in	
  CAM-­‐SE	
  

-­‐  Stand-­‐alone	
  Lagrangian	
  CSLAM	
  scheme	
  has	
  been	
  in	
  HOMME	
  for	
  a	
  while	
  	
  
	
  	
  (Erath	
  et	
  al.	
  2012);	
  also	
  other	
  op2on:	
  SPELT	
  (Erath	
  and	
  Nair,	
  2014)	
  	
  

Allows	
  for	
  
long	
  2me-­‐steps	
  
	
  
=>	
  less	
  MPI	
  
communica2on	
  

Compu2ng	
  	
  
overlap	
  areas	
  
is	
  expensive	
  
but	
  weights	
  
can	
  be	
  re-­‐used	
  
for	
  each	
  
addi2onal	
  
tracer	
  



Mul2-­‐tracer	
  transport	
  (CSLAM)	
  in	
  CAM-­‐SE	
  
Now	
  that	
  physics	
  grid	
  infrastructure	
  is	
  maturing	
  we	
  can	
  start	
  focusing	
  on	
  CSLAM	
  
transport	
  (CSLAM	
  scheme	
  is	
  using	
  a	
  finite-­‐volume	
  (quasi	
  equal-­‐area)	
  grid	
  and	
  needs	
  	
  
new	
  physics	
  grid	
  infrastructure	
  in	
  CAM)	
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Figure 4: (left) A graphical illustration of the Gauss-Legendre-Lobatto quadrature points (red unfilled circles) in an
element (blue boundary) of the HOMME model. (right) The mapping of every element onto the sphere. Green lines

are the boundary of the cubed-sphere faces.

machine precision) and total energy conservative (to the

truncation error of the time-integration scheme) (Tay-

lor et al. 2007, Taylor et al. 2008). The cubed-sphere

grid consists of elements with boundaries defined by an
equiangular gnomonic grid (Nair et al. 2005) and each

element has (p + 1) × (p + 1) Gauss-Legendre-Lobatto
quadrature points. The positions of the Gauss-Legendre-

Lobatto quadrature points in each element are depicted

in Fig. 4. For the simulations presented here p = 3 is
used and the resolution is determined by h, the num-
ber of elements along a face side. The grid spacing at

the equator is approximately 90◦/(h ∗ p) hence the ap-
proximately 1

◦
solutions use h = 30 and p = 3. The

model applies fourth-order linear horizontal diffusion to

the prognostic variables u, v and T . The diffusion coeffi-
cient is tuned empirically with the help of kinetic energy

spectra as done in CAM EUL.

3.3. Icosahedral grid models
Two icosahedral-grid based models are tested with three

model variants. Among them is the model ICON that is
under development at the Max-Planck Institute for Me-

teorology, Germany, and the German Weather Service

DWD. Some documentation on ICON is given in Wan

(2009). The second model labeled CSU has been de-

veloped at the Colorado State University, Fort Collins,

U.S.. Here two model variant of CSU are assessed that
use different vertical coordinates. The icosahedral grids

are special types of geodesic grids where an icosahedron

inscribed in a sphere is subdivided recursively to form a

quasi-uniform grid of triangles. In the CSU model the

grid resolution is specified in terms of the number of
refinement levels of the icosahedron that initially con-
sists of 20 triangles. Each refinement level subdivides
the mesh, thereby doubling its resolution. The hexago-

nal grid is the dual of the triangular grid. It is created by

connecting the centroids of the triangles sharing a vertex

with great circle arcs. It consists primarily of hexagons

and 12 pentagons. If ℓ is the number of bisections of an
original icosahedral edge the number of hexagonal grid

cells is given by

2 + 10 × 4ℓ. (3.2)

A resolution of approximately 1◦ is obtained with ℓ = 6
(40962 cells) corresponding to a minimum and maxi-

mum grid point distance between the cell centers of 110

km and 132 km, respectively. The number of triangles in

this grid is given by

20 × 4ℓ
(3.3)

which corresponds to 81920 triangles for ℓ = 6. Note
that the ICON results discussed in this paper are based

on a slightly different distribution of the triangular grid

cells. The main difference is the initial refinement strat-
egy for the icosahedron. Instead of bisecting the grid,

the original icosahedron is first split by a factor of three
along each edge before further recursive bisections are

introduced. If m = ℓ − 2 = 4 is the number of bisec-
tions after the initial 3-way split the number of triangular

cells nc, triangle edges ne and triangle vertices nv is then
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CSLAM	
  (nc=4)	
  SE	
  (np=4)	
  



Mul2-­‐tracer	
  transport	
  (CSLAM)	
  in	
  CAM-­‐SE	
  
Now	
  that	
  physics	
  grid	
  infrastructure	
  is	
  maturing	
  we	
  can	
  start	
  focusing	
  on	
  CSLAM	
  
transport	
  (CSLAM	
  scheme	
  is	
  using	
  a	
  finite-­‐volume	
  (quasi	
  equal-­‐area)	
  grid	
  and	
  needs	
  	
  
new	
  physics	
  grid	
  infrastructure	
  in	
  CAM)	
  

-­‐  Stand-­‐alone	
  Lagrangian	
  CSLAM	
  scheme	
  has	
  been	
  in	
  HOMME	
  for	
  a	
  while	
  	
  
	
  	
  (Erath	
  et	
  al.	
  2012).	
  However,	
  Erath	
  et	
  al.	
  (2012)	
  did	
  not	
  consider	
  coupling	
  with	
  
	
  CAM-­‐SE	
  air	
  density	
  	
  
	
  

-­‐  To	
  couple	
  CSLAM	
  scheme	
  with	
  CAM-­‐SE	
  we	
  are	
  using	
  a	
  conven2onal	
  flux-­‐form	
  
methodology	
  (used	
  in,	
  for	
  example,	
  CAM-­‐FV):	
  
	
  
-­‐	
  convert	
  Lagrangian	
  CSLAM	
  to	
  flux-­‐form	
  (90%	
  done	
  in	
  HOMME;	
  Lauritzen)	
  
-­‐	
  compute	
  finite-­‐volume	
  type	
  fluxes	
  from	
  CAM-­‐SE	
  	
  
	
  	
  (method	
  derived	
  by	
  Taylor	
  and	
  Ullrich)	
  
	
  
NCAR-­‐Sandia	
  is	
  working	
  on	
  uniform	
  resolu2on	
  implementa2on	
  (Lauritzen-­‐Taylor)	
  
Argone-­‐Sandia	
  are	
  working	
  on	
  variable	
  resolu2on	
  implementa2on	
  (PI:	
  F.	
  Hoffman)	
  



Current	
  method	
  in	
  CAM-­‐FV	
  (CAM-­‐Chem):	
  Overwrite	
  u,v,T,PS	
  at	
  every	
  physics	
  2me-­‐step	
  
and	
  apply	
  mass-­‐fixer	
  (direc2onally	
  biased)	
  to	
  enforce	
  consistency	
  between	
  internal	
  
mass-­‐fluxes	
  and	
  driving	
  data	
  
	
  

Figure:	
  mass	
  flux	
  adjustment	
  coming	
  from	
  pressure	
  fixer	
  

Capability	
  for	
  doing	
  offline	
  simula2ons	
  driven	
  by	
  
(GEOS5)	
  meteorological	
  analysis	
  in	
  CAM-­‐SE	
  

focus:	
  chemistry	
  applica3ons	
  
J.-­‐F.	
  Lamarque	
  (PI),	
  F.	
  ViZ,	
  A.	
  Conley,	
  P.H.	
  Lauritzen	
  



Capability	
  for	
  doing	
  offline	
  simula2ons	
  driven	
  by	
  
(GEOS5)	
  meteorological	
  analysis	
  in	
  CAM-­‐SE	
  

focus:	
  chemistry	
  applica3ons	
  
J.-­‐F.	
  Lamarque	
  (PI),	
  F.	
  ViZ,	
  A.	
  Conley,	
  P.H.	
  Lauritzen	
  

Method	
  implemented	
  in	
  CAM-­‐SE:	
  	
  
	
  
-­‐	
  Apply	
  nudging	
  to	
  u,v,	
  T	
  (not	
  PS)	
  
-­‐	
  The	
  nudging	
  is	
  implemented	
  as	
  a	
  forcing	
  term	
  inside	
  the	
  dynamical	
  core	
  
	
  	
  (at	
  every	
  Runga-­‐KuZa	
  step	
  the	
  dynamical	
  core	
  “feels”	
  the	
  nudging)	
  
	
  
	
  
	
  
Does	
  it	
  work?	
  Is	
  PS	
  nudged	
  towards	
  offline	
  PS?	
  	
  
	
  
Idealized	
  test:	
  	
  
	
  
Ini2al	
  condi2on:	
  Polvani	
  baroclinic	
  wave	
  at	
  2me	
  T=10	
  days	
  
Force	
  it	
  to	
  2me-­‐evolving	
  solu2on	
  star2ng	
  from	
  day	
  0	
  



	
  	
  
	
  

-­‐	
  Temporal	
  resolu2on	
  of	
  meteorology	
  is	
  the	
  largest	
  error	
  
-­‐	
  If	
  you	
  nudge	
  weaker	
  you	
  get	
  beZer	
  results	
  (2me	
  evolu2on	
  is	
  not	
  linear).	
  
-­‐	
  Upda2ng	
  nudging	
  term	
  every	
  dynamics	
  2me-­‐step	
  (linear	
  temporal	
  interpola2on	
  	
  
	
  	
  between	
  met	
  field	
  updates)	
  only	
  improves	
  results	
  if	
  met	
  fields	
  are	
  updated	
  hourly	
  
	
  



	
  	
  
	
  

-­‐	
  Temporal	
  resolu2on	
  of	
  meteorology	
  is	
  the	
  largest	
  error	
  
-­‐	
  If	
  you	
  nudge	
  weaker	
  you	
  get	
  beZer	
  results	
  (2me	
  evolu2on	
  is	
  not	
  linear).	
  
-­‐	
  Upda2ng	
  nudging	
  term	
  every	
  dynamics	
  2me-­‐step	
  (linear	
  temporal	
  interpola2on	
  	
  
	
  	
  between	
  met	
  field	
  updates)	
  only	
  improves	
  results	
  if	
  met	
  fields	
  are	
  updated	
  hourly	
  



“Full”	
  model	
  results	
  FV:1.9x2.5	
   SE:	
  NE30	
  

instantaneous	
   instantaneous	
  

1-­‐month	
  average	
   1-­‐month	
  average	
  



Filled	
  contours:	
  CAM-­‐SE	
  
Black	
  contours:	
  CAM-­‐FV	
  

Logarithmic	
  contour	
  scale:	
  factor	
  of	
  3	
  too	
  much	
  mixing	
  over	
  Greenland/Equator	
  



Nonhydrosta2c	
  MPAS-­‐Atmosphere	
  	
  	
  
dynamical	
  core	
  port	
  to	
  CAM	
  

•  Sotware	
  engineering	
  of	
  port	
  is	
  
complete;	
  uses	
  CAM5	
  physics.	
  

•  Held-­‐Suarez	
  and	
  APE	
  tes2ng	
  is	
  
underway.	
  

•  AMIP	
  tes2ng	
  this	
  spring.	
  
•  NWP	
  tes2ng	
  in	
  hydrosta2c	
  
regime	
  later	
  	
  this	
  winter.	
  

Major	
  concern:	
  Scale-­‐aware	
  
physics,	
  physics	
  (deep	
  convec8on,	
  
microphysics)	
  for	
  nonhydrosta8c	
  
resolu8ons	
  in	
  CAM	
   Variable-­‐resolu2on	
  MPAS	
  mesh,	
  

refinement	
  over	
  the	
  Mari2me	
  Con2nent	
  
region	
  

Slide	
  from	
  W.C.	
  Skamarock	
  

W.C.	
  Skamarock,	
  S.-­‐H.	
  Park,	
  P.H.	
  Lauritzen	
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 momentum	
 

LAURITZEN ET AL.: CAM-SE ANGULAR MOMENTUM X - 7

where r is the radial distance from the center of the planet, ⇢ the fluid density, u is

the zonal velocity component, ✓ the latitude, � longitude, dV = r

2 cos ✓ d� d✓ dr is an

infinitesimal spherical volume, and D is the global domain. We make the shallow atmo-

sphere assumption and hydrostatic assumption so r in (1) is replaced with R (mean radius

of the planet) and dr = � 1
⇢ g

dp (g is the gravitational constant), respectively.

In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

dM

dt

=

 
dM

dt

!

dyn

+

 
dM

dt

!

phys

. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM.
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In the absence of any surface torque and zonal mechanical forcing, the hydrostatic

primitive equations conserve the globally integrated AAM when assuming a constant

pressure upper boundary [see, e.g., Staniforth and Wood , 2003]:

dM

dt

= 0. (2)

Typically numerical models are divided into a dynamical core (dyn) that, roughly speak-

ing, solves the equations of motion on resolved scales and physical parameterizations that

approximate sub-grid-scale processes (phys). There can therefore be two sources/sinks of

AAM:

dM

dt

=

 
dM

dt

!

dyn

+

 
dM

dt

!

phys

. (3)

In the Held-Suarez setup
⇣
dM

dt

⌘

phys

is simplified surface drag that acts on the velocity

components only. Consequently it does not alter M⌦ but only M

r

. In the Held-Suarez

setup the sources/sinks of AAM in the dynamical core are due to numerical errors unless

explicit or implicit di↵usion is designed to mimic physical drag. In this study we assume

that the dynamical core approximates the solution to the hydrostatic primitive equations

and not any sub-grid-scale processes and it should therefore, according to (2), not be a

source/sink of global AAM. The spurious contributions to AAM should be much smaller

than the physical sources/sinks of AAM:

0 ⇠
 
dM

dt

!

dyn

⌧
 
dM

dt

!

phys

. (4)
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In	
  the	
  absence	
  of	
  mountain	
  torque:	
  



A	
 simple	
 way	
 to	
 assess	
 
axial	
 angular	
 momentum	
 conservation	
 

Held-­‐Suarez	
  forcing:	
  flat-­‐Earth	
  (no	
  mountain	
  torque),	
  physics	
  replaced	
  by	
  simple	
  	
  
boundary	
  layer	
  fric2on	
  and	
  relaxa2on	
  of	
  temperature	
  toward	
  reference	
  profile	
  	
  

Zonally	
  and	
  2me	
  
averaged	
  T	
  


