Desired Properties of Transport Schemes for Coupled Atmospheric-Chemistry Models

Peter Hjort Lauritzen

Atmospheric Modeling and Prediction Section (AMP) Climate and Global Dynamics Laboratory (CGD) National Center for Atmospheric Research (NCAR)

Meteorology And Climate Modeling for Air Quality (MAC-MAQ) Sacramento, September 16-18, 2015

Desired Properties of Transport Schemes for Coupled Atmospheric Chemistry Models

AMP develops and maintains NCAR's global Community Atmosphere Model (CAM) which is a component of NCAR's Community Earth System Model (CESM)

I specialize in the resolved-scale fluid flow solver (a.k.a. the dynamical core) and its coupling to physics (sub-grid-scale parameterizations)

Atmospheric Modeling and Prediction Sector (AMP) Climate and Global Dynamics Laboratory (CGD) National Center for Atmospheric Research (NCAR)

Meteorology And Climate Modeling for Air Quality (MAC-MAQ) Sacramento, September 16-18, 2015

Desired Properties of Transport Schemes for Court

Consider the finite-volume Lagrangian form of continuity equation for air (pressure level thickness, Δp), and tracer (mixing ratio, q):

$$\int_{A_k} \psi_k^{n+1} \, dA = \int_{a_k} \psi_k^n \, dA, \qquad \psi = \Delta p, \, \Delta p \, q, \tag{1}$$

where *n* time-level.

Overall, tracer transport needs to be:

A. Efficient (on massively parallel computers):

NCAR | National Center for Atmospheric Research UCAR | Climate & Global Dynamics

Most atmospheric models solve at least a handful of continuity equations and, in most cases, many more:

- Air (either dry or moist)
- Water species: water vapor, cloud liquid water and cloud ice water. (rain, snow, hail, graupel, ...)
- Microphysics: aerosol mass and number concentration.
- Chemistry: 100+ tracers in chemistry version of CAM. E.g. ozone, chlorine compounds, bromine, ... (some highly reactive; some long lived)

Tracer transport is the most computationally costly part of a dynamical core!

Overall, tracer transport needs to be:

UCAR Climate & Global Dynamics

B. Accurate:

Accuracy requirements in the context climate/chemistry-climate applications are much more stringent than conventional root-mean-square error convergence for smooth problems ...

Requirements (desirable properties) for transport schemes intended for global climate/climate-chemistry applications:

1. Global (and local) Mass-conservation

If Δp is pressure-level thickness and q is mixing ratio, then the total mass

$$M(t)=\int_{\Omega}\Delta p\,q\,dA,$$

is invariant in time: M(t) = M(t = 0) (no sources/sinks)

2. Shape-preservation

Scheme does not produce new extrema (in particular negatives) in q

3. Preservation of pre-existing functional relations between tracers

Transport scheme preserves $q_2 = f(q_1)$ (no sources/sinks)

4. Consistency

The continuity equations for air and tracers are coupled:

$$\int_{A_k} \Delta p_k^{n+1} \, dA = \int_{a_k} \delta p_k^n \, dA, \qquad (2)$$

$$\int_{A_k} (\Delta p q)_k^{n+1} dA = \int_{a_k} (\delta p_k q)^n dA.$$
(3)

If q = 1 then (3) should reduce to (2).

Initial conditions

tracer 1: cosine bells tracer 2: correlated cosine bells $\Psi(\chi) = a\chi^2 + b$

Initial conditions

tracer 1: cosine bells tracer 2: correlated cosine bells $\Psi(\chi) = a\chi^2 + b$

NCAR

Lauritzen and Thuburn (2011,QRJMS)

Classification of mixing on scatter plot:

a. Mixing that resembles `real' mixing – convex hull (red area)b. Everything else is spurious unmixing

Note: 1. Max value decrease, 2. Unmixing even if scheme is shapepreserving, 3. No expanding range unmixing

Tracer density simulated with monotone CSLAM

NCAR

A standard test case suite for two-dimensional linear transport on the sphere

P. H. Lauritzen¹, W. C. Skamarock¹, M. J. Prather², and M. A. Taylor³

¹National Center for Atmospheric Research, Boulder, Colorado, USA ²Earth System Science Department, University of California, Irvine, California, USA ³Sandia National Laboratories, Albuquerque, New Mexico, USA

http://www.geosci-model-dev.net/5/887/2012/gmd-5-887-2012.pdf

A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes

P. H. Lauritzen¹, P. A. Ullrich¹¹, C. Jablonowski², P. A. Bosler², D. Calhoun³, A. J. Conley¹, T. Enomoto⁴, L. Dong⁵, S. Dubey⁶, O. Guba⁷, A. B. Hansen¹⁴, E. Kaas⁸, J. Kent², J.-F. Lamarque¹, M. J. Prather⁹, D. Reinert¹⁰, V. V. Shashkin^{12,13}, W. C. Skamarock¹, B. Sørensen⁹, M. A. Taylor⁷, and M. A. Tolstykh^{12,13}

http://www.geosci-model-dev.net/7/105/2014/gmd-7-105-2014.html

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes

(Lauritzen et al., 2015, GMD)

See: http://www.cgd.ucar.edu/cms/pel/terminator.html

caused by the limiter/filter and/or physics-dynamics coupling!

THE TERMIN

TEST

Requirements (desirable properties) for transport schemes intended for global climate/climate-chemistry applications:

1. Global (and local) Mass-conservation

If Δp is pressure-level thickness and q is mixing ratio, then the total mass

$$M(t)=\int_{\Omega}\Delta p\,q\,dA,$$

is invariant in time: M(t) = M(t = 0) (no sources/sinks)

2. Shape-preservation

Scheme does not produce new extrema (in particular negatives) in q

3. Preservation of pre-existing functional relations between tracers

Transport scheme preserves $q_2 = f(q_1)$ (no sources/sinks)

4. Consistency

The continuity equations for air and tracers are coupled:

$$\int_{A_k} \Delta p_k^{n+1} \, dA = \int_{a_k} \delta p_k^n \, dA, \qquad (2)$$

$$\int_{A_k} (\Delta p q)_k^{n+1} dA = \int_{a_k} (\delta p_k q)^n dA.$$
(3)

If q = 1 then (3) should reduce to (2).

NCA

Consistency is trivial if (2) and (3) are solved with the same numerical method, however, that is not always the case:

 "Off-line" chemistry: prescribed wind and mass fields from , e.g., re-analysis.

 \downarrow preserves $q_2 = f(q_1)$ (no sources/sinks)

- "Online" applications where (3) is solved with a different numerical method than (2)

Transpor

Rec

g

- ----

4. Consistency

The continuity equations for air and tracers are coupled:

$$\int_{A_k} \Delta p_k^{n+1} \, dA = \int_{a_k} \delta p_k^n \, dA, \qquad (2)$$

NCAF

$$\int_{A_k} \left(\Delta p \, q\right)_k^{n+1} dA = \int_{a_k} \left(\delta p_k q\right)^n dA. \tag{3}$$

If q = 1 then (3) should reduce to (2).

NCAR CAM-SE: NCAR Community Atmosphere Model with Spectral Elements dynamical core

Continuous Galerkin finite-element method (Taylor et al., 1997) on a cubed-sphere:

NCAR

UCAR

Climate & Global Dynamics

Discretization is mimetic => mass-conservation & total energy conservation
 Conserves axial angular momentum very well (Lauritzen et al., 2014)
 Support static mesh-refinement and retains formal order of accuracy!
 Highly scalable to at least O(100K) processors (Dennis et al., 2012)
 Competitive "AMIP-climate" (Evans et al., 2012)
 Lower computational throughput for many-tracer applications

Finite-volume Lagrangian form of continuity equation for $\psi = \rho, \rho \phi$:

$$\int_{A_k} \psi_k^{n+1} dx dy = \int_{a_k} \psi_k^n dx dy = \sum_{\ell=1}^{L_k} \left[\sum_{i+j \leq 2} c_\ell^{(i,j)} w_{k\ell}^{(i,j)} \right],$$

where weights $w_{k\ell}^{(i,j)}$ are functions of the coordinates of the vertices of $a_{k\ell}$.

 $w_{k\ell}^{(i,j)}$ can be re-used for each additional tracer (Dukowicz and Baumgardner, 2000) computational cost for each additional tracer is the reconstruction and limiting/filtering. CSLAM is stable for long time-steps (CFL>1)

Lauritzen, Nair and Ullrich (*J. Comput. Phys.*, 2010)

Coupling finite-volume semi-Lagrangian transport with spectral element dynamics

4. Consistency

The continuity equations for air and tracers are coupled:

$$\int_{\mathcal{A}_k} \Delta p_k^{n+1} \, dA = \int_{\mathbf{a}_k} \delta p_k^n \, dA, \qquad (2)$$

$$\int_{A_k} (\Delta p q)_k^{n+1} dA = \int_{a_k} (\delta p_k q)^n dA.$$
(3)

If q = 1 then (3) should reduce to (2).

4. Consistency

Find upstream area, a_k , so that CSLAM predicted mass field is equal to CAM-SE predicted mass field:

$$\Delta p_k^{n+1}(\text{CAM-SE}) = \frac{1}{\Delta A} \int_{a_k} \delta p_k^n \, dA \, (\text{CSLAM}) \, , . \tag{4}$$

Many details of algorithm (well-posedness, ...) are left out here ...

CAM-SE-CSLAM

A new model configuration based on CAM-SE:

• SE: Spectral-element dynamical core solving for \vec{v} , T, p_s

(Dennis et al., 2012; Evans et al., 2012; Taylor and Fournier, 2010; Taylor et al., 1997)

- **CSLAM**: Semi-Lagrangian finite-volume transport scheme for tracers (Lauritzen et al., 2010; Erath et al., 2013, 2012; Harris et al., 2010)
- **Phys-grid**: Separating physics and dynamics grids, i.e. ability to compute physics tendencies based on cell-averaged values within each element instead of quadrature points

Lauritzen, Taylor, Overfelt, Ullrich and Goldhaber (2015, IN PREP)

Idealized baroclinic wave

No sub-grid-scale forcing, dry.

Jablonowski and Williamson (2006) and Lauritzen et al. (2010).

NCAR

CAM-SE-CSLAM

CAM-SE reference

CAM-SE

CAM-SE

CAM-SE-CSLAM

CAM-SE reference

CAM-SE

CAM-SE-CSLAM

CAM-SE reference

References

- Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley,
 P. H. (2012). CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. *Int. J. High. Perform. C.*, 26(1):74–89.
- Dukowicz, J. K. and Baumgardner, J. R. (2000). Incremental remapping as a transport/advection algorithm. *J. Comput. Phys.*, 160:318–335.
- Erath, C., Lauritzen, P. H., Garcia, J. H., and Tufo, H. M. (2012). Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME. *Procedia Computer Science*, 9:994–1003.
- Evans, K., Lauritzen, P. H., Mishra, S., Neale, R., Taylor, M. A., and Tribbia, J. J. (2012). AMIP simulations wiht the CAM4 spectral element dynamical core. *J. Climate.* in press.
- Harris, L. M., Lauritzen, P. H., and Mittal, R. (2010). A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. *J. Comput. Phys.*, 230(4):1215–1237.
- Jablonowski, C. and Williamson, D. L. (2006). A baroclinic instability test case for atmospheric model dynamical cores. *Q. J. R. Meteorol. Soc.*, 132:2943–2975.
- Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R. D. (2010a). Rotated versions of the jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. *Journal of Advances in Modeling Earth Systems*, 2(15):34 pp.
- Lauritzen, P. and Thuburn, J. (2012). Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. *Quart. J. Roy. Met. Soc.*, 138(665):906–918.
- Lauritzen, P. H., Bacmeister, J. T., Dubos, T., Lebonnois, S., and Taylor, M. A. (2014). Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates. *J. Adv. Model. Earth Syst.*, 6.
- Lauritzen, P. H., Conley, A. J., Lamarque, J.-F., Vitt, F., and Taylor, M. A. (2015). The terminator "toy" chemistry test: a simple tool to assess errors in transport schemes. *Geoscientific Model Development*, 8(5):1299–1313.
- Lauritzen, P. H., Nair, R. D., and Ullrich, P. A. (2010b). A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. *J. Comput. Phys.*, 229:1401–1424.
- Taylor, M., Tribbia, J., and Iskandarani, M. (1997). The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130:92–108.
- Taylor, M. A. and Fournier, A. (2010). A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229(17):5879 5895.
- Thuburn, J. and McIntyre, M. (1997). Numerical advection schemes, cross-isentropic random walks, and correlations between chemical species. J. Geophys. Res., 102(D6):6775–6797.

NCAR

NCAR | National Center for Atmospheric Research UCAR | Climate & Global Dynamics