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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

A global climate & climate chemistry model developers perspective

I will (mostly) focus on the dynamical core where the resolved-scale
transport is computed.

Consider the finite-volume Lagrangian form of continuity equation for
air (pressure level thickness, �p), and tracer (mixing ratio, q):

�
Ak

 n+1
k dA = �

ak
 n
k dA,  =�p, �p q, (1)

where n time-level.

Note that to solve (1) we need winds and if we want mixing ratio we
need to know �p.
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Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

Multi-tracer e�cient: w

(i ,j)
k` re-used for each additional tracer

(Dukowicz and Baumgardner, 2000).

Scheme allows for large time-steps (flow deformation limited).

Conserves mass, shape, linear correlations (Lauritzen et al., 2014).
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No	sources/
sinks	



Some	requirements	(desirable	properties)	for	transport	schemes	
intended	for	global	climate/climate-chemistry	applications:	�
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

Requirements for transport schemes

1. Global (and local) Mass-conservation

If �p is pressure-level thickness and q is mixing ratio, then the total mass

M(t) = �
⌦
�p q dA,

is invariant in time: M(t) =M(t = 0) (no sources/sinks)

2. Shape-preservation

Scheme does not produce new extrema (in particular negatives) in q

3. Preservation of pre-existing functional relations between tracers

Transport scheme preserves q2 = f (q1) (no sources/sinks)

4. Consistency

If q = 1 then the transport scheme should reduce to the continuity
equation for air.Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM September 17, 2015 3 / 6

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

The continuity equations for air and tracers are coupled:

�
Ak

�pn+1k dA = �
ak
�pnk dA, (2)

�
Ak

(�p q)n+1k dA = �
ak
(�pkq)n dA. (3)

If q = 1 then (3) should reduce to (2).
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Consistency is trivial if (2) and (3) are solved with the 
same numerical method, however, that is not always the 
case: 
 
-  “Off-line” chemistry: prescribed wind and mass fields 

from , e.g., re-analysis. 
-  “Online” applications where (3) is solved with a 

different numerical method than (2) Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

The continuity equations for air and tracers are coupled:
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Con$nuous	Galerkin	finite-element	method	(Taylor	et	al.,	1997)	on	a	cubed-sphere:	
	
	
	
	
	
	
	
	
	"  Discre$za$on	is	mime$c	=>	mass-conserva$on	&	total	energy	conserva$on	"  Conserves	axial	angular	momentum	very	well	(Lauritzen	et	al.,	2014)	"  Support	sta$c	mesh-refinement	and	retains	formal	order	of	accuracy!		"  Highly	scalable	to	at	least	O(100K)	processors	(Dennis	et	al.,	2012)	"  Compe$$ve	“AMIP-climate”	(Evans	et	al.,	2012)	
"   Lower	computa-onal	throughput	for	many-tracer	applica-ons	
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A	way	to	accelerate	tracer	transport:	�
	Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,|)
reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.
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A	way	to	accelerate	tracer	transport:	�
	

Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM

a

ε=1

ε=4

ε=2

a
k

ε=1

ka

ak
ε=2

k
a ε=3

k

ε=4

ε=3

�
Ak

 n+1
k dA = �

Ak

 n
k dA − 4�

✏=1 s
✏
k`�

a✏k

 dA,  =�p, �p q.

where

a

✏
k = ‘flux-area’ (yellow area) = area swept through face ✏

s

✏
k` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent

(Lauritzen et al., 2011).
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Coupling	finite-volume	semi-
Lagrangian	transport	with	
spectral	element	dynamics	

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

The continuity equations for air and tracers are coupled:

�
Ak

�pn+1k dA = �
ak
�pnk dA, (2)

�
Ak

(�p q)n+1k dA = �
ak
(�pkq)n dA. (3)

If q = 1 then (3) should reduce to (2).
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Coupling	finite-volume	semi-
Lagrangian	transport	with	
spectral	element	dynamics	

Solved	with	spectral-element	
Eulerian	advec$on	operator	
(max	Courant	number	<	0.3)	

	
	
	
	
	
	

Basic formulation

Solution

Cast problem in flux-form:

F(CSLAM) = F(SE) (4)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

Spectral-element method does not operate with fluxes: Taylor et al.
have derived a method to compute fluxes, F(SE), through the
CSLAM control volume faces! presented at ICMS conference in March, 2015.
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Solved	with	semi-Lagrangian	
scheme	(CSLAM)	

(max	Courant	number	<	1)	
	
	
	
	
	

Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,|)
reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.
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shape-preserva$on,	and	consistency	



Basic formulation

Coupling problem formulation

We need to find a departure grid so that

�p

(CSLAM) =�p

(SE) (3)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

(a) (b)

Figure: Global iteration problem / and it is ill-conditioned since any
non-divergent perturbation of points yields the same solution ///
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

Find upstream area, ak , so that CSLAM predicted mass field is equal to
CAM-SE predicted mass field:

�pn+1k (CAM-SE) = 1

�A �ak �pnk dA (CSLAM) , . (4)

Many details of algorithm (well-posedness, ...) are left out here ...
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If	 we	 choose	 to	 move	 departure	 points	
around	 so	 that	 (4)	 is	 fulfilled	 a	 global	
itera$on	problem	results!		
	
	
	
	
	
	
(and	I	am	not	sure	it	is	well-posed!)	
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If	 we	 choose	 to	 move	 departure	 points	
around	 so	 that	 (4)	 is	 fulfilled	 a	 global	
itera$on	problem	results!		
	
	
	
	
	
	
(and	I	am	not	sure	it	is	well-posed!)	

Solu-on:	Cast	problem	in	flux-form	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Basic formulation

CSLAM fluxes

Given F(SE) find swept areas, �⌦, so that:

1

F(CSLAM) = �
�⌦

�p(x , y)dA = F(SE) ∀ �⌦.

2 The sum of all the swept areas, �⌦, span the domain without cracks
or overlaps
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If	 we	 choose	 to	 move	 departure	 points	
around	 so	 that	 (4)	 is	 fulfilled	 a	 global	
itera$on	problem	results!		
	
	
	
	
	
	
(and	I	am	not	sure	it	is	well-posed!)	

Solu-on:	Cast	problem	in	flux-form	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)
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If	 we	 choose	 to	 move	 departure	 points	
around	 so	 that	 (4)	 is	 fulfilled	 a	 global	
itera$on	problem	results!		
	
	
	
	
	
	
(and	I	am	not	sure	it	is	well-posed!)	

Solu-on:	Cast	problem	in	flux-form	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Basic formulation

Consistent SE-CSLAM algorithm: flow cases

case 9case 7

case 1

case 4

case 8

case 6
case 5

case 2 case 3

(e)

(e)(e)

(f)

(e)

(e)

(d)

(e)

(e)
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(a) (b)

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency
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Many details of algorithm (well-posedness, ...) are left out here ...

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM September 17, 2015 4 / 8

Lauritzen,	Taylor,	Overfelt,	Ullrich	and	Goldhaber	(2016,	IN	PREP)		

Local	 itera$on	 problem	 to	 find	 equivalent	
upstream	areas:	
	
	
	
	
	
	
	
	
	



20TH ANNUAL CESM WORKSHOP June 15-18, 2015, Breckenridge, Colorado

Overview

A new model configuration based on CAM-SE:

SE: Spectral-element dynamical core solving for �v , T , ps
(Dennis et al., 2012; Evans et al., 2012; Taylor and Fournier, 2010; Taylor et al., 1997)

CSLAM: Semi-Lagrangian finite-volume transport scheme for tracers
(Lauritzen et al., 2010; Erath et al., 2013, 2012; Harris et al., 2010)

Phys-grid: Separating physics and dynamics grids, i.e. ability to
compute physics tendencies based on cell-averaged values within each
element instead of quadrature points
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CAM-SE-CSLAM	

Lauritzen,	Taylor,	Overfelt,	Ullrich	and	Goldhaber	(2016,	IN	PREP)		



3	tracers:	ini$al	condi$ons	

Gaussian	
“ball”	

Zonally		
symmetric	
(smooth)	

Sloeed	
cylinder	



Predictability limit for flow is 
approximately 12 days �

(Jablonowski and Williamson, 2006)  

CAM-SE �
1 degree 
standard 

configuration 
(spectral element 

advection) 

CAM-SE-CSLAM �
1 degree 

 configuration 
(tracer transport 

with CSLAM 
consistently coupled 

with spectral 
element dynamics) 

CAM-SE �
0.25 degree 

standard configuration  
 

USED AS REFERENCE 
SOLUTION (“TRUTH”) 



day	15	 day	15	day	15	

day	17	 day	17	day	17	

CAM-SE	 CAM-SE-CSLAM	 CAM-SE	reference	



CAM-SE	 CAM-SE-CSLAM	 CAM-SE	reference	

day	7.5	 day	7.5	 day	7.5	

day	9	 day	9	 day	9	



CAM-SE	 CAM-SE-CSLAM	 CAM-SE	reference	

day	10	 day	10	 day	10	

day	5	 day	5	 day	5	



The	terminator	‘toy’-chemistry	test:	A	simple	tool	to	
assess	errors	in	transport	schemes�
(Lauritzen	et	al.,	2015,	GMD)	
See:	http://www.cgd.ucar.edu/cms/pel/terminator.html		

Cl	

Non-linear		
Terminator	‘toy’		
chemistry:	

Exact	solu$on:	
Cl+2*Cl2	=	constant	

Errors	are	due	to	non-conserva$on	of	linear	correla$ons	usually	
caused	by	the	limiter/filter	and/or	physics-dynamics	coupling!	

Wind	field:		
Nair	and	
Lauritzen	

deforma$onal	
flow	

The  terminator  
test 

CL2	

Cl+2*Cl2	=	constant	



`Toy’	terminator	chemistry	code:	



3D	version	of	terminator	test	
The	terminator	test	setup	can	be	used	in	any	flow	field	and	the	analy$cal	solu$on	for	Cly	is	always	known!	

•  Use	baroclinic	wave	setup	(a	varia$on	of	Ullrich	et	al.,	2015)	
•  Ini$alize	with	same	mixing	ra$o	distribu$on	in	each	layer	(same	as	2D	test)	
•  As	a	diagnos$c	we	use	average	column	integrated	mixing	ra$os	(q)	so	that	diagnos$cs	

are	independent	of	ver$cal	coordinate:	
	
	
	

•  Since	exact	solu$on	is	known	(qCly=4E-6	kg/kg)	we	can	compute	error	norms:	
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Please	note	that	the	SE	limiter	
has	been	improved	since	
these	simula-ons	were	
performed	–	Mark	Taylor	
personal	communica-on	



CAM-SE-CSLAM	



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20  25  30

l ∞

time [days]

l
∞

 error norm for HOMME-CSLAM (1° resolution)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20  25  30

l ∞

time [days]

l
∞

 error norm for HOMME (1° resolution)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  5  10  15  20  25  30

l 2

time [days]

l2 error norm for HOMME-CSLAM (1° resolution)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  5  10  15  20  25  30

l 2

time [days]

l2 error norm for HOMME (1° resolution)

-1.6x10-14

-1.4x10-14

-1.2x10-14

-1x10-14

-8x10-15

-6x10-15

-4x10-15

-2x10-15

 0

 2x10-15

 0  5  10  15  20  25  30

re
l. 

m
a

ss
 c

h
a

n
g

e

time [days]

Relative mass change (HOMME-CSLAM 1° resolution)

-1.6x10-14

-1.4x10-14

-1.2x10-14

-1x10-14

-8x10-15

-6x10-15

-4x10-15

-2x10-15

 0

 2x10-15

 0  5  10  15  20  25  30

re
l. 

m
a

ss
 c

h
a

n
g

e

time [days]

Relative mass change (HOMME 1° resolution)

Diagnostics for terminator test: chemistry time−step = 900s
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Diagnostics for terminator test: chemistry time−step = 1800s
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Diagnostics for terminator test: chemistry time−step = 1800sMass-conserva$on	of	Cly	violated	by	physics-dynamics	coupling:	
	
	

Example:	if	forcing	for	qCl	is	modified	by	if-statement	then	FCl	≠	-2FCl2	
and	preserva$on	of	linear	correla$ons	by	physics-dynamics	coupling	is	
violated	and	thereby	mass-conserva$on	of	Cly	is	violated!	
	
Occurs	at	a	point	2	$mes	for	CAM-SE-CSLAM	and	frequently		
(in	$me	and	space)	for	CAM-SE.	

CAM-SE	and	CAM-SE-CSLAM	
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