# Atmosphere Modeling II: Dynamics

### the CAM (Community Atmosphere Model) FV (Finite Volume) and SE (Spectral element) dynamical cores

#### Peter Hjort Lauritzen

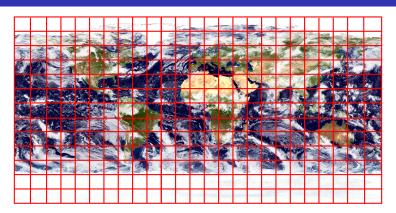
Atmospheric Modeling & Predictability Section (AMP)
Climate and Global Dynamics Laboratory (CGD)
National Center for Atmospheric Research (NCAR)









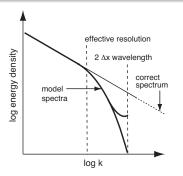

NCAR is sponsored by the National Science Foundation (NSF)

- Atmosphere intro
  - Multi-scale nature of atmosphere dynamics
  - Resolved and un-resolved scales
  - 'Define' dynamical core and parameterizations
- CAM-FV dynamical core (current 'work horse' dynamical core)
  - Horizontal and vertical grid
  - Equations of motion
  - The Lin and Rood (1996) advection scheme
  - Finite-volume discretization of the equations of motion
  - The 'CD' grid approach
  - Vertical remapping
  - Tracers
- 3 Other dynamical core options in CAM
  - CAM-EUL (Eulerian): Based on spherical harmonic functions
  - CAM-SE (Spectral-Elements): Default dynamical core in CAM for high (hydrostatic) horizontal resolution applications
  - CAM-MPAS (Model for Prediction Across Scales): non-hydrostatic (development version)



Source: NASA Earth Observatory

## Horizontal computational space




- Red lines: regular latitude-longitude grid
- Grid-cell size defines the smallest scale that can be resolved ( $\neq$  effective resolution!)
- Many important processes taking place sub-grid-scale that must be parameterized
- Loosely speaking, the parameterizations compute grid-cell average tendencies due to sub-grid-scale processes in terms of the (resolved scale) atmospheric state
- In modeling jargon parameterizations are also referred to as physics (what is unphysical about resolved scale dynamics?)

# Effective resolution: smallest scale ( highest wave-number $k=k_{eff}$ ) that model can accurately represent

- $\bullet$   $k_{eff}$  can be assessed analytically for linearized equations (Von Neumann analysis)
- In a full model one can assess  $k_{eff}$  using total kinetic energy spectra (TKE) of, e.g., horizontal wind  $\vec{v}$  (see Figure below)

Effective resolution is typically 4-10 grid-lengths depending on numerical method!



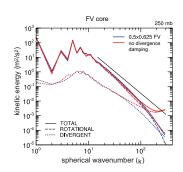
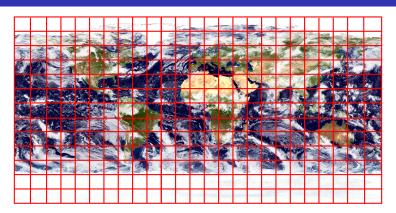




Figure from Skamarock (2011): (left) Schematic depicting the possible behavior of spectral tails derived from model forecasts. (right) TKE (solid lines) as a function of spherical wavenumber for the CCSM finite-volume dynamical core derived from aquaplanet simulations. The total KE is broken into divergent and rotational components (dashed lines) and the solid black lines shows the  $k^{-3}$  slope.

## Horizontal computational space



- Red lines: regular latitude-longitude grid
- Grid-cell size defines the smallest scale that can be resolved ( $\neq$  effective resolution!)
- Many important processes taking place sub-grid-scale that must be parameterized
- Loosely speaking, the parameterizations compute grid-cell average tendencies due to sub-grid-scale processes in terms of the (resolved scale) atmospheric state
- In modeling jargon parameterizations are also referred to as physics (what is unphysical about resolved scale dynamics?)

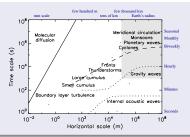



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

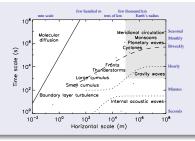



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

•  $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).

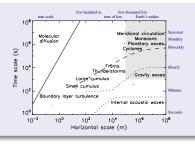



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)

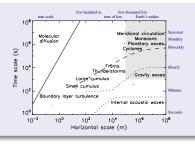



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- $\bullet$   $\mathcal{O}(10 \text{km})$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of  $\mathrm{km}$

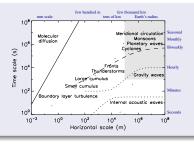



Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).

- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- ullet  $\mathcal{O}(10 km)$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of  ${
  m km}$
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)

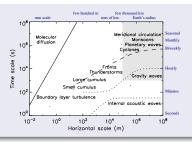
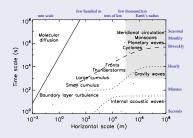
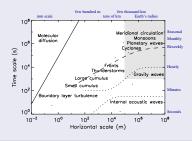
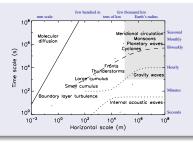
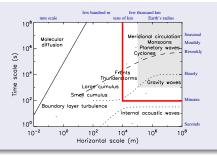





Figure indicates schematically the time scales and horizontal spatial scales of a range of atmospheric phenomena (Figure from Thuburn 2011).


- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- $\mathcal{O}(10 \text{km})$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of  $\mathrm{km}$
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)
- $\mathcal{O}(10m-1mm)$ : turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm scale at which molecular diffusion becomes significant.



- All of the phenomena along the dashed line are important for weather and climate, and so need to be represented in numerical models.
- Important phenomena occur at all scales there is no significant spectral gap! Moreover, there are strong interactions between the phenomena at different scales, and these interactions need to be represented.
- The lack of any spectral gap makes the modeling of weather/climate very challenging
- The emphasis in this lecture is how we model resolved dynamics; however, it should be borne in mind that equally important is how we represent unresolved processes, and the interactions between resolved and unresolved processes.
- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\circ$   $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- $\mathcal{O}(10\text{km})$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of  $\mathrm{km}$
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)
- $\mathcal{O}(10m-1mm)$ : turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm scale at which molecular diffusion becomes significant.




- Two dotted curves correspond to dispersion relations for internal inertio-gravity waves and internal acoustic waves (relatively fast processes)
- these lines lie significantly below the energetically dominant processes on the dashed line
  - ⇒ they are energetically weak compared to the dominant processes along the dashed curve
  - ⇒ we do relatively little damage if we distort their propagation (will return to this later)
  - the fact that these waves are fast puts constraints on the size of Δt (at least for explicit and semi-implicit time-stepping schemes)!
- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- $\mathcal{O}(10km)$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of km
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)
- $\mathcal{O}(10m-1mm)$ : turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm scale at which molecular diffusion becomes significant.



#### Horizontal resolution:

- the shaded region shows the resolved space/time scales in typical current day climate models (approximately  $1^{\circ}-2^{\circ}$  resolution)
- $\ \, \ \,$  highest resolution at which CAM is run/developed is on the order of  $10\,-\,25km$
- as the resolution is increased some 'large-scale' parameterizations may no longer be necessary (e.g., large scale convection) and we might need to redesign some parameterizations that were developed for horizontal resolutions of hundreds of km's
- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- ullet  $\mathcal{O}(10 km)$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of  ${
  m km}$
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)
- $\mathcal{O}(10m-1mm)$ : turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm scale at which molecular diffusion becomes significant.



#### Horizontal resolution:

- lacktriangled the shaded region shows the resolved space/time scales in typical current day climate models (approximately  $1^\circ-2^\circ$  resolution)
- $\bullet$  highest resolution at which CAM is run/developed is on the order of  $10\,-\,25 km$
- as the resolution is increased some 'large-scale' parameterizations may no longer be necessary (e.g., large scale convection) and we might need to redesign some parameterizations that were developed for horizontal resolutions of hundreds of km's
- $\mathcal{O}(10^4 km)$ : large scale circulations (Asian summer monsoon).
- $\mathcal{O}(10^4 km)$ : undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called *planetary waves*)
- $\mathcal{O}(10^3 km)$ : cyclones and anticyclones
- $\mathcal{O}(10km)$ : the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of km
- $\mathcal{O}(10^3 km 100m)$ : convection can be organized on a huge range of different scales (tropical intraseasonal oscillations; supercell complexes and squall lines; individual small cumulus clouds formed from turbulent boundary layer eddies)
- $\mathcal{O}(10m-1mm)$ : turbulent eddies in boundary layer (lowest few hundred m's of the atmosphere, where the dynamics is dominated by turbulent transports); range in scale from few hundred m's (the boundary layer depth) down to mm scale at which molecular diffusion becomes significant.

## Model code

#### Parameterization suite

- Moist processes: deep convection, shallow convection, large-scale condensation
- Radiation and Clouds: cloud microphysics, precipitation processes, radiation
- Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave drag





#### 'Resolved' dynamics

'Roughly speaking, the **dynamical core** solves the governing fluid and thermodynamic equations on resolved scales, while the parameterizations represent sub-grid-scale processes and other processes not included in the dynamical core such as radiative transfer.' - Thuburn (2008)

## Model code

#### Parameterization suite

- Moist processes: deep convection, shallow convection, large-scale condensation
- Radiation and Clouds: cloud microphysics, precipitation processes, radiation
- Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave drag

#### Strategies for coupling:

- process-split: dynamical core & parameterization suite are based on the same state and their tendencies are added to produce the updated state (used in CAM-EUL)
- time-split: dynamic core & parameterization suite are calculated sequentially, each based on the state produced by the other (used in CAM-FV; the order matters!).



- different coupling approaches discussed in the context of CCM3 in Williamson (2002)
- simulations are very dependent on coupling time-step (e.g. Williamson and Olson, 2003)

#### 'Resolved' dynamics

'Roughly speaking, the **dynamical core** solves the governing fluid and thermodynamic equations on resolved scales, while the parameterizations represent sub-grid-scale processes and other processes not included in the dynamical core such as radiative transfer.' - Thuburn (2008)

# Spherical (horizontal) discretization grid

CAM-FV uses regular latitude-longitude grid:

- ullet horizontal position:  $(\lambda, \theta)$ , where  $\lambda$  longitude and  $\theta$  latitude.
- horizontal resolution specified in configure as:

hgrid 
$$\Delta \lambda imes \Delta heta$$

where, e.g.,  $\Delta\lambda \times \Delta\theta = 1.9 \times 2.5$  corresponding to nlon=144, nlat=96.

Changing resolution requires a 're-compile' .



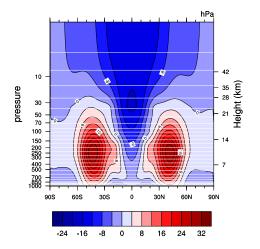
# Vertical coordinate: hybrid sigma ( $\sigma = p/p_s$ )-pressure (p) coordinate



Figure courtesy of David Hall (CU Boulder).

Sigma layers at the bottom (following terrain) with isobaric (pressure) layers aloft.

Pressure at model level interfaces


$$p_{k+1/2} = A_{k+1/2} p_0 + B_{k+1/2} p_s,$$

where  $p_s$  is surface pressure,  $p_0$  is the model top pressure, and  $A_{k+1/2}(\in [0:1])$  and  $B_{k+1/2}(\in [1:0])$  hybrid coefficients (in model code: *hyai* and *hybi*). Similarly for model level mid-points.

Note: vertical index is 1 at model top and *klev* at surface.

◆□ > ◆圖 > ◆臺 > ◆臺 >

# Vertical coordinate: hybrid sigma $(\sigma = p/p_s)$ -pressure (p) coordinate

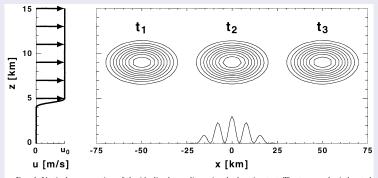


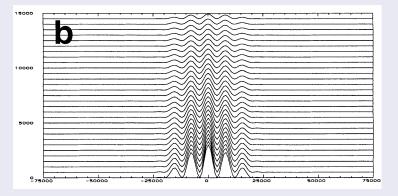
Time & zonally averaged zonal wind (Held-Suarez forcing); overlaid CAM5 levels (klev = 30).

# Aside: hybrid sigma $(\sigma = p/p_s)$ -pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce errors:

- Pressure gradient force (PDF) errors:  $\frac{1}{\rho}\nabla p_z = \frac{1}{\rho}\nabla_{\eta}p + \frac{1}{\rho}\frac{dp}{dz}\nabla_{\eta}z$ , (Kasahara, 1974) where  $\rho$  is density, p pressure and z height.
- Errors in modeling flow along constant z-surfaces near the surface



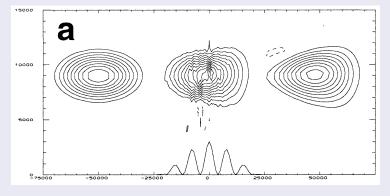


Fig. 4. Vertical cross section of the idealized two-dimensional advection test. The topography is located entirely within a stagnant pool of air, while there is a uniform horizontal velocity aloft. The analytical solution of the advected anomaly is shown at three instances.

Schär et al. (2002)

# Aside: hybrid sigma ( $\sigma = p/p_s$ )-pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce errors:

- Pressure gradient force (PDF) errors:  $\frac{1}{\rho}\nabla p_z = \frac{1}{\rho}\nabla_{\eta}p + \frac{1}{\rho}\frac{dp}{dz}\nabla_{\eta}z$ , (Kasahara, 1974) where  $\rho$  is density, p pressure and z height.
- Errors in modeling flow along constant z-surfaces near the surface




Schär et al. (2002)

# Aside: hybrid sigma $(\sigma = p/p_s)$ -pressure (p) coordinate

While terrain-following coordinates simplify the bottom boundary condition, they may introduce errors:

- Pressure gradient force (PDF) errors:  $\frac{1}{\rho}\nabla p_z = \frac{1}{\rho}\nabla_{\eta}p + \frac{1}{\rho}\frac{dp}{dz}\nabla_{\eta}z$ , (Kasahara, 1974) where  $\rho$  is density, p pressure and z height.
- Errors in modeling flow along constant z-surfaces near the surface



Schär et al. (2002)

## Vertical coordinate

 $\bullet$  CAM-FV uses a Lagrangian ('floating') vertical coordinate  $\xi$  so that

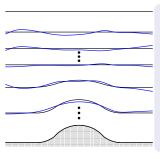
$$\frac{d\xi}{dt}=0,$$

i.e. vertical surfaces are material surfaces (no flow across them).

Figure shows 'usual' hybrid  $\sigma-p$  vertical coordinate  $\eta(p_s,p)$  (where  $p_s$  is surface pressure):

- $\eta(p_s, p)$  is a monotonic function of p.
- $\eta(p_s, 0) = 0$
- $\eta(p_s, p_{top}) = \eta_{top}$ .

Boundary conditions are:


• 
$$\frac{d\eta(p_s, p_{top})}{dt} = \omega(p_{top}) = 0$$
  
( $\omega$  is vertical velocity in pressure coordinates)

## Vertical coordinate

ullet CAM-FV uses a Lagrangian ('floating') vertical coordinate  $\xi$  so that

$$\frac{d\xi}{dt}=0,$$

i.e. vertical surfaces are material surfaces (no flow across them).



## Figure:

- set  $\xi = \eta$  at time  $t_{start}$  (black lines).
- for  $t > t_{start}$  the vertical levels deform as they move with the flow (blue lines).
- to avoid excessive deformation of the vertical levels (non-uniform vertical resolution) the prognostic variables defined in the Lagrangian layers  $\xi$  are periodically remapped (= conservative interpolation) back to the Eulerian reference coordinates  $\eta$  (more on this later).

Why use floating Lagrangian vertical coordinates?

Vertical advection terms disappear (3D model becomes 'stacked shallow-water models'; only 2D numerical methods are needed)

## Vertical coordinate

• Vertical resolution specified in configure as:

-nlev *klev* 

where klev is the number of vertical levels, e.g., klev = 26 or klev = 30. Changing vertical resolution requires a 're-compile'.

The vertical extent is from the surface to

- approximately 40 km's / 2hPa for CAM
- ullet approximately 100 km's / 10<sup>-6</sup> hPa for WACCM (Whole Atmosphere Community Climate Model)
- $\bullet$  approximately 500 km's /  $10^{-9}$  hPa for WACCM-x

# Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

- spherical geoid: geopotential  $\Phi$  is only a function of radial distance from the center of the Earth r:  $\Phi = \Phi(r)$  (for planet Earth the true gravitational acceleration is much stronger than the centrifugal force).
  - $\Rightarrow$  Effective gravity acts only in radial direction

# Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

- spherical geoid: geopotential  $\Phi$  is only a function of radial distance from the center of the Earth r:  $\Phi = \Phi(r)$  (for planet Earth the true gravitational acceleration is much stronger than the centrifugal force).
  - ⇒ Effective gravity acts only in radial direction
- quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
   Involves ignoring the acceleration term in the vertical component of the momentum equations so that it reads:

$$\rho g = -\frac{\partial p}{\partial z},\tag{1}$$

where g gravity,  $\rho$  density and p pressure. Good approximation down to horizontal scales greater than approximately 10km.

# Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

- spherical geoid: geopotential  $\Phi$  is only a function of radial distance from the center of the Earth r:  $\Phi = \Phi(r)$  (for planet Earth the true gravitational acceleration is much stronger than the centrifugal force).
  - ⇒ Effective gravity acts only in radial direction
- quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
   Involves ignoring the acceleration term in the vertical component of the momentum equations so that it reads:

$$\rho g = -\frac{\partial p}{\partial z},\tag{1}$$

where g gravity,  $\rho$  density and p pressure. Good approximation down to horizontal scales greater than approximately 10km.

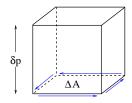
• shallow atmosphere: a collection of approximations. Coriolis terms involving the horizontal components of  $\Omega$  are neglected ( $\Omega$  is angular velocity), factors 1/r are replaced with 1/a where a is the mean radius of the Earth and certain other metric terms are neglected so that the system retains conservation laws for energy and angular momentum.

# Adiabatic frictionless equations of motion using Lagrangian vertical coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion integrated over a layer can be written as

$$\begin{array}{ll} \text{mass air:} & \frac{\partial (\delta p)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \delta p \right), \\ \text{mass tracers:} & \frac{\partial (\delta p q)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \, q \delta p \right), \\ \text{horizontal momentum:} & \frac{\partial \vec{v}_h}{\partial t} = -\left( \zeta + f \right) \vec{k} \times \vec{v}_h - \nabla_h \kappa - \nabla_p \Phi, \\ \text{thermodynamic:} & \frac{\partial (\delta p \Theta)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \delta p \Theta \right) \end{array}$$

where  $\delta p$  is the layer thickness,  $\vec{v}_h$  is horizontal wind, q tracer mixing ratio,  $\zeta$  vorticity, f Coriolis,  $\kappa$  kinetic energy,  $\Theta$  potential temperature. The momentum equations are written in vector invariant form.


# Adiabatic frictionless equations of motion using Lagrangian vertical coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion integrated over a layer can be written as

$$\begin{array}{ll} \text{mass air:} & \frac{\partial (\delta p)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \delta p \right), \\ \\ \text{mass tracers:} & \frac{\partial (\delta p q)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \, q \delta p \right), \\ \\ \text{horizontal momentum:} & \frac{\partial \vec{v}_h}{\partial t} = -\left( \zeta + f \right) \vec{k} \times \vec{v}_h - \nabla_h \kappa - \nabla_p \Phi, \\ \\ \text{thermodynamic:} & \frac{\partial (\delta p \Theta)}{\partial t} = -\nabla_h \cdot \left( \vec{v}_h \delta p \Theta \right) \end{array}$$

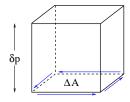
The equations of motion are discretized using an Eulerian finite-volume approach.

# Finite-volume discretization of continuity equation



Integrate the flux-form continuity equation horizontally over a control volume:

$$\frac{\partial}{\partial t} \iint_{A} \delta p \, dA = -\iint_{A} \nabla_{h} \left( \vec{v}_{h} \delta p \right) \, dA, \tag{2}$$


where A is the horizontal extent of the control volume. Using Gauss's divergence theorem for the right-hand side of (2) we get:

$$\frac{\partial}{\partial t} \iint_{A} \delta p \, dA = -\oint_{\partial A} \delta p \, \vec{\mathbf{v}} \cdot \vec{\mathbf{n}} \, dA,\tag{3}$$

where  $\partial A$  is the boundary of A and  $\vec{n}$  is outward pointing normal unit vector of  $\partial A$ .

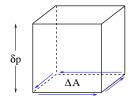


# Finite-volume discretization of continuity equation



Integrate the flux-form continuity equation horizontally over a control volume:

$$\frac{\partial}{\partial t} \iint_{A} \delta \boldsymbol{p} \, dA = -\iint_{A} \nabla_{h} \left( \vec{\boldsymbol{v}}_{h} \delta \boldsymbol{p} \right) \, dA, \tag{2}$$


where A is the horizontal extent of the control volume. Using Gauss's divergence theorem for the right-hand side of (2) we get:

$$\frac{\partial}{\partial t} \iint_{A} \delta p \, dA = -\oint_{\partial A} \delta p \, \vec{v} \cdot \vec{n} \, dA,\tag{3}$$

Right-hand side of (3) represents the instantaneous flux of mass through the vertical faces of the control volume.

Next: integrate over one time-step  $\Delta t_{dyn}$  and discretize left-hand side.

# Finite-volume discretization of continuity equation

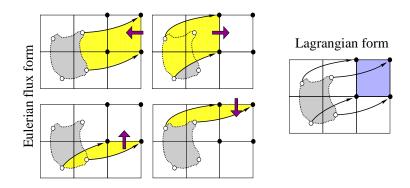


Integrate the flux-form continuity equation horizontally over a control volume:

$$\frac{\partial}{\partial t} \iint_{A} \delta p \, dA = -\iint_{A} \nabla_{h} (\vec{v}_{h} \delta p) \, dA, \tag{2}$$

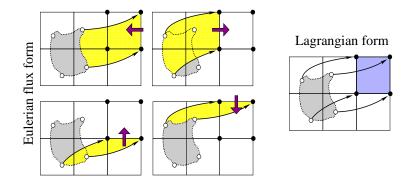
$$\Delta A \, \overline{\delta p}^{n+1} - \Delta A \, \overline{\delta p}^{n} = -\Delta t_{dyn} \int_{t=n\Delta t}^{t=(n+1)\Delta t} \left[ \oint_{\partial A} \delta p \, \vec{v} \cdot \vec{n} \, dA \right] \, dt, \tag{3}$$

where n is time-level index and  $\overline{(\cdot)}$  is cell-averaged value.


The right-hand side represents the mass transported through all of the four vertical control volume faces into the cell during one time-step. Graphical illustration on next slide!



The yellow areas are 'swept' through the control volume faces during one time-step. The grey area is the corresponding Lagrangian area (area moving with the flow with no flow through its boundaries that ends up at the Eulerian control volume after one time-step). Black arrows show parcel trajectories.


Note equivalence between Eulerian flux-form and Lagrangian form!

(Lauritzen et al., 2011b)



Until now everything has been exact. How do we approximate the fluxes numerically?

• In CAM-FV the Lin and Rood (1996) scheme is used which is a dimensionally split scheme (that is, rather than 'explicitly' estimating the boundaries of the yellow areas and integrate over them, fluxes are estimated by successive applications of one-dimensional operators in each coordinate direction).



Until now everything has been exact. How do we approximate the fluxes numerically?

• (before showing equations for Lin and Rood (1996) scheme) What is the effective Lagrangian area associated with the Lin and Rood (1996) scheme?

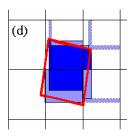
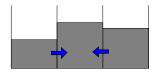



Figure: Red lines define boundary of exact Lagrangian cell for a special case with deformational, rotational and divergent wind field. Blue colors is Lagrangian cell associated with the Lin and Rood (1996) scheme. Dark blue shading weights integrated mass with 1 and light blue shading weights integrated mass with 1/2. See Machenhauer et al. (2009) for details.

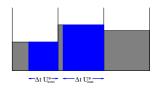
Until now everything has been exact. How do we approximate the fluxes numerically?

• (before showing equations for Lin and Rood (1996) scheme) What is the effective Lagrangian area associated with the Lin and Rood (1996) scheme?


$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$

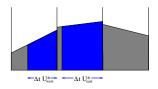
where

 $F^{\lambda,\theta} = \text{flux divergence in } \lambda \text{ or } \theta \text{ coordinate direction}$ 


 $f^{\lambda,\theta}=$  advective update in  $\lambda$  or  $\theta$  coordinate direction

$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$

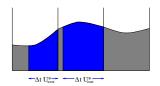



ullet Figure: Graphical illustration of flux-divergence operator  $F^{\lambda}$ . Shaded areas show cell average values for the cell we wish to make a forecast for and the two adjacent cells.

$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$



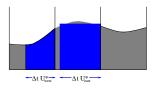
- $u_{East/West}^*$  are the time-averaged winds on each face (more on how these are obtained later).
- ullet  $F^{\lambda}$  is proportional to the difference between mass 'swept' through East and West cell face.
- $f^{\lambda} = F^{\lambda} + \overline{\langle \delta p \rangle} \Delta t_{dyn} D$ , where D is divergence.
- On Figure we assume constant sub-grid-cell reconstructions for the fluxes.


$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$



Higher-order approximation to the fluxes:

 Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear function using neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under linear function = cell average).


$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$



#### Higher-order approximation to the fluxes:

- Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear function using neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under linear function = cell average).
- Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984): Fit parabola using neighboring grid-cell average values with mass-conservation as a constraint. Note: Reconstruction is  $C^0$  across cell edges.

$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$



#### Higher-order approximation to the fluxes:

- Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): fit a linear function using neighboring grid-cell average values with mass-conservation as a constraint (i.e. area under linear function = cell average).
- Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984): fit parabola
  using neighboring grid-cell average values with mass-conservation as a constraint. Note:
  reconstruction is continuous at cell edges.
- Reconstruction function may 'overshoot' or 'undershoot' which may lead to unphysical and/or oscillatory solutions. Use limiters to render reconstruction function shape-preserving.

$$\overline{\delta p}^{n+1} = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right],$$

#### Advantages:

- Inherently mass conservative (note: conservation does not necessarily imply accuracy!).
- Formulated in terms of one-dimensional operators.
- Preserves constant mass field for a non-divergent flow field (if the finite-difference approximation to divergence is zero).
- Preserves linear correlations between trace species (if shape-preservation filters are not applied)
- Has shape-preserving options.

#### Namelist variables for *outer* operators

IORD: Scheme used for  $F^{\lambda}$ , JORD: scheme used for  $F^{\theta}$ 

Options for sub-grid-scale reconstruction (IORD, JORD = -2,1,2,3,4,5,6):

- Piecewise linear (non shape-preserving), (van Leer, 1977).
- Piecewise constant (Godunov, 1959).
- Piecewise linear with shape-preservation constraint (van Leer, 1977).
- Piecewise parabolic with shape-preservation constraint (Colella and Woodward, 1984).
- Piecewise parabolic with shape-preservation constraint (Lin and Rood, 1996).
- Piecewise parabolic with positive definite constraint (Lin and Rood, 1996).
- Piecewise parabolic with quasi 'shape-preservation' constraint (Lin and Rood, 1996).

Defaults: IORD=JORD=4

#### Namelist variables for *outer* operators

• In top layers operators are reduced to first order:

E.g., for klev=30 the operators are altered in the top 3 layers.

• The advective  $f^{\lambda,\theta}$  (inner) operators are 'hard-coded' to 1st order. For a linear analysis of the consequences of using inner and outer operators of different orders see Lauritzen (2007).

Hydrostatic equations of motion integrated over a Lagrangian layer

$$\begin{split} \frac{\partial (\delta p)}{\partial t} &= -\nabla_h \cdot (\vec{v}_h \delta p) \,, \\ \frac{\partial (\delta pq)}{\partial t} &= -\nabla_h \cdot (\vec{v}_h \delta p) \,, \\ \frac{\partial \vec{v}_h}{\partial t} &= -(\zeta + f) \, \vec{k} \times \vec{v}_h - \nabla_h \kappa - \nabla_p \Phi, \\ \frac{\partial (\delta p\Theta)}{\partial t} &= -\nabla_h \cdot (\vec{v}_h \delta p\Theta) \end{split}$$

The equations of motion are discretized using an Eulerian finite-volume approach.

$$\begin{split} \overline{\delta p}^{n+1} & = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right], \\ \frac{\partial (\delta pq)}{\partial t} & = -\nabla_h \cdot (\vec{v}_h \delta p), \\ \frac{\partial \vec{v}_h}{\partial t} & = -(\zeta + f) \vec{k} \times \vec{v}_h - \nabla_h \kappa - \nabla_p \Phi, \\ \frac{\partial (\delta p\Theta)}{\partial t} & = -\nabla_h \cdot (\vec{v}_h \delta p\Theta) \end{split}$$

$$\begin{split} \overline{\delta p}^{n+1} & = \overline{\delta p}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^\theta (\overline{\delta p}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^\lambda (\overline{\delta p}^n) \right) \right], \\ \overline{\delta p q}^{n+1} & = \text{super-cycled (discussed later)}, \\ \frac{\partial \vec{v}_h}{\partial t} & = - \left( \zeta + f \right) \vec{k} \times \vec{v}_h - \nabla_h \kappa - \nabla_p \Phi, \\ \frac{\partial (\delta p \Theta)}{\partial t} & = - \nabla_h \cdot (\vec{v}_h \delta p \Theta) \end{split}$$

$$\begin{split} \overline{\delta p}^{n+1} & = \overline{\delta p}^n + F^{\lambda} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\theta} (\overline{\delta p}^n) \right) \right] + F^{\theta} \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^{\lambda} (\overline{\delta p}^n) \right) \right], \\ \overline{\delta p q}^{n+1} & = \text{super-cycled (discussed later)}, \\ \vec{v}_h^{n+1} & = \vec{v}_h^n - \vec{\Gamma}^1 \left[ (\zeta + f) \vec{k} \times \vec{v}_h \right] - \nabla_h \left( \vec{\Gamma}^2 \kappa \right) - \Delta t_{dyn} \widehat{P}, \\ \frac{\partial (\delta p \Theta)}{\partial t} & = -\nabla_h \cdot (\vec{v}_h \delta p \Theta) \end{split}$$

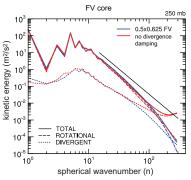
- $\vec{\Gamma}^1$  is operator using combinations of  $F^{\lambda,\theta}$  and  $f^{\lambda,\theta}$  as components to approximate the time-volume-average of the vertical component of absolute vorticity. Similarly for  $\vec{\Gamma}^2$  but for kinetic energy.  $\nabla_h$  is simply approximated by finite differences. For details see Lin (2004).
- ullet  $\widehat{P}$  is a finite-volume discretization of the pressure gradient force (see Lin 1997 for details).

$$\begin{split} \overline{\delta \rho}^{n+1} & = \overline{\delta \rho}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\delta \rho}^n + f^\theta (\overline{\delta \rho}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\delta \rho}^n + f^\lambda (\overline{\delta \rho}^n) \right) \right], \\ \overline{\delta \rho q}^{n+1} & = \text{super-cycled (discussed later)}, \\ \overline{v}_h^{n+1} & = \overline{v}_h^n - \vec{\Gamma}^1 \left[ \left( \zeta + f \right) \vec{k} \times \vec{v}_h \right] - \nabla_h \left( \vec{\Gamma}^2 \kappa \right) - \Delta t_{dyn} \widehat{P}, \\ \overline{\Theta \delta \rho}^{n+1} & = \overline{\Theta \delta \rho}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\Theta \delta \rho}^n + f^\theta (\overline{\Theta \delta \rho}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\Theta \delta \rho}^n + f^\lambda (\overline{\Theta \delta \rho}^n) \right) \right], \end{split}$$

$$\begin{split} \overline{\delta \rho}^{n+1} & = \overline{\delta \rho}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\delta \rho}^n + f^\theta (\overline{\delta \rho}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\delta \rho}^n + f^\lambda (\overline{\delta \rho}^n) \right) \right], \\ \overline{\delta \rho q}^{n+1} & = \text{super-cycled (discussed later)}, \\ \overline{v}_h^{n+1} & = \overline{v}_h^n - \vec{\Gamma}^1 \left[ \left( \zeta + f \right) \vec{k} \times \vec{v}_h \right] - \nabla_h \left( \vec{\Gamma}^2 \kappa \right) - \Delta t_{dyn} \widehat{P}, \\ \overline{\Theta \delta \rho}^{n+1} & = \overline{\Theta \delta \rho}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\Theta \delta \rho}^n + f^\theta (\overline{\Theta \delta \rho}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\Theta \delta \rho}^n + f^\lambda (\overline{\Theta \delta \rho}^n) \right) \right], \end{split}$$

- No explicit diffusion operators in equations (so far!).
- ullet Implicit diffusion trough shape-preservation constraints in F and f operators.
- CAM-FV has 'control' over vorticity at the grid scale through implicit diffusion in the operators F and f but it does not have explicit control over divergence near the grid scale.

Hydrostatic equations of motion integrated over a Lagrangian layer


$$\begin{split} \overline{\delta p}^{n+1} & = \overline{\delta p}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^\theta (\overline{\delta p}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\delta p}^n + f^\lambda (\overline{\delta p}^n) \right) \right], \\ \overline{\delta p q}^{n+1} & = \text{super-cycled (discussed later)}, \\ \overline{v}_h^{n+1} & = \overline{v}_h^n - \vec{\Gamma}^1 \left[ \left( \zeta + f \right) \vec{k} \times \vec{v}_h \right] - \nabla_h \left( \vec{\Gamma}^2 \kappa \right) - \Delta t_{dyn} \widehat{P} + \Delta t_{dyn} \nabla_h \left( \nu \nabla_h^\ell D \right), \ell = 0, 2 \\ \overline{\Theta \delta p}^{n+1} & = \overline{\Theta \delta p}^n + F^\lambda \left[ \frac{1}{2} \left( \overline{\Theta \delta p}^n + f^\theta (\overline{\Theta \delta p}^n) \right) \right] + F^\theta \left[ \frac{1}{2} \left( \overline{\Theta \delta p}^n + f^\lambda (\overline{\Theta \delta p}^n) \right) \right], \end{split}$$

- No explicit diffusion operators in equations.
- ullet Implicit diffusion trough shape-preservation constraints in F and f operators.
- The above discretization leads to 'control' over vorticity at the grid scale through implicit diffusion but no explicit control over divergence.
- Add divergence damping (2<sup>nd</sup>-order or 4<sup>th</sup>-order) term to momentum equations.
   Optionally a 'Laplacian-like' damping of wind components is used in upper 3 levels to slow down excessive polar night jet that appears at high horizontal resolutions.

namelist variable: div24de12f1ag

More details: Lauritzen et al. (2011a): for a stability analysis of divergence damping in CAM see Whitehead et al. (2011)

## Total kinetic energy spectra



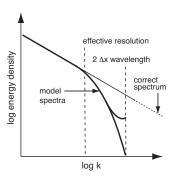



Figure: (left) Solid black line shows  $k^{-3}$  slope (courtesy of D.L. Williamson). (right) Schematic of 'effective resolution' (Figure from Skamarock (2011)).

- (left) Without divergence damping there is a spurious accumulation of total kinetic energy associated with divergent modes near the grid scale.
- (right) Note: total kinetic energy spectra can also be used to assess 'effective resolution' (see, e.g., discussion in Skamarock, 2011)

# Time-stepping: the 'CD'- grid approach

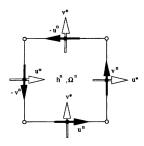



Figure from Lin and Rood (1997).

Definition of Arakawa C and D horizontal staggering (Arakawa and Lamb, 1977):

- C: velocity components at the center of cell faces and orthogonal to cell faces and mass variables at the cell center. Natural choice for mass-flux computations when using Lin and Rood (1996) scheme.
- D: velocity components parallel to cell faces and mass variables at the cell center. Natural choice for computing the circulation of vorticity  $(\frac{\partial v}{\partial x} \frac{\partial u}{\partial y})$ .

# Time-stepping: the 'CD'- grid approach

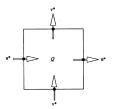



Figure from Lin and Rood (1997).

- For the flux- and advection operators (F and f, respectively) in the Lin and Rood (1996) scheme the time-centered advective winds (u\*, v\*) for the cell faces are needed:
- An option: extrapolate winds (as in semi-Lagrangian models) ⇒ can result in noise near steep topography (Lin and Rood, 1997).
- Instead, the equations of motion are integrated forward in time for  $\frac{1}{2}\Delta t_{dyn}$  using a C grid horizontal staggering.
- These C-grid winds  $(u^*, v^*)$  are then used for the 'full' time-step update (everything else from the C-grid forecast is 'thrown away').
- The 'full' time-step update is performed on a D-grid.
- For a linear stability analysis of the 'CD'-grid approach see Skamarock (2008).

## Vertical remapping

- CAM-FV uses a Lagrangian ('floating') vertical coordinate  $\xi$ .
- $\xi$  is retained *ksplit* dynamics time-steps  $\Delta t_{dyn}$ .
- Hereafter the prognostic variables are remapped to the Eulerian vertical grid  $\eta$  (the vertical remapping is performed using a mass and energy conserving method, see Lin 2004).
- ksplit is set in namelist:

-nsplit *ksplit* 

• The 'physics time-step is set in the namelist:

-dtime  $\Delta t$ ,

where  $\Delta t$  s is given in seconds.

- At every physics time-step Δt the variables are remapped in the vertical as described above.
- ullet So the dynamics time-step  $\Delta t_{dyn}$  is controlled with ksplit and  $\Delta t$  in the namelist:

$$\Delta t = ksplit \times \Delta t_{dyn}$$
.

(in CAM5 there is also an option to vertical remap more often)

#### Vertical remapping

- CAM-FV uses a Lagrangian ('floating') vertical coordinate  $\xi$ .
- $\xi$  is retained *ksplit* dynamics time-steps  $\Delta t_{dyn}$ .
- Hereafter the prognostic variables are remapped to the Eulerian vertical grid  $\eta$  (the vertical remapping is performed using a mass and energy conserving method, see Lin 2004).
- ksplit is set in namelist:

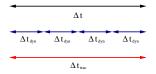
-nsplit ksplit



- Default setting for the 1.9×2.5 resolution is ksplit = 4 and  $\Delta t = 1800s$  (so  $\Delta t_{dyn} = 450s$ ).
- ksplit is usually chosen based on stability.
- (meridians are converging towards the poles) To stabilize the model (and reduce noise) FFT filters are applied along latitudes North/South of approximately 36° N/S.

• Continuity equation for air is coupled with momentum and thermodynamic equations:

- Continuity equation for air is coupled with momentum and thermodynamic equations:
  - thermodynamic variables and other prognostic variables feed back on the velocity field


- Continuity equation for air is coupled with momentum and thermodynamic equations:
  - thermodynamic variables and other prognostic variables feed back on the velocity field
  - which, in turn, feeds back on the solution to the continuity equation.

- Continuity equation for air is coupled with momentum and thermodynamic equations:
  - thermodynamic variables and other prognostic variables feed back on the velocity field
  - which, in turn, feeds back on the solution to the continuity equation.
  - Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed by the fastest waves in the system.

- Continuity equation for air is coupled with momentum and thermodynamic equations:
  - thermodynamic variables and other prognostic variables feed back on the velocity field
  - which, in turn, feeds back on the solution to the continuity equation.
  - Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed by the fastest waves in the system.
- The passive tracer transport equation can be solved in isolation given prescribed winds and air densities, and is therefore not susceptible to the time-step restrictions imposed by the fastest waves in the system.

22 / 36

- Continuity equation for air is coupled with momentum and thermodynamic equations:
  - thermodynamic variables and other prognostic variables feed back on the velocity field
  - which, in turn, feeds back on the solution to the continuity equation.
  - Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed by the fastest waves in the system.
- The passive tracer transport equation can be solved in isolation given prescribed winds and air densities, and is therefore not susceptible to the time-step restrictions imposed by the fastest waves in the system.
- For efficiency: Use longer time-step for tracers than for air.



 $\Delta t_{trac}$  is time-step of the tracers. Specified in terms of nspltrac (default for 1.9 imes 2.5 resolution is nspltrac=1).

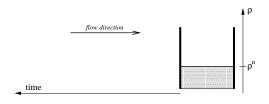
Leads to a major 'speed-up' of dynamics.

# Free-stream preserving 'super-cycling' of tracers with respect to air ho

Simply solving the tracer continuity equation for  $\overline{q\delta p}^{n+1}$  using  $\Delta t_{trac}$  will lead to inconsistencies. Why?

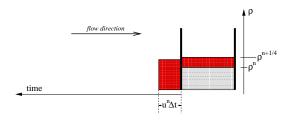
Continuity equation for air  $\delta p$ 

$$\frac{\partial \delta p}{\partial t} + \nabla \cdot (\delta p \, \vec{v}_h) = 0, \tag{4}$$


and a tracer with mixing ratio q

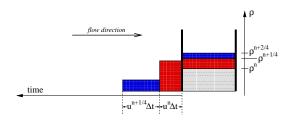
$$\frac{\partial(\delta p \, q)}{\partial t} + \nabla \cdot (\delta p \, q \, \vec{v}_h) = 0, \tag{5}$$

For q = 1 equation (5) reduces to (4). If this is satisfied in the numerical discretizations, the scheme is 'free-stream' preserving.


Solving (5) with q=1 using  $\Delta t_{trac}$  will NOT produce the same solution as solving (4) nspltrac times using  $\Delta t_{dyn}$ !

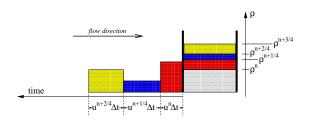
Assume no flux through East cell wall.




 $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.

Assume no flux through East cell wall.

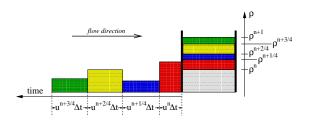



 $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.

Assume no flux through East cell wall.



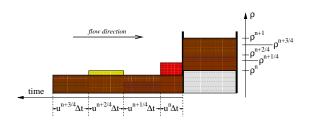
- $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.
- Repeat ksplit times


Assume no flux through East cell wall.



- $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.
- Repeat ksplit times

### Graphical illustration of 'free stream' preserving transport of tracers


Assume no flux through East cell wall.



- $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.
- Repeat ksplit times

### Graphical illustration of 'free stream' preserving transport of tracers

Assume no flux through East cell wall.



- $\bullet$  Solve continuity equation for air  $\rho=\delta p$  together with momentum and thermodynamics equations.
- Repeat ksplit times
- Brown area = average flow of mass through cell face.
- Compute time-averaged value of q across brown area using Lin and Rood (1996) scheme:  $\overline{\overline{\langle q \rangle}}$ .
- Forecast for tracer is:  $\overline{\langle q \rangle} \times \sum_{i=1}^{ksplit} \delta p^{n+i/ksplit}$
- Yields 'free stream' preserving solution!

### CAM-FV accuracy

- CAM-FV has a very efficient and quite consistent treatment of the tracers.
- This is very important: Number of trace species in climate models are increasing and accounts for most of the computational 'work' in the dynamical core.

### CAM-FV accuracy

- CAM-FV has a very efficient and quite consistent treatment of the tracers.
- This is very important: Number of trace species in climate models are increasing and accounts for most of the computational 'work' in the dynamical core.
- Rasch et al. (2006) did a comprehensive study of the characteristics of atmospheric transport using three dynamical cores in CAM (CAM-FV, CAM-EUL):

#### What is CAM-EUL? (Collins et al., 2004):

- · Based on the spectral transform method and semi-implicit time-stepping
- EUL = Eulerian discretization in grid-point space.
- Tracer transport with non-conservative semi-Lagrangian scheme ('fixers' restore formal mass-conservation)

The results from this study favor use of the CAM-FV core for tracer transport. Unlike the others, CAM-FV

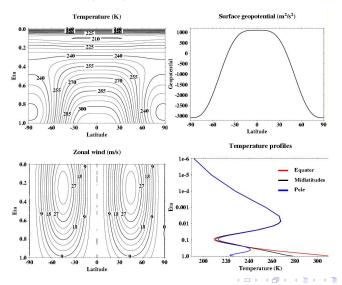
- is inherently conservative
- less diffusive (e.g. maintains strong gradients better)
- maintains the nonlinear relationships among variables required by thermodynamic and mass conservation constraints more accurately.

### CAM-FV accuracy

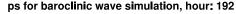
- CAM-FV has a very efficient and quite consistent treatment of the tracers.
- This is very important: Number of trace species in climate models are increasing and accounts for most of the computational 'work' in the dynamical core.
- Rasch et al. (2006) did a comprehensive study of the characteristics of atmospheric transport using three dynamical cores in CAM (CAM-FV, CAM-EUL):

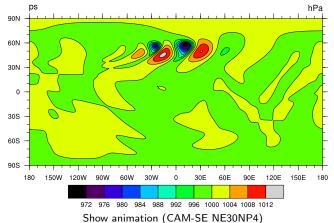
What is CAM-EUL? (Collins et al., 2004):

- · Based on the spectral transform method and semi-implicit time-stepping
- EUL = Eulerian discretization in grid-point space.
- Tracer transport with non-conservative semi-Lagrangian scheme ('fixers' restore formal mass-conservation)


The results from this study favor use of the CAM-FV core for tracer transport. Unlike the others, CAM-FV

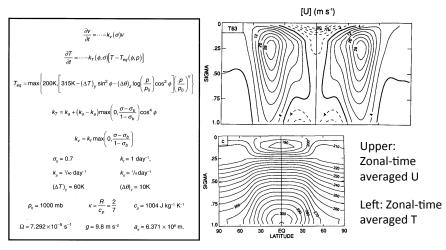
- is inherently conservative
- less diffusive (e.g. maintains strong gradients better)
- maintains the nonlinear relationships among variables required by thermodynamic and mass conservation constraints more accurately.


However, with respect to some other climate statistics CAM-FV needs higher horizontal resolution to produce results equivalent to those produced using the spectral transform dynamical core in CAM (CAM-EUL). Effective resolution is coarser in CAM-EUL! See Williamson (2008) for details.


Simplified CAM configurations  $\dots$ 

• -PHYS ADIABATIC: No physics. See example of application in Jablonowski and Williamson (2006) and Lauritzen et al. (2010a).

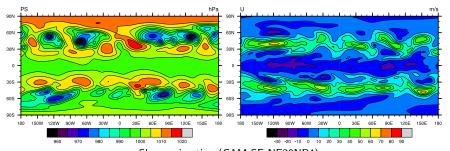



• -PHYS ADIABATIC: No physics. See example of application in Jablonowski and Williamson (2006) and Lauritzen et al. (2010a).





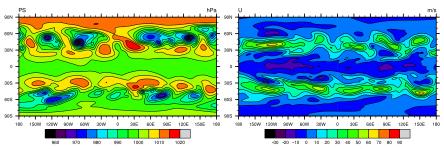
4 1 1 4 4 1 1 4 1 1 1 9 9


- -PHYS IDEAL: Held-Suarez test case (Held and Suarez, 1994):
  - Simple Newtonian relaxation of the temperature field to a zonally symmetric state
  - Rayleigh damping of low-level winds representing boundary-layer friction



Note: this test case can be used to assess how well the dynamical core conserves axial angular momentum (Lebonnois et al., 2012; Lauritzen et al., 2014)

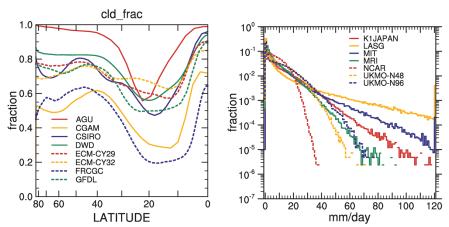
- -PHYS IDEAL: Held-Suarez test case (Held and Suarez, 1994):
  - Simple Newtonian relaxation of the temperature field to a zonally symmetric state
  - Rayleigh damping of low-level winds representing boundary-layer friction


### Held-Suarez simulation, hour: 12



Show animation (CAM-SE NE30NP4)

- -PHYS IDEAL: Held-Suarez test case (Held and Suarez, 1994):
  - Simple Newtonian relaxation of the temperature field to a zonally symmetric state
  - Rayleigh damping of low-level winds representing boundary-layer friction


### Held-Suarez simulation, hour: 12



- Show animation (CAM-SE NE30NP4)
- Idealized tropical cyclones with simple moist physics (Reed and Jablonowski, 2012)
- More: DCMIP (Dynamical Core Model Intercomparison Project; lead by C. Jablonowski); https://earthsystemcog.org/projects/dcmip-2016/


August 10, 2016

 AQUA\_PLANET: Ocean only planet with zonally symmetric SST-forcing using 'full' physics package (Neale and Hoskins, 2000). See example of application in Williamson (2008); Blackburn et al. (2013). APE atlas (Williamson et al., 2012).



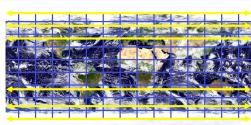
(left) Zonal-time average cloud fraction.(right) Fraction of time precipitation is in 1 mm/day bins. Figures from Blackburn et al. (2013)

# The reformulation of global climate/weather models for massively parallel computer architectures



# The reformulation of global climate/weather models for massively parallel computer architectures

Traditionally the equations of motion have been discretized on the traditional regular latitude-longitude grid using either


- spherical harmonics based methods (dominated for over 40 years)
- finite-difference/finite-volume methods (e.g., CAM-FV)

Both methods require non-local communication:

- Legendre transform
- 'polar<sup>a</sup> filters' (due to convergence of the meridians near the poles)

respectively, and are therefore  $\operatorname{\mathtt{not}}$  "trivially" amenable for massively parallel compute systems.





aconfusing terminology: filters are also applied away from polar regions:  $\theta \in [\pm 36^\circ, \pm 90]$ 

## The reformulation of global climate/weather models for massively parallel computer architectures

Traditionally the equations of motion have been discretized on the traditional regular latitudelongitude grid using either

- spherical harmonics based methods (dominated for over 40 years)
- 2 finite-difference/finite-volume methods (e.g., CAM-FV)

Both methods require non-local communication:

- Legendre transform
- 'polar' filters' (due to convergence of the meridians near the poles)

respectively, and are therefore not "trivially" amenable for massively parallel compute systems.

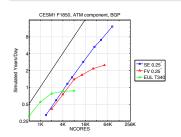
<sup>&</sup>lt;sup>a</sup>confusing terminology: filters are also applied away from polar regions:  $\theta \in [\pm 36^{\circ}, \pm 90]$ 



Grid patches that reside on different nodes



# The reformulation of global climate/weather models for massively parallel computer architectures










Quasi-uniform grid + local numerical method  $\Rightarrow$  no global communication necessary



Performance in through-put for different dynamical cores in NCAR's global atmospheric climate model:

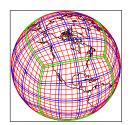
horizontal resolution: approximately 25km × 25km grid boxes

- EUL = spectral transform (lat-lon grid)
- FV = finite-volume (reg. lat-lon grid)
- SE = spectral element (cubed-sphere grid)

 ${\sf Computer} = {\sf Intrepid} \; ({\sf IBM} \; {\sf Blue} \; {\sf Gene}/{\sf P} \; {\sf Solution}) \; {\sf at} \; {\sf Argonne} \; {\sf National} \; {\sf Laboratory}$ 

Note that for small compute systems CAM-EUL has SUPERIOR throughput!!

### New dynamical core options


#### • CAM-SE (Evans et al., 2012): Spectral Elements

- A dynamical core in HOMME (High-Order Method Modeling Environment, Thomas and Loft 2005).
- For each element: Mass-conservative to machine precision and total energy conservative to the truncation error of the time integration scheme
- Conserves axial angular momentum very well (Lauritzen et al., 2014)
- Discretized on cubed-sphere (uniform resolution or conforming mesh-refinement) and highly scalable
- 1° 'AMIP-configuration' is scientifically supported
- Longer term goal: 1/4° climate simulation with CAM-SE

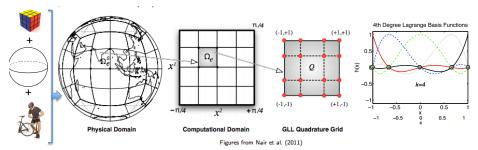
#### • MPAS (Skamarock et al., 2012): Finite-volume unstructured

- MPAS = Model for Prediction Across Scales
- Variable resolution centroidal Voronoi tessellation of the sphere
- Fully compressible non-hydrostatic discretization similar to Advanced Research WRF (ARW) model (Skamarock and Klemp, 2008)
- · Currently being integrated into CAM (S.-H. Park)

Figures courtesy of R.D. Nair (upper) and W.C. Skamarock (lower).

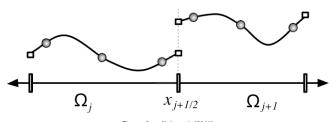





## New dynamical core options

Both CAM-SE and MPAS support mesh-refinement:






CAM-SE uses a continuous Galerkin finite element method (Taylor et al., 1997) referred to as **Spectral Elements (SE)**:



- Physical domain: Tile the sphere with quadrilaterals using the gnomonic cubed-sphere projection
- Computational domain: Mapped local Cartesian domain
- Each element operates with a Gauss-Lobatto-Legendre (GLL) quadrature grid
   Gaussian quadrature using the GLL grid will integrate a polynomial of degree 2N 1 exactly, where N is degree of polynomial
- Elementwise the solution is projected onto a tensor product of 1D Legendre basis functions by multiplying the equations of motion by test functions; weak Galerkin formation
  - → all derivatives inside each element can be computed analytically!

CAM-SE uses a continuous Galerkin finite element method (Taylor et al., 1997) referred to as Spectral Elements (SE):



Figures from Nair et al. (2011)

How do solutions in each element 'communicate' with each other?

- ullet The solution is projected onto the space of globally continuous  $(\mathcal{C}^0)$  piecewise polynomials
- ullet ightarrow point values are forced to be  $C^0$  continuos along element boundaries by averaging.
- Note: this is the only operation in which information 'propagates' between elements
- MPI data-communication: only information on the boundary of elements!

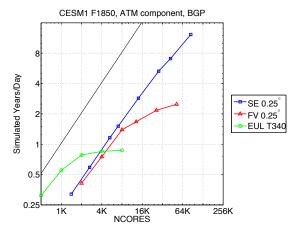
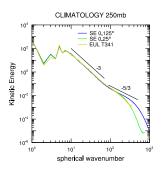
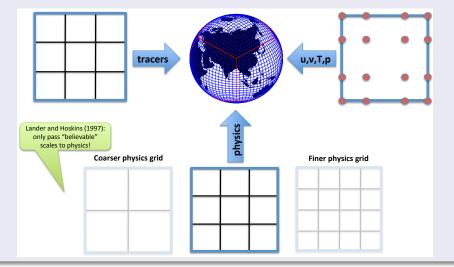




Figure from Dennis et al. (2012)

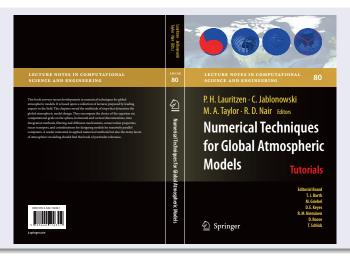
CAM-SE has superior scalability properties compared to other dynamical core options in CAM  $\rightarrow$  given a sufficiently large machine we can run climate simulations at unprecedented resolutions

4 □ > 4 □ > 4 ≡ >




Solid lines: total kinetic energy of  $\vec{v}$  at 250hPa, E(k). Dotted lines: E(k) including only divergent component of  $\vec{v}$ . Figure from Evans et al. (2012)

- $1/8^{\circ}$  resolution: clear transition from  $k^{-3}$  to  $k^{-5/3}$  (Nastrom and Gage, 1985)!
- Widely accepted that dynamics of  $k^{-3}$  regime correspond to downscale cascade of enstrophy; there is less consensus about the  $k^{-5/3}$  regime (Lilly et al., 1998; Lindborg, 2006).
- ullet oThe characterization of  $k^{-5/3}$  regime represents one of the major unanswered questions in mesoscale atmospheric dynamics!


Some of the first **global** models to simulate  $k^{-5/3}$ 's transition: Takahashi et al. (2006); Hamilton et al. (2008)

### CAM-SE physgrid and CAM-SE-CSLAM (please contact pel@ucar.edu)

(development version) CAM-SE has the option to run physics on a finite-volume grid that is coarser, same or finer resolution compared to the dynamics grid as well as an accelerated tracer transport option - with the CSLAM scheme (Lauritzen et al., 2010b, 2016).



### Interested in numerical methods for global models?



- Book based on the lectures given at the 2008 NCAR ASP (Advance Study Program) Summer Colloquium.
- 16 Chapters; authors include J.Thuburn, J.Tribbia, D.Durran, T.Ringler, W.Skamarock, R.Rood, J.Dennis, Editors, ...
   Foreword by D. Randall

# Questions?



### References I

- Arakawa, A. and Lamb, V. R. (1977). Computational design and the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17:172–265.
- Blackburn, M., WILLIAMSON, D. L., NAKAJIMA, K., OHFUCHI, W., TAKAHASHI, Y. O., HAYASHI, Y.-Y., NAKAMURA, H., ISHIWATARI, M., McGREGOR, J. L., BORTH, H., WIRTH, V., FRANK, H., BECHTOLD, P., WEDI, N. P., TOMITA, H., SATOH, M., ZHAO, M., HELD, I. M., SUAREZ, M. J., LEE, M.-I., WATANABE, M., KIMOTO, M., LIU, Y., WANG, Z., MOLOD, A., RAJENDRAN, K., KITOH, A., and STRATTON, R. (2013). The aqua-planet experiment (ape): Control sst simulation. Journal of the Meteorological Society of Japan. Ser. II, 91A:17–56.
- Colella, P. and Woodward, P. R. (1984). The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54:174-201.
- Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., and Briegleb, B. (2004). Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note, NCAR/TN-464+STR.
- Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley, P. H. (2012). CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High. Perform. C., 26(1):74–89.
- Evans, K., Lauritzen, P. H., Mishra, S., Neale, R., Taylor, M. A., and Tribbia, J. J. (2012). AMIP simulations with the CAM4 spectral element dynamical core. J. Climate. in press.
- Godunov, S. K. (1959). A difference scheme for numerical computation of discontinuous solutions of equations in fluid dynamics. *Math. Sb.*, 47:271. Also: Cornell Aero. Lab. translation.
- Hamilton, K., Takahashi, Y. O., and Ohfuchi, W. (2008). Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. *J. Geophys. Res.*, 113(D18110).
- Held, I. M. and Suarez, M. J. (1994). A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75:1825–1830.
- Jablonowski, C. and Williamson, D. L. (2006). A baroclinic instability test case for atmospheric model dynamical cores. Q. J. R. Meteorol. Soc., 132:2943–2975.
- Kasahara, A. (1974). Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102(7):509-522.
- Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R. D. (2010a). Rotated versions of the jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. *Journal of Advances in Modeling Earth Systems*, 2(15):34 pp.
- Lauritzen, P. H. (2007). A stability analysis of finite-volume advection schemes permitting long time steps. Mon. Wea. Rev., 135:2658-2673.
- Lauritzen, P. H., Bacmeister, J. T., Dubos, T., Lebonnois, S., and Taylor, M. A. (2014). Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates. J. Adv. Model. Earth Svst. 6.
- Lauritzen, P. H., Mirin, A., Truesdale, J., Raeder, K., Anderson, J., Bacmeister, J., and Neale, R. B. (2011a). Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int. J. High Perform. Comput. Appl.

### References II

- Lauritzen, P. H., Nair, R. D., and Ullrich, P. A. (2010b). A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229:1401–1424.
- Lauritzen, P. H., Taylor, M. A., Ullrich, P. A., Bacmeister, J. T., and Goldhaber, S. (2016). CAM-SE-CSLAM: Semi-Lagrangian finite-volume transport with spectral elements dynamics. *Mon. Wea. Rev.* submitted.
- Lauritzen, P. H., Ullrich, P. A., and Nair, R. D. (2011b). Atmospheric transport schemes: desirable properties and a semi-Lagrangian view on finite-volume discretizations, in: P.H. Lauritzen, R.D. Nair, C. Jablonowski, M. Taylor (Eds.), Numerical techniques for global atmospheric models. Lecture Notes in Computational Science and Engineering, Springer, 2011, 80.
- Lebonnois, S., Covey, C., Grossman, A., Parish, H., Schubert, G., Walterscheid, R., Lauritzen, P. H., and Jablonowski, C. (2012). Angular momentum budget in general circulation models of superrotating atmospheres: A critical diagnostic. *J. Geo. Res.: Planets*, 117(E12):n/a-n/a.
- Lilly, D., Bassett, G., Droegemeier, K., and Bartello, P. (1998). Stratified turbulence in the atmospheric mesoscales. *Theoret. Comput. Fluid. Dyn.*, 11:139–153.
- Lin, S. J. (1997). Ti: A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123:1749–1762.
- Lin, S.-J. (2004). A 'vertically Lagrangian' finite-volume dynamical core for global models. Mon. Wea. Rev., 132:2293-2307.
- Lin, S. J. and Rood, R. B. (1996). Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124:2046-2070.
- Lin, S.-J. and Rood, R. B. (1997). An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Q.J.R.Meteorol.Soc., 123:2477–2498.
- Lindborg, E. (2006). The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550:207–242.
- Machenhauer, B., Kaas, E., and Lauritzen, P. H. (2009). Finite volume methods in meteorology, in: R. Temam, J. Tribbia, P. Ciarlet (Eds.), Computational methods for the atmosphere and the oceans. *Handbook of Numerical Analysis*, 14. Elsevier, 2009, pp.3-120.
- Nair, R. D., Levy, M. N., and Lauritzen, P. H. (2011). Emerging numerical methods for atmospheric modeling, in: P.H. Lauritzen, R.D. Nair, C. Jablonowski, M. Taylor (Eds.), Numerical techniques for global atmospheric models. Lecture Notes in Computational Science and Engineering, Springer, 80.
- Nastrom, G. D. and Gage, K. S. (1985). A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. *J. Atmos. Sci.*, 42:950–960.
- Neale, R. B. and Hoskins, B. J. (2000). A standard test for AGCMs and their physical parameterizations. i: The proposal. Atmos. Sci. Letters, 1:101–107.
- Rasch, P. J., Coleman, D. B., Mahowald, N., Williamson, D. L., Lin, S. J., Boville, B. A., and Hess, P. (2006). Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19:2243–2266.
- Reed, K. A. and Jablonowski, C. (2012). Idealized tropical cyclone simulations of intermediate complexity: A test case for agcms. *Journal of Advances in Modeling Earth Systems*, 4(2):n/a-n/a.
- Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D., and Girard, C. (2002). A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130(10):2459–2480.

### References III

- Skamarock, W. (2011). Kinetic energy spectra and model filters, in: P.H. Lauritzen, R.D. Nair, C. Jablonowski, M. Taylor (Eds.), Numerical techniques for global atmospheric models. Lecture Notes in Computational Science and Engineering, Springer, 80.
- Skamarock, W. C. (2008). A linear analysis of the NCAR CCSM finite-volume dynamical core. Mon. Wea. Rev., 136:2112-2119.
- Skamarock, W. C. and Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227:3465–3485.
- Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and Ringler, T. D. (2012). A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140:3090–3105.
- Takahashi, Y. O., Hamilton, K., and Ohfuchi, W. (2006). Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33(L12812).
- Taylor, M. A., Tribbia, J., and Iskandarani, M. (1997). The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130:92–108.
- Thomas, S. J. and Loft, R. D. (2005). The NCAR spectral element climate dynamical core: Semi-implicit Eulerian formulation. J. Sci. Comput., 25:307–322.
- Thuburn, J. (2008). Some conservation issues for the dynamical cores of NWP and climate models. J. Comput. Phys., 227:3715 3730.
- Thuburn, J. (2011). Some basic dynamics relevant to the design of atmospheric model dynamical cores, in: P.H. Lauritzen, R.D. Nair, C. Jablonowski, M. Taylor (Eds.), Numerical techniques for global atmospheric models. Lecture Notes in Computational Science and Engineering, Springer, 80.
- van Leer, B. (1977). Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection. J. Comput. Phys., 23:276-299.
- Whitehead, J., Jablonowski, C., Rood, R. B., and Lauritzen, P. H. (2011). A stability analysis of divergence damping on a latitude-longitude grid. Mon. Wea. Rev., 139:2976–2993.
- Williamson, D.L., Blackburn, M., Hoskins, B., Nakajima, K., Ohfuchi, W., Takahashi, Y., Hayashi, Y.-Y., Nakamura, H., Ishiwatari, M., McGregor, J., Borth, H., Wirth, V., Frank, H., Bechtold, P., Wedi, N., Tomita, H., Satoh, M., Zhao, M., Held, I., Suarez, M., Lee, M.-I., Watanabe, M., Kimoto, M., Liu, Y., Wang, Z., Molod, A., Rajendran, K., Kitoh, A.,, and Stratton, R. (2012). The ape atlas. MCAR Technical Note, NCAR/TN-484+5TR.
- Williamson, D. L. (2002). Time-split versus process-split coupling of parameterizations and dynamical core. Mon. Wea. Rev., 130:2024-2041.
- Williamson, D. L. (2008). Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. *Tellus*, 60:839–847.
- Williamson, D. L. and Olson, J. G. (2003). Dependence of aqua-planet simulations on time step. Q. J. R. Meteorol. Soc., 129(591):2049-2064.