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Getting	 away	 from	 the	 lat-lon	 grid	 …	 

•  Scalability	  
•  Sta=c	  mesh-‐	  

refinement	  	  
capability	  

•  …	  

CAM-‐FV	  	  (finite	  volume)	  
Lin	  (2004)	  

CAM-‐SE	  	  (spectral	  elements)	  
Taylor	  et	  al.,	  (1997)	  
Dennis	  et	  al.,	  (2012)	  

CAM=NCAR’s	  Community	  Atmosphere	  Model	  



Con=nuous	  Galerkin	  finite-‐element	  method	  (Taylor	  et	  al.,	  1997)	  on	  a	  cubed-‐sphere:	  
	  
	  
	  
	  
	  
	  
	  
	  
	    Discre=za=on	  is	  mime=c	  =>	  mass-‐conserva=on	  &	  total	  energy	  conserva=on	   Conserves	  axial	  angular	  momentum	  very	  well	  (Lauritzen	  et	  al.,	  2014)	   Support	  sta=c	  mesh-‐refinement	  and	  retains	  formal	  order	  of	  accuracy!	  	   Highly	  scalable	  to	  at	  least	  O(100K)	  processors	  (Dennis	  et	  al.,	  2012)	   Compe==ve	  “AMIP-‐climate”	  (Evans	  et	  al.,	  2012)	  
  Lower	  computa=onal	  throughput	  for	  many-‐tracer	  applica=ons	   Tracer	  transport	  accuracy?	  
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CAM-SE:	 NCAR	 Community	 Atmosphere	 ���
Model	 with	 Spectral	 Elements	 dynamical	 core	 
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MPAS	  results	  courtesy	  of	  Sanghun	  Park	   Lauritzen	  et	  al.,	  2014	  

In Earth’s atmosphere, the physical sources/sinks of angular momentum are very large. On the resolved
scales (part of the dynamical core), there are large mountain torques due to pressure difference across orog-
raphy. The mountain torques are predominantly eastward in the tropics and westward in the midlatitudes,
and this AAM exchange affects the length of day [see, e.g., Egger et al., 2007]. On the unresolved scales, the
frictional forces such as boundary layer turbulence and drags from breaking gravity waves alter the AAM
budget. Due to these large physical sources and sinks (that are not in a similar balance as for Venus and
Titan), the lack of conservation of AAM in the dynamical core (when subtracting the mountain torque) is
much less apparent.

It is the purpose of this paper to investigate the globally integrated AAM conservation properties of the
spectral-element dynamical core (the CAM-SE dynamical core is the continuous Galerkin spectral finite-
element dynamical core in NCAR’s High-Order Method Modeling Environment (HOMME) [Dennis et al.,
2005]; referred to as CAM-SE [Dennis et al., 2012]) and to investigate how different numerical operators/
options available in CAM-SE affect AAM conservation. The CAM-SE dynamical core can be run at different
formal orders of accuracy (by varying the order of the polynomial basis functions) and it accommodates
two different treatments of vertical advection that are commonly used: the finite difference treatment of
vertical advection that conserves angular momentum and total energy [Simmons and Burridge, 1981], which
will be referred to as Eulerian vertical coordinate (hybrid-sigma), and the floating Lagrangian vertical coordi-
nates for which the vertical advection terms are essentially replaced by periodic vertical remapping of prog-
nostic variables from the floating Lagrangian layers to reference Eulerian (hybrid-sigma) vertical
coordinates. This remapping also conserves AAM and optionally total energy [Lin, 2004]. The effect on AAM
conservation by using these different numerical operators is the main topic of this paper. The AAM analysis
is detailed in the sense that not only are the total contributions to AAM from the dynamical core and
parameterizations separated but also the breakdown into the relative contributions from diffusion operators
and the ‘‘inviscid’’ fluid flow solver. The AAM diagnostics are computed consistently inline in the dynamical
core at every dynamics time step and fully consistently with the spectral-element method.

The simulations presented here make use of the idealized Earth configuration called Held-Suarez [Held and
Suarez, 1994]. In this setup, there is no topography and the parameterization suite is replaced by a relaxa-
tion of temperature toward a zonally symmetric state and Rayleigh damping of low-level winds to emulate
boundary layer friction [Held and Suarez, 1994]. This forcing results in a statistical mean state similar to
Earth’s atmosphere in terms of producing similar time-averaged zonal jet streams and temperature profiles.
The only physical source/sink of AAM in this setup is the Rayleigh damping. The absence of mountain tor-
ques and other large subgrid-scale torques makes the Held-Suarez test a good test bed for investigating
AAM properties of general circulation models developed for Earth’s atmosphere.

Figure 1. Angular momentum diagnostics for CAM-FV in the Held-Suarez setup (data are from Lebonnois et al. [2012]). First, second, and third column is total angular momentum
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Con=nuous	  Galerkin	  finite-‐element	  method	  (Taylor	  et	  al.,	  1997)	  on	  a	  cubed-‐sphere:	  
	  
	  
	  
	  
	  
	  
	  
	  
	    Discre=za=on	  is	  mime=c	  =>	  mass-‐conserva=on	  &	  total	  energy	  conserva=on	   Conserves	  axial	  angular	  momentum	  very	  well	  (Lauritzen	  et	  al.,	  2014)	   Support	  sta=c	  mesh-‐refinement	  and	  retains	  formal	  order	  of	  accuracy!	  	   Highly	  scalable	  to	  at	  least	  O(100K)	  processors	  (Dennis	  et	  al.,	  2012)	   Compe==ve	  “AMIP-‐climate”	  (Evans	  et	  al.,	  2012)	  
  Lower	  computa=onal	  throughput	  for	  many-‐tracer	  applica=ons	   Tracer	  transport	  accuracy?	  
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Highly scalable dynamical core
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Figure 5: Performance of the CESM atmosphere component model on Intrepid (IBM BG/P)
when using the CAM-SE, FV or EUL dynamical core, showing the simulated-years-per-day
as a function of the number of processing cores. Atmosphere component times taken from a
CESM time-slice simulation, coupling the atmosphere (at 0.25� or T341 resolution), the land
model (0.25� resolution), and the sea ice and data ocean model (0.1�). The solid black line
shows perfect parallel scalability. When using CAM-SE, the CESM achieves near perfect
scalability down to one element per processor, running at 12.2 SYPD on 86,400 cores.

Figure from Dennis et al. (2012)

We can now perform climate simulations at unprecedented resolutions and we are starting to resolve
some meso-scale motion (at which scales the dynamics fundamentally changes character!)

Peter Hjort Lauritzen (NCAR) Dynamics II May 30, 2012 8 / 25

1	  element	  per	  core	  	  
(9	  degrees	  of	  freedom)	  
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•  Computa=onal	  grid:	  3	  elements,	  4	  quadrature	  points	  in	  each	  element	  (np=4)	  
•  This	  quadrature	  will	  integrate	  polynomials	  of	  degree	  3	  exactly	  
•  Note:	  quadrature	  points	  are	  duplicated	  on	  element	  edges	  

Element	  boundary	   Element	  boundary	  
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•  Let	  the	  ini=al	  condi=on	  for	  GLL	  point	  values	  be	  a	  degree	  3	  polynomial	  
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•  Let	  the	  ini=al	  condi=on	  for	  GLL	  point	  values	  be	  a	  degree	  3	  polynomial	  
•  The	  polynomial	  basis	  exactly	  represents	  ini=al	  condi=on	  
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•  Within	  each	  element	  the	  dynamical	  core	  advances	  one	  Runga-‐Kufa	  step	  
•  Note	  each	  element	  advances	  the	  solu=on	  in	  =me	  independently	  
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•  Note	  each	  element	  advances	  the	  solu=on	  in	  =me	  independently	  
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•  This	  process	  is	  repeated	  for	  every	  Runga-‐Kufa	  stage	  	  
(currently	  5	  =mes	  per	  dynamics	  =me-‐step)	  

•  Physics	  is	  “run	  on	  GLL	  grid”	  
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•  Physics	  update:	  say	  it	  perturbs	  one	  point	  value	  
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•  Physics	  update:	  say	  it	  perturbs	  one	  point	  value	  
•  Polynomial	  basis	  changed	  in	  element	  2	  
•  Basis	  func=ons	  only	  C0	  at	  element	  edges	  	  



Topography	  smoothing	  in	  CAM	  

Lauritzen	  et	  al.,	  (2015):	  NCAR	  Global	  Model	  Topography	  Genera5on	  So7ware	  for	  Unstructured	  Grids	  	  
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Figure 6. Diagnostics for 30 year AMIP simulations with CAM5.2. Upper, middle and lower group of plots are model level 16 vertical
velocity, total precipitation rate and mean sea level pressure differences, respectively, Except for the two right-most plots on the second
row of each group of plots, the diagnostics are for CAM-SE with different amounts of smoothing of �s and different levels of divergence
damping. The amount of smoothing follows the same notation as Fig. 2 (right) and 1.0xdiv, 2.5xdiv, 5.0xdiv refers to increasing divergence
damping by a factor 1,0, 2.5, and 5.0, respectively. The second right-most plot on each group of plots (labeled FV) show results for CAM-FV.
Lower right plot in the second and third group of plots show TRMM observations and NCEP reanalysis data, respectively.
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Nota=on:	  2.5xdiv	  =	  2.52	  =mes	  more	  divergence	  damping	  than	  vor=city	  damping	  
	   	  4x,	  8x,	  …,	  32x	  =	  smoothing	  of	  surface	  geopoten=al	  height	  
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How	 do	 we	 (/should	 we?)	 couple	 the	 dynamical	 
core	 with	 sub-grid	 scale	 parameterizations	 
(physics)?	 



Tradi=onally	  physics	  and	  dynamics	  
grids	  are	  collocated	  

-‐  smoothly	  varying	  grid	  in	  terms	  of	  
	  	  	  	  	  	  grid	  size	  
	  
-‐  Much	  higher	  resolu=on	  near	  poles,	  

however,	  dynamical	  core	  usually	  
has	  filter	  in	  the	  polar	  regions	  to	  	  
filter	  out	  small	  scales	  
	  

-‐  Aside:	  Lat-‐lon	  grid	  is	  “op=mal”	  for	  	  
minimizing	  zonal	  flow	  errors!	  …	  
when	  grid	  is	  no	  longer	  zonally	  
aligned	  errors	  get	  rather	  large	  ….	  	  



Tradi=onally	  physics	  and	  dynamics	  
grids	  are	  collocated	  

If	  you	  construct	  control	  volumes	  around	  
the	  quadrature	  points	  so	  that	  the	  area	  of	  	  
the	  control	  volumes	  equals	  the	  Gaussian	  
quadrature	  weight	  (=mes	  metric	  term)	  then	  
a	  very	  anisotropic	  grid	  results	  
	  
Gets	  “worse”	  with:	  
	  
-‐	  mesh-‐refined	  grids	  
-‐	  increasing	  polynomial	  order	  
	  

Np=4	  







Current	  physics/“coupler”	  grid	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

Finite-‐volume	  equi-‐angular	  gnomonic	  grid	  

Separate	 physics-dynamics	 grids?	 
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE	 default	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  that	  is	  
element-‐wise	  conserva=ve	  
and	  shape-‐preserving	  at	  the	  
node	  level	  	  	  

Physics:	  Physics	  columns	  
computed	  at	  GLL	  nodal	  
values	  	  	  



12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE-CSLAM	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Tracer	  advec=on:	  Conserva=ve	  
Semi-‐Lagrangian	  Mul=-‐tracer	  	  
transport	  scheme	  (CSLAM)	  
	  

Physics:	  Physics	  columns	  
using	  cell-‐averaged	  state	  of	  
atmosphere	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE-physgrid	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Physics:	  Physics	  columns	  
using	  cell-‐averaged	  state	  of	  
atmosphere	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  that	  is	  
element-‐wise	  conserva=ve	  
and	  shape-‐preserving	  at	  the	  
node	  level	  	  	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE-physgrid	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Physics:	  Coarser,	  same	  or	  finer	  
resolu=on	  cell-‐average	  grid	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE-physgrid	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Tracer	  advec=on:	  Conserva=ve	  
Semi-‐Lagrangian	  Mul=-‐tracer	  	  
transport	  scheme	  (CSLAM)	  
	  
Physics:	  Coarser,	  same	  or	  finer	  
resolu=on	  cell-‐average	  grid	  

Should	  we	  run	  
physics	  and	  

dynamics	  on	  the	  
same	  resolu=on	  
grids?	  Coarser?	  

Finer?	  	  

Challenges as we move to higher resolution

Fig. 3. The kinetic energy spectra from high resolution aqua planet simulations of CAM-
SE and CAM-EUL. Left panel plots E(k) as a function of spherical wave number k. Right
panel plots E(k)k5/3 to better illustrate how the spectral matches the predicted k�3 and
k�5/3 scalings (black lines). Solid lines show the KE of �u, while the dotted lines show the
irrotational component �u�. CAM-SE at 0.25� matches the CAM-EUL T340 spectra quite
well at all scales resolved by CAM-EUL. But even higher resolution is needed to capture
the observed transition from a k�3 to a k�5/3 scaling, as seen in the result for CAM-SE at
0.125�, which has large regions which match each scaling regime.

25

We are now starting to resolve some meso-scale motion (k-5/3’s transition)

! slowly starting to resolve large-scale convection (since we can resolve large-scale updrafts) but
we are certainly not resolving all kinds of convection and associated phenomena: GREY ZONE

Are the assumptions we are making in climate models developed for resolutions of O(> 100km)
still valid?

Peter Hjort Lauritzen (NCAR) Dynamics II May 30, 2012 17 / 25

Lander	  and	  Hoskins	  (1997):	  
only	  pass	  “believable”	  
scales	  to	  physics!	  



12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

CAM-SE-physgrid	 configuration	 

Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Physics:	  Coarser,	  same	  or	  finer	  
resolu=on	  cell-‐average	  grid	  

We	  need	  to	  
transfer	  data	  
to	  and	  from	  
dynamics-‐

physics	  grids!!!	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.
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based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).
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stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.
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is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.
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spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Dynamics:	  Spectral-‐element	  
dynamics	  on	  Gauss-‐Lobafo-‐	  
Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Physics:	  Coarser,	  same	  or	  finer	  
resolu=on	  cell-‐average	  grid	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  

	   	  	  Nota=on	  
	  

•  NE*NE	  elements	  on	  each	  cubed-‐sphere	  panel	  
•  NP*NP	  quadrature	  points	  in	  each	  element	  	  

(note	  quadrature	  points	  are	  duplicated	  on	  the	  
element	  boundary)	  

•  NC*NC	  physics	  grid	  columns	  in	  each	  element	  



12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Legendre	  (GLL)	  nodal	  values	  	  
	  
(4x4	  GLL	  point	  in	  each	  element;	  
	  degree	  3	  Lagrange	  polynomials)	  	  	  

Physics:	  Coarser,	  same	  or	  finer	  
resolu=on	  cell-‐average	  grid	  

Tracer	  advec=on:	  Spectral-‐	  
element	  method	  

	   	  	  Nota=on	  
	  

•  NE*NE	  elements	  on	  each	  cubed-‐sphere	  panel	  
•  NP*NP	  quadrature	  points	  in	  each	  element	  	  

(note	  quadrature	  points	  are	  duplicated	  on	  the	  
element	  boundary)	  

•  NC*NC	  physics	  grid	  columns	  in	  each	  element	  

Separating physics and dynamics grids was 
a major software engineering task in CAM – 
affected many parts of the code:  
 
•  history (output) 
•  initialization/restart 
•  Some parameterizations assumed grids 

were collocated 



•  Conserva=on	  (coupled	  climate	  modeling)	  
•  Shape-‐preserva=on	  (in	  par=cular,	  no	  nega=ves)	  
•  Preserve	  tracer	  correla=ons	  (important	  for	  coupling	  with	  chemistry)	  
•  Consistent	  (preserves	  a	  constant)	  
•  Other?	  Total	  energy?	  

	  
Implementa=on	  constraints/limita=ons	  (not	  “physical”	  limita=ons):	  
	  
•  Physics-‐grid	  must	  be	  a	  sub-‐grid	  of	  the	  element	  

With	  some	  extra	  sonware	  engineering	  we	  can	  relax	  this	  constraint!	  
(example	  applica=on:	  mesh-‐refinement)	  
	  

•  To	  reduce	  MPI	  communica=on	  no	  halo	  exchange	  for	  
physics-‐dynamics	  coupling	  except	  for	  boundary	  exchange	  
at	  end	  of	  interpola=on	  
(could	  also	  be	  relaxed	  at	  the	  expense	  of	  computa=onal	  cost)	  

Interpolator	 properties:	 passing	 state	 to	 physics	 ���
and	 returning	 tendencies	 to	 dynamics	 
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Passing	 state	 (v,T,q,…)	 to	 physics:	 
For	 conservation	 we	 interpolate	 dp*u,	 dp*T,	 dp*q	 
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Passing	 state	 (v,T,q,…)	 to	 physics:	 
For	 conservation	 we	 interpolate	 dp*u,	 dp*T,	 dp*q	 

Integrate	  con=nuous	  basis	  func=ons	  in	  each	  
control	  volume.	  	  Conserva=on	  and	  

consistency	  are	  enforced	  via	  a	  least	  squares	  
projec=on	  onto	  the	  space	  of	  conserva=ve	  

and	  consistent	  maps	  	  
!!!	  this	  approach	  is	  high-‐order!!!	  

	  
	  
	  
	  
	  
	  
	  
	  

Ullrich	  and	  Taylor	  (2015)	  
FIG. 3: Third- and fourth-order GLL basis functions used for the continuous reconstruction.
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•  Interpola=on	  matrix	  can	  be	  pre-‐computed	  (it	  is	  a	  linear	  map)!!!	  
•  Aner	  applica=on	  of	  interpola=on	  matrix	  there	  is	  a	  boundary	  exchange	  that	  

averages	  point	  values	  on	  the	  element	  boundaries!	  

Passing	 state	 (v,T,q,…)	 to	 physics:	 
For	 conservation	 we	 interpolate	 dp*u,	 dp*T,	 dp*q	 

Ullrich	  and	  Taylor	  (2015)	  



Passing	 state	 (v,T,q,…)	 to	 physics:���
basis	 functions	 oscillatory!	 
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Monotonicity	  is	  enforced	  via	  a	  two-‐step	  procedure.	  	  	  
•  instead	  of	  the	  regular	  FEM	  basis	  func=ons	  we	  use	  a	  set	  of	  monotone	  basis	  

func=ons	  (ones	  whose	  range	  is	  [0,1]).	  	  	  
•  This	  would	  be	  sufficient	  except	  for	  the	  fact	  that	  the	  least	  squares	  projec=on	  onto	  

conserva=ve/consistent	  maps	  could	  produce	  some	  (small)	  nega=ve	  values	  in	  the	  
mapping	  coefficients.	  	  To	  fix	  that	  problem	  we	  then	  “linearly	  interpolate”	  between	  
the	  conserva=ve/consistent	  map	  and	  the	  simplest	  first-‐order	  conserva=ve/
consistent/monotone	  map.	  	  This	  has	  roughly	  the	  effect	  of	  “borrowing	  mass”	  from	  
other	  GLL	  nodes	  within	  the	  element.	  

Monotone	 linear	 map	 

Ullrich	  and	  Taylor	  (2015)	  
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consistent/monotone	  map.	  	  This	  has	  roughly	  the	  effect	  of	  “borrowing	  mass”	  from	  
other	  GLL	  nodes	  within	  the	  element.	  

Monotone	 linear	 map	 

Ullrich	  and	  Taylor	  (2015)	  

Poten=al	  problem:	  a	  monotone	  linear	  map	  that	  does	  
not	  have	  any	  knowledge	  of	  the	  GLL	  values	  (i.e.	  not	  
flow	  dependent)	  can	  at	  most	  be	  1st	  order!	  
	  
Modifica=on	  to	  Ullrich-‐Taylor	  algorithm:	  
	  
Since	  any	  linear	  combina=on	  of	  linear	  maps	  is	  
conserva=ve	  and	  consistent	  one	  may	  “op=mally”	  
blend	  the	  maps	  for	  shape-‐preserva=on	  
(“FCT-‐like	  method”)	  
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“FCT”	 version	 of	 Ullrich-Taylor	 algorithm	 

Anon-‐mono*GLL	  =	  PHYSnon-‐mono	  

Amono*GLL	  =	  PHYSmono	  

[α Amono	  +	  (1-‐α)	  Anon-‐mono	  GLL]	  =	  PHYSmono	  
	  
where	  	  α	  =	  (max(GLL)-‐PHYSnon-‐mono)/(PHYSmono	  -‐	  PHYSnon-‐mono)	  or	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  α	  =	  (min(GLL)-‐PHYSnon-‐mono)/(PHYSmono	  -‐	  PHYSnon-‐mono)	  	  



Dynamics	  to	  physics	  grid	  mapping	  

Proper=es	  we	  are	  looking	  for:	  Preserve	  smooth	  fields	  and	  at	  the	  same	  =me	  not	  generate	  	  
new	  extrema	  for	  rough	  distribu=ons	  (and	  be	  mass-‐conserva=ve	  and	  consistent)	  



Smooth	  field	  (“spherical	  harmonic”)	  

1st	  order	  monotone	  map	  (not	  flow	  dependent):	  see	  grid	  

NE5NP4	  to	  NC3	  (6	  degrees	  global	  resolu=on)	  

CAM3SE/CSLAM$$physics$grid$

5%

Dynamics:%%Spectral%element%

Tracer%Advec/on:%%CSLAM%
Conserva/ve,%SemiTLagrange,%
mul/Ttracer%efficient%algorithm%
using%cell%averaged%data%

Physics:%%cell%averaged%data.%%



Smooth	  field	  (“spherical	  harmonic”)	  

Op=mally	  blend	  conserva=ve	  and	  monotone	  map	  

NE5NP4	  to	  NC3	  (6	  degrees	  global	  resolu=on)	  



Rough	  field	  (“slofed	  cylinder”)	  

Non-‐monotone	  conserva=ve	  

NE5NP4	  to	  NC3	  (6	  degrees	  global	  resolu=on)	  



Rough	  field	  (“slofed	  cylinder”)	  

Op=mally	  blend	  conserva=ve	  and	  monotone	  map	  

NE5NP4	  to	  NC3	  (6	  degrees	  global	  resolu=on)	  
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Passing	 tendencies	 (fv,fT,fq,…)	 to	 dynamics:	 
Use	 a	 1st-order,	 shape-preserving,	 conservative	 linear	 map	 



CAM4	  forcing:	  Aqua-‐planet	  
Atmospheric	  model	  with	  complete	  parameteriza=on	  suite	  
Idealized	  surface:	  no	  land	  (or	  mountains),	  no	  sea	  ice	  
specified	  global	  sea	  surface	  temperatures	  everywhere	  
	  =>	  Free	  mo=ons,	  no	  forced	  component	  

Why	  CAM4?	  More	  resolu=on	  sensi=vity	  than	  CAM5	  (and	  it	  is	  cheaper!)	  



Configura=ons	  

NE30NP4NC2	   NE30NP4NC3	   NE30NP4NC4	  

	  
Data	  mapped	  to	  3o	  lat-‐lon	  grid	  for	  analysis	  
	  
Length	  of	  simula=ons:	  30	  months	  
	  

	  	  

NE30NP4	  

1.5o	  physgrid	   1.0o	  physgrid	   0.75o	  physgrid	  



Min/max	  moisture	  forcing	  
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Sta=onary	  grid	  scale	  forcing	  
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Note	  that	  physics	  grid	  averages/moves	  fields	  
away	  from	  boundary	  of	  element	  where	  the	  

solu=on	  is	  least	  smooth	  
(in	  element	  interior	  the	  polynomials	  are	  C∞)	  	  
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Con=nuous	  Galerkin	  finite-‐element	  method	  (Taylor	  et	  al.,	  1997)	  on	  a	  cubed-‐sphere:	  
	  
	  
	  
	  
	  
	  
	  
	  
	    Discre=za=on	  is	  mime=c	  =>	  mass-‐conserva=on	  &	  total	  energy	  conserva=on	   Conserves	  axial	  angular	  momentum	  very	  well	  (Lauritzen	  et	  al.,	  2014)	   Support	  sta=c	  mesh-‐refinement	  and	  retains	  formal	  order	  of	  accuracy!	  	   Highly	  scalable	  to	  at	  least	  O(100K)	  processors	  (Dennis	  et	  al.,	  2012)	   Compe==ve	  “AMIP-‐climate”	  (Evans	  et	  al.,	  2012)	  
  Lower	  computa=onal	  throughput	  for	  many-‐tracer	  applica=ons	   Tracer	  transport	  accuracy?	  
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The	 terminator	 ‘toy’-chemistry	 test:	 A	 simple	 tool	 to	 
assess	 errors	 in	 transport	 schemes���
(Lauritzen	 et	 al.,	 2015,	 GMD)	 
See:	 http://www.cgd.ucar.edu/cms/pel/terminator.html	 	 

Cl	  

Non-‐linear	  	  
Terminator	  ‘toy’	  	  
chemistry:	  

Exact	  solu=on:	  
Cl+2*Cl2	  =	  constant	  

Errors	  are	  due	  to	  non-‐conserva=on	  of	  linear	  correla=ons	  usually	  
caused	  by	  the	  limiter/filter	  and/or	  physics-‐dynamics	  coupling!	  

Wind	  field:	  	  
Nair	  and	  
Lauritzen	  

deforma=onal	  
flow	  

The  terminator  
test 

CL2	  

Cl+2*Cl2	  =	  constant	  



CAM-‐SE	  

CAM-‐FV	  

CSLAM	  



A	 way	 to	 accelerate	 tracer	 transport:	 ���
	 Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,|)
reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.
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CSLAM	  =me-‐step	  restric=on:	  flow	  deforma=on	  (upstream	  area	  must	  be	  simply	  connected)	  
	  
Current	  implementa=on	  in	  CAM-‐SE:	  CN	  <	  1,	  where	  Courant	  number.	  
	  
Spectral-‐element	  advec=on:	  RK2	  with	  CN<0.3	  
	  
	  
=>	  3	  =mes	  longer	  =me-‐step	  with	  CSLAM	  compared	  to	  SE	  advec=on	  scheme	  
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MPI	  communica=on	  	  
For	  every	  30	  minute	  physics	  =me-‐step:	  
	  
-‐	  SE	  performs	  6	  tracer	  =me-‐steps	  with	  2	  Runga-‐Kufa	  stages	  =>	  12	  MPI	  calls	  
-‐	  CSLAM	  performs	  2	  tracer	  =me-‐steps	  (CN<1)	  =>	  2	  MPI	  calls	  

That	  said,	  CSLAM	  needs	  a	  much	  larger	  halo	  than	  SE.	  	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



A	 way	 to	 accelerate	 tracer	 transport:	 ���
	 

Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM

a

ε=1

ε=4

ε=2

a
k

ε=1

ka

ak
ε=2

k
a ε=3

k

ε=4

ε=3

�
Ak

 n+1
k dA = �

Ak

 n
k dA − 4�

✏=1 s
✏
k`�

a✏k

 dA,  =�p, �p q.

where

a

✏
k = ‘flux-area’ (yellow area) = area swept through face ✏

s

✏
k` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent

(Lauritzen et al., 2011).
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Coupling	 finite-volume	 semi-
Lagrangian	 transport	 with	 
spectral	 element	 dynamics	 

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

The continuity equations for air and tracers are coupled:

�
Ak

�pn+1k dA = �
ak
�pnk dA, (2)

�
Ak

(�p q)n+1k dA = �
ak
(�pkq)n dA. (3)

If q = 1 then (3) should reduce to (2).
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Coupling	 finite-volume	 semi-
Lagrangian	 transport	 with	 
spectral	 element	 dynamics	 

Solved	  with	  spectral-‐element	  
Eulerian	  advec=on	  operator	  
(max	  Courant	  number	  <	  0.3)	  

	  
	  
	  
	  
	  
	  

Basic formulation

Solution

Cast problem in flux-form:

F(CSLAM) = F(SE) (4)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

Spectral-element method does not operate with fluxes: Taylor et al.
have derived a method to compute fluxes, F(SE), through the
CSLAM control volume faces! presented at ICMS conference in March, 2015.
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Solved	  with	  semi-‐Lagrangian	  
scheme	  (CSLAM)	  

(max	  Courant	  number	  <	  1)	  
	  
	  
	  
	  
	  

Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):
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reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 4 / 20We	  need	  to	  couple	  without	  viola=ng	  mass-‐conserva=on,	  
shape-‐preserva=on,	  and	  consistency	  



Basic formulation

Coupling problem formulation

We need to find a departure grid so that

�p

(CSLAM) =�p

(SE) (3)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

(a) (b)

Figure: Global iteration problem / and it is ill-conditioned since any
non-divergent perturbation of points yields the same solution ///
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

Find upstream area, ak , so that CSLAM predicted mass field is equal to
CAM-SE predicted mass field:

�pn+1k (CAM-SE) = 1

�A �ak �pnk dA (CSLAM) , . (4)

Many details of algorithm (well-posedness, ...) are left out here ...
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If	   we	   choose	   to	   move	   departure	   points	  
around	   so	   that	   (4)	   is	   fulfilled	   a	   global	  
itera=on	  problem	  results!	  	  
	  
	  
	  
	  
	  
	  
(and	  I	  am	  not	  sure	  it	  is	  well-‐posed!)	  
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling
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If	   we	   choose	   to	   move	   departure	   points	  
around	   so	   that	   (4)	   is	   fulfilled	   a	   global	  
itera=on	  problem	  results!	  	  
	  
	  
	  
	  
	  
	  
(and	  I	  am	  not	  sure	  it	  is	  well-‐posed!)	  

Solu=on:	  Cast	  problem	  in	  flux-‐form	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Basic formulation

CSLAM fluxes

Given F(SE) find swept areas, �⌦, so that:

1

F(CSLAM) = �
�⌦

�p(x , y)dA = F(SE) ∀ �⌦.

2 The sum of all the swept areas, �⌦, span the domain without cracks
or overlaps
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling
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If	   we	   choose	   to	   move	   departure	   points	  
around	   so	   that	   (4)	   is	   fulfilled	   a	   global	  
itera=on	  problem	  results!	  	  
	  
	  
	  
	  
	  
	  
(and	  I	  am	  not	  sure	  it	  is	  well-‐posed!)	  

Solu=on:	  Cast	  problem	  in	  flux-‐form	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling
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If	   we	   choose	   to	   move	   departure	   points	  
around	   so	   that	   (4)	   is	   fulfilled	   a	   global	  
itera=on	  problem	  results!	  	  
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Solu=on:	  Cast	  problem	  in	  flux-‐form	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Basic formulation

Consistent SE-CSLAM algorithm: flow cases

case 9case 7

case 1

case 4

case 8

case 6
case 5

case 2 case 3

(e)

(e)(e)

(f)

(e)

(e)

(d)

(e)

(e)
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(a) (b)

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

Find upstream area, ak , so that CSLAM predicted mass field is equal to
CAM-SE predicted mass field:
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Lauritzen,	  Taylor,	  Overfelt,	  Ullrich	  and	  Goldhaber	  (2016,	  IN	  PREP)	  	  

Local	   itera=on	   problem	   to	   find	   equivalent	  
upstream	  areas:	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



20TH ANNUAL CESM WORKSHOP June 15-18, 2015, Breckenridge, Colorado

Overview

A new model configuration based on CAM-SE:

SE: Spectral-element dynamical core solving for �v , T , ps
(Dennis et al., 2012; Evans et al., 2012; Taylor and Fournier, 2010; Taylor et al., 1997)

CSLAM: Semi-Lagrangian finite-volume transport scheme for tracers
(Lauritzen et al., 2010; Erath et al., 2013, 2012; Harris et al., 2010)

Phys-grid: Separating physics and dynamics grids, i.e. ability to
compute physics tendencies based on cell-averaged values within each
element instead of quadrature points
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CAM-SE-CSLAM	 

Lauritzen,	  Taylor,	  Overfelt,	  Ullrich	  and	  Goldhaber	  (2016,	  IN	  PREP)	  	  



3	  tracers:	  ini=al	  condi=ons	  

Gaussian	  
“ball”	  

Zonally	  	  
symmetric	  
(smooth)	  

Slofed	  
cylinder	  



Predictability limit for flow is 
approximately 12 days ���

(Jablonowski and Williamson, 2006)  

CAM-SE ���
1 degree 
standard 

configuration 
(spectral element 

advection) 

CAM-SE-CSLAM ���
1 degree 

 configuration 
(tracer transport 

with CSLAM 
consistently coupled 

with spectral 
element dynamics) 

CAM-SE ���
0.25 degree 

standard configuration  
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