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In Earth’s atmosphere, the physical sources/sinks of angular momentum are very large. On the resolved
scales (part of the dynamical core), there are large mountain torques due to pressure difference across orog-
raphy. The mountain torques are predominantly eastward in the tropics and westward in the midlatitudes,
and this AAM exchange affects the length of day [see, e.g., Egger et al., 2007]. On the unresolved scales, the
frictional forces such as boundary layer turbulence and drags from breaking gravity waves alter the AAM
budget. Due to these large physical sources and sinks (that are not in a similar balance as for Venus and
Titan), the lack of conservation of AAM in the dynamical core (when subtracting the mountain torque) is
much less apparent.

It is the purpose of this paper to investigate the globally integrated AAM conservation properties of the
spectral-element dynamical core (the CAM-SE dynamical core is the continuous Galerkin spectral finite-
element dynamical core in NCAR’s High-Order Method Modeling Environment (HOMME) [Dennis et al.,
2005]; referred to as CAM-SE [Dennis et al., 2012]) and to investigate how different numerical operators/
options available in CAM-SE affect AAM conservation. The CAM-SE dynamical core can be run at different
formal orders of accuracy (by varying the order of the polynomial basis functions) and it accommodates
two different treatments of vertical advection that are commonly used: the finite difference treatment of
vertical advection that conserves angular momentum and total energy [Simmons and Burridge, 1981], which
will be referred to as Eulerian vertical coordinate (hybrid-sigma), and the floating Lagrangian vertical coordi-
nates for which the vertical advection terms are essentially replaced by periodic vertical remapping of prog-
nostic variables from the floating Lagrangian layers to reference Eulerian (hybrid-sigma) vertical
coordinates. This remapping also conserves AAM and optionally total energy [Lin, 2004]. The effect on AAM
conservation by using these different numerical operators is the main topic of this paper. The AAM analysis
is detailed in the sense that not only are the total contributions to AAM from the dynamical core and
parameterizations separated but also the breakdown into the relative contributions from diffusion operators
and the ‘‘inviscid’’ fluid flow solver. The AAM diagnostics are computed consistently inline in the dynamical
core at every dynamics time step and fully consistently with the spectral-element method.

The simulations presented here make use of the idealized Earth configuration called Held-Suarez [Held and
Suarez, 1994]. In this setup, there is no topography and the parameterization suite is replaced by a relaxa-
tion of temperature toward a zonally symmetric state and Rayleigh damping of low-level winds to emulate
boundary layer friction [Held and Suarez, 1994]. This forcing results in a statistical mean state similar to
Earth’s atmosphere in terms of producing similar time-averaged zonal jet streams and temperature profiles.
The only physical source/sink of AAM in this setup is the Rayleigh damping. The absence of mountain tor-
ques and other large subgrid-scale torques makes the Held-Suarez test a good test bed for investigating
AAM properties of general circulation models developed for Earth’s atmosphere.

Figure 1. Angular momentum diagnostics for CAM-FV in the Held-Suarez setup (data are from Lebonnois et al. [2012]). First, second, and third column is total angular momentum
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Highly scalable dynamical core
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Figure 5: Performance of the CESM atmosphere component model on Intrepid (IBM BG/P)
when using the CAM-SE, FV or EUL dynamical core, showing the simulated-years-per-day
as a function of the number of processing cores. Atmosphere component times taken from a
CESM time-slice simulation, coupling the atmosphere (at 0.25� or T341 resolution), the land
model (0.25� resolution), and the sea ice and data ocean model (0.1�). The solid black line
shows perfect parallel scalability. When using CAM-SE, the CESM achieves near perfect
scalability down to one element per processor, running at 12.2 SYPD on 86,400 cores.

Figure from Dennis et al. (2012)

We can now perform climate simulations at unprecedented resolutions and we are starting to resolve
some meso-scale motion (at which scales the dynamics fundamentally changes character!)

Peter Hjort Lauritzen (NCAR) Dynamics II May 30, 2012 8 / 25
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Figure 6. Diagnostics for 30 year AMIP simulations with CAM5.2. Upper, middle and lower group of plots are model level 16 vertical
velocity, total precipitation rate and mean sea level pressure differences, respectively, Except for the two right-most plots on the second
row of each group of plots, the diagnostics are for CAM-SE with different amounts of smoothing of �s and different levels of divergence
damping. The amount of smoothing follows the same notation as Fig. 2 (right) and 1.0xdiv, 2.5xdiv, 5.0xdiv refers to increasing divergence
damping by a factor 1,0, 2.5, and 5.0, respectively. The second right-most plot on each group of plots (labeled FV) show results for CAM-FV.
Lower right plot in the second and third group of plots show TRMM observations and NCEP reanalysis data, respectively.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Fig. 3. The kinetic energy spectra from high resolution aqua planet simulations of CAM-
SE and CAM-EUL. Left panel plots E(k) as a function of spherical wave number k. Right
panel plots E(k)k5/3 to better illustrate how the spectral matches the predicted k�3 and
k�5/3 scalings (black lines). Solid lines show the KE of �u, while the dotted lines show the
irrotational component �u�. CAM-SE at 0.25� matches the CAM-EUL T340 spectra quite
well at all scales resolved by CAM-EUL. But even higher resolution is needed to capture
the observed transition from a k�3 to a k�5/3 scaling, as seen in the result for CAM-SE at
0.125�, which has large regions which match each scaling regime.
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We are now starting to resolve some meso-scale motion (k-5/3’s transition)

! slowly starting to resolve large-scale convection (since we can resolve large-scale updrafts) but
we are certainly not resolving all kinds of convection and associated phenomena: GREY ZONE

Are the assumptions we are making in climate models developed for resolutions of O(> 100km)
still valid?

Peter Hjort Lauritzen (NCAR) Dynamics II May 30, 2012 17 / 25
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.
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algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.
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defined on cubed-sphere grids. The finite-volume cubed-
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version of CAM FV developed at the Geophysical Fluid
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izontal momentum equations. This is accomplished
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of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
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is similar to an equidistant cubed-sphere grid that is ex-
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in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.
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2009). Spectral elements are a type of a continuous-
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than using cell averages as prognostic variables as in
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Separating physics and dynamics grids was 
a major software engineering task in CAM – 
affected many parts of the code:  
 
•  history (output) 
•  initialization/restart 
•  Some parameterizations assumed grids 

were collocated 
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  global	
  sea	
  surface	
  temperatures	
  everywhere	
  
	
  =>	
  Free	
  mo=ons,	
  no	
  forced	
  component	
  

Why	
  CAM4?	
  More	
  resolu=on	
  sensi=vity	
  than	
  CAM5	
  (and	
  it	
  is	
  cheaper!)	
  



Configura=ons	
  

NE30NP4NC2	
   NE30NP4NC3	
   NE30NP4NC4	
  

	
  
Data	
  mapped	
  to	
  3o	
  lat-­‐lon	
  grid	
  for	
  analysis	
  
	
  
Length	
  of	
  simula=ons:	
  30	
  months	
  
	
  

	
  	
  

NE30NP4	
  

1.5o	
  physgrid	
   1.0o	
  physgrid	
   0.75o	
  physgrid	
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Note	
  that	
  physics	
  grid	
  averages/moves	
  fields	
  
away	
  from	
  boundary	
  of	
  element	
  where	
  the	
  

solu=on	
  is	
  least	
  smooth	
  
(in	
  element	
  interior	
  the	
  polynomials	
  are	
  C∞)	
  	
  



Held-­‐Suarez	
  with	
  topography	
  

NE30NP4	
  



Held-­‐Suarez	
  with	
  topography	
  

NE30NP4NC2	
  



Held-­‐Suarez	
  with	
  topography	
  

NE30NP4NC3	
  



Con=nuous	
  Galerkin	
  finite-­‐element	
  method	
  (Taylor	
  et	
  al.,	
  1997)	
  on	
  a	
  cubed-­‐sphere:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
    Discre=za=on	
  is	
  mime=c	
  =>	
  mass-­‐conserva=on	
  &	
  total	
  energy	
  conserva=on	
   Conserves	
  axial	
  angular	
  momentum	
  very	
  well	
  (Lauritzen	
  et	
  al.,	
  2014)	
   Support	
  sta=c	
  mesh-­‐refinement	
  and	
  retains	
  formal	
  order	
  of	
  accuracy!	
  	
   Highly	
  scalable	
  to	
  at	
  least	
  O(100K)	
  processors	
  (Dennis	
  et	
  al.,	
  2012)	
   Compe==ve	
  “AMIP-­‐climate”	
  (Evans	
  et	
  al.,	
  2012)	
  
  Lower	
  computa=onal	
  throughput	
  for	
  many-­‐tracer	
  applica=ons	
   Tracer	
  transport	
  accuracy?	
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CAM-SE:	
 NCAR	
 Community	
 Atmosphere	
 ���
Model	
 with	
 Spectral	
 Elements	
 dynamical	
 core	
 



The	
 terminator	
 ‘toy’-chemistry	
 test:	
 A	
 simple	
 tool	
 to	
 
assess	
 errors	
 in	
 transport	
 schemes���
(Lauritzen	
 et	
 al.,	
 2015,	
 GMD)	
 
See:	
 http://www.cgd.ucar.edu/cms/pel/terminator.html	
 	
 

Cl	
  

Non-­‐linear	
  	
  
Terminator	
  ‘toy’	
  	
  
chemistry:	
  

Exact	
  solu=on:	
  
Cl+2*Cl2	
  =	
  constant	
  

Errors	
  are	
  due	
  to	
  non-­‐conserva=on	
  of	
  linear	
  correla=ons	
  usually	
  
caused	
  by	
  the	
  limiter/filter	
  and/or	
  physics-­‐dynamics	
  coupling!	
  

Wind	
  field:	
  	
  
Nair	
  and	
  
Lauritzen	
  

deforma=onal	
  
flow	
  

The  terminator  
test 

CL2	
  

Cl+2*Cl2	
  =	
  constant	
  



CAM-­‐SE	
  

CAM-­‐FV	
  

CSLAM	
  



A	
 way	
 to	
 accelerate	
 tracer	
 transport:	
 ���
	
 Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,|)
reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.
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CSLAM	
  =me-­‐step	
  restric=on:	
  flow	
  deforma=on	
  (upstream	
  area	
  must	
  be	
  simply	
  connected)	
  
	
  
Current	
  implementa=on	
  in	
  CAM-­‐SE:	
  CN	
  <	
  1,	
  where	
  Courant	
  number.	
  
	
  
Spectral-­‐element	
  advec=on:	
  RK2	
  with	
  CN<0.3	
  
	
  
	
  
=>	
  3	
  =mes	
  longer	
  =me-­‐step	
  with	
  CSLAM	
  compared	
  to	
  SE	
  advec=on	
  scheme	
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MPI	
  communica=on	
  	
  
For	
  every	
  30	
  minute	
  physics	
  =me-­‐step:	
  
	
  
-­‐	
  SE	
  performs	
  6	
  tracer	
  =me-­‐steps	
  with	
  2	
  Runga-­‐Kufa	
  stages	
  =>	
  12	
  MPI	
  calls	
  
-­‐	
  CSLAM	
  performs	
  2	
  tracer	
  =me-­‐steps	
  (CN<1)	
  =>	
  2	
  MPI	
  calls	
  

That	
  said,	
  CSLAM	
  needs	
  a	
  much	
  larger	
  halo	
  than	
  SE.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



A	
 way	
 to	
 accelerate	
 tracer	
 transport:	
 ���
	
 

Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM

a

ε=1

ε=4

ε=2

a
k

ε=1

ka

ak
ε=2

k
a ε=3

k

ε=4

ε=3

�
Ak

 n+1
k dA = �

Ak

 n
k dA − 4�

✏=1 s
✏
k`�

a✏k

 dA,  =�p, �p q.

where

a

✏
k = ‘flux-area’ (yellow area) = area swept through face ✏

s

✏
k` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent

(Lauritzen et al., 2011).
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Coupling	
 finite-volume	
 semi-
Lagrangian	
 transport	
 with	
 
spectral	
 element	
 dynamics	
 

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

The continuity equations for air and tracers are coupled:

�
Ak

�pn+1k dA = �
ak
�pnk dA, (2)

�
Ak

(�p q)n+1k dA = �
ak
(�pkq)n dA. (3)

If q = 1 then (3) should reduce to (2).
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Coupling	
 finite-volume	
 semi-
Lagrangian	
 transport	
 with	
 
spectral	
 element	
 dynamics	
 

Solved	
  with	
  spectral-­‐element	
  
Eulerian	
  advec=on	
  operator	
  
(max	
  Courant	
  number	
  <	
  0.3)	
  

	
  
	
  
	
  
	
  
	
  
	
  

Basic formulation

Solution

Cast problem in flux-form:

F(CSLAM) = F(SE) (4)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

Spectral-element method does not operate with fluxes: Taylor et al.
have derived a method to compute fluxes, F(SE), through the
CSLAM control volume faces! presented at ICMS conference in March, 2015.
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Solved	
  with	
  semi-­‐Lagrangian	
  
scheme	
  (CSLAM)	
  

(max	
  Courant	
  number	
  <	
  1)	
  
	
  
	
  
	
  
	
  
	
  

Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, �p), and tracer (mixing ratio, q):

�
Ak
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ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,|)
reconstruction coe�cients for  n

k , and w

(ı,|)
k` weights.
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  need	
  to	
  couple	
  without	
  viola=ng	
  mass-­‐conserva=on,	
  
shape-­‐preserva=on,	
  and	
  consistency	
  



Basic formulation

Coupling problem formulation

We need to find a departure grid so that

�p

(CSLAM) =�p

(SE) (3)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

(a) (b)

Figure: Global iteration problem / and it is ill-conditioned since any
non-divergent perturbation of points yields the same solution ///
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Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

Find upstream area, ak , so that CSLAM predicted mass field is equal to
CAM-SE predicted mass field:

�pn+1k (CAM-SE) = 1

�A �ak �pnk dA (CSLAM) , . (4)

Many details of algorithm (well-posedness, ...) are left out here ...

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM September 17, 2015 4 / 8

If	
   we	
   choose	
   to	
   move	
   departure	
   points	
  
around	
   so	
   that	
   (4)	
   is	
   fulfilled	
   a	
   global	
  
itera=on	
  problem	
  results!	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
(and	
  I	
  am	
  not	
  sure	
  it	
  is	
  well-­‐posed!)	
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Basic formulation
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If	
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   to	
   move	
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   points	
  
around	
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   a	
   global	
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Solu=on:	
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  problem	
  in	
  flux-­‐form	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Basic formulation

CSLAM fluxes

Given F(SE) find swept areas, �⌦, so that:

1

F(CSLAM) = �
�⌦

�p(x , y)dA = F(SE) ∀ �⌦.

2 The sum of all the swept areas, �⌦, span the domain without cracks
or overlaps
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Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)
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  flux-­‐form	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Basic formulation

Consistent SE-CSLAM algorithm: flow cases

case 9case 7

case 1

case 4

case 8

case 6
case 5

case 2 case 3

(e)

(e)(e)

(f)

(e)

(e)

(d)

(e)

(e)
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(a) (b)

Requirements (desirable properties) for transport schemes Global climate & climate chemistry modeling

4. Consistency

Find upstream area, ak , so that CSLAM predicted mass field is equal to
CAM-SE predicted mass field:

�pn+1k (CAM-SE) = 1

�A �ak �pnk dA (CSLAM) , . (4)

Many details of algorithm (well-posedness, ...) are left out here ...
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Local	
   itera=on	
   problem	
   to	
   find	
   equivalent	
  
upstream	
  areas:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



20TH ANNUAL CESM WORKSHOP June 15-18, 2015, Breckenridge, Colorado

Overview

A new model configuration based on CAM-SE:

SE: Spectral-element dynamical core solving for �v , T , ps
(Dennis et al., 2012; Evans et al., 2012; Taylor and Fournier, 2010; Taylor et al., 1997)

CSLAM: Semi-Lagrangian finite-volume transport scheme for tracers
(Lauritzen et al., 2010; Erath et al., 2013, 2012; Harris et al., 2010)

Phys-grid: Separating physics and dynamics grids, i.e. ability to
compute physics tendencies based on cell-averaged values within each
element instead of quadrature points
C
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Finer&or&coarser?&
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3	
  tracers:	
  ini=al	
  condi=ons	
  

Gaussian	
  
“ball”	
  

Zonally	
  	
  
symmetric	
  
(smooth)	
  

Slofed	
  
cylinder	
  



Predictability limit for flow is 
approximately 12 days ���

(Jablonowski and Williamson, 2006)  

CAM-SE ���
1 degree 
standard 

configuration 
(spectral element 

advection) 

CAM-SE-CSLAM ���
1 degree 

 configuration 
(tracer transport 

with CSLAM 
consistently coupled 

with spectral 
element dynamics) 

CAM-SE ���
0.25 degree 

standard configuration  
 

USED AS REFERENCE 
SOLUTION (“TRUTH”) 



day	
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   day	
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  day	
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