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Accuracy?

The degree to which the result of a
measurement, calculation, or specification
conforms to the correct value or a standard.

o Oxford Dictionaries
Language matters
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Until fairly recently the most widely used idealized test
case to assess transport accuracy in global models was:
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Until fairly recently the most widely used idealized test
case to assess transport accuracy in global models was:

Test 1: Solid-body advection
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Until fairly recently the most widely used idealized test
case to assess transport accuracy in global models was:

* No deformation only translation:

-> Flow does not force tracer features to collapse to the
grid scale (as it does in nature) : Solid-body

tion

» Parcel trajectories are trivial

* No divergencel/convergence

wn/2

1.0E-0

1.0E-1 Fmoe :* ........... .....

1.0E-2 ! : ..... _ 0

1.0E-3 | h. ................. ..... i

1.0E-4 - N, At=1800s —@— ............... ..... .
N, At=4050s [ |

1.0E-5 F{ M, At=1800s - ................. ............... ............ . .".'.._ 0 m/2

conv.-rate 2.48 —— |

1 1 1 1

l2 error norm

m 3n/2 2m

1.0E-6

i i j
12 24 48 96 192 384 768

Ne¢

0.1 0.15 02 025 03 035 04 045 05 055 06 065 0.7 075 0.8 085 09 095 1

NCAR

UCAR | Climate & Global Dynamics



Beyond standard error norms:

Standard error measures

If  =¢(1,0,1) is the transported mixing ratio field, then
global normalized standard errors are defined by Williamson

et al. (1992):

¢, — [1[(¢—¢T)2]}1/2
2 — )

I[(¢7)?]
fo = maxvy g [¢ — ¢r|
maxvy g [pr|
P maxv;, g (¢) — maxvy g (¢or1)
max A¢O )
bt = miny; o (¢) —minvy ¢ (P7)
min A¢0 9

where ¢7r and ¢( are, respectively, the exact/analytical so-
lution, and its initial value, A¢yg, is the difference between
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Conservation of mass

Consider the continuity equation for X (e.g., water vapor, cloud
ice, cloud liquid, chemical species, ...)

%, m
(mypg) + V- (mxpgv) =pg S 7, (1)
8t

where S is the source of X and/or sub-grid-scale transport term.

Integrate (1) over entire atmosphere €2,

O oo [ff, nismav
ot Qo Qior

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks S"'¥.
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Global conservation of mass

4 N

Globally the change in mass is exactly balanced by the source/sink terms!

The resolved-scale tracer transport must not be a spurious source or sink of mass

\ Why is that a problem? /

Integrate (1) over entire atmosphere €2,

O oo [ff, nismav
ot Qo Qior

Note: sub-grid-scale transport integrates to zero! Global mass only
changes due to sources/sinks S"'¥.
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Accumulation of error

Relative dry mass change: [M(t)-M(t=0)]/M(t=0)

0 HIH T T T T ! ! ! ! !

-2x10°71° HHH- 1
-4x10715 - HH -
-6x10715 |- - .
-8x10715 |- - 1
-1x10714 - HHH- -
-1.2x10714 HH .
-1.4x10714 | HHH- =
-1.6x10714 HHH- -

-1.8x10714 - +H 7

-ox10714 L L L L L L 1 1 1

1000 year simulation = O(107) 30 minute time-steps
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Ad hoc mass fixers are inherently problematic

Assume there has been a mass loss

longitude
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Ad hoc mass fixers are inherently problematic

Global mean
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

Spurious Global mean

mass restoration

longitude

tional ter f tmosphe f rct
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Ad hoc mass fixers are inherently problematic

longitude




Ad hoc mass fixers are inherently problematic

Ad hoc “local”
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

Ad hoc “local”
mass restoration

longitude
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Ad hoc mass fixers are inherently problematic

m,
1 ___________________________________
Ad hoc “local”
mass restoration
0

longitude

tional Center f tmosphe Researct
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Inherent local mass-conservation is desirable

Q
=L

pU i
n —& da e R

» The continuity equation is a conservation law for mass:

S [[ padv == f 7 (e av.

- 5'#39 (pav) - ndS
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Conservation of m, along parcel trajectories

Consider the continuity equation for dry air and X

0

_;td + V- (pgv) =0, (2)
s, m
o (Mmypg) + V- (mxpav) =pa S, (3)

respectively. Applying the chain rule to (3), re-arranging and
substituting (2) implies

— ¢Mx
=5,

where D /Dt = % + vV is the total (material) derivative.
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Conservation of m, along parcel trajectories

Consider the continuity equation for dry air and X

9pd + 1 If the discretization scheme is )

ot based on the advective form of
9 (mypy) + 7 - ( the continuity equation (.e.g, )
ot grid-point semi-Lagrangian

schemes) then inherent mass-
conservation is not guaranteed

substituting (2) implies 7/

— cMx
=5,

respectively. Applying the chaii

where D /Dt = % + vV is the total (material) derivative.
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Conservation of m, along parcel trajectories
(if no sources/sinks of m,)

Eddyand paticles alter O days
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* if m (x,y,t=0)=constant then m (x,y,t)=constant

* MIN[m,(x,y,t=0)] < m_ (x,y,t) < MAX[m,(x,y,t=0)]

Source: https://www.youtube.com/watch?v=tEHQH7Uly-8
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Conservation of m, along parcel trajectories
(if no sources/sinks of m,)

1.2
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Nair et al., (2011)
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Conservation of m, along parcel trajectories

Atmospheric modelers tend to be a bit loose with the term "'monotone’!

When modelers refer to “non-oscillatory”, “shape-preserving”, “physical realizable”
or “monotone” they usually refer to the monotonicity property as defined by
Harten (1983):

1. No new local extrema in m, may be created
2. The value of a local minima/(maxima) is nondecreasing/(nonincreasing)

There are “stricter” characterizations such as total variation diminishing (TVD),
however, they are probably too strong for our applications

=> the monotonicity property applies to mixing
ratio m, and not tracer mass!
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Why is the monotonicity property so important

1.2
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Nair et al., (2011)

NCAR | National Center for Atmospheric Research

UCAR | Climate & Global Dynam|cs



Why is the monotonicity property so important

20 T Tt ]

,, . e

Spurious oscillations

I

I . L :

within the physical i (negative mixing ratio or
i
|

h i \ * Over- and undershoots can
: | lead to unphysical values

|
realizable range of values ! mixing ratio > 1)
can trigger irreversible
diabatic processes
(e.g., phase-changes,

chemical reactions)

* If we ignore (“chop”) the
unphysical values we loose
mass conservation and if
the tracer is humidity it
would impact energy

~ '\',' conservation

—020 ]
—-1.0 —-0.5 0.0 0.5 1.0

Nair et al., (2011)
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Conservation of mass along parcel trajectories

Note that
but

If we integrate py over a Lagrangian volume 2, then

%,
afffg padV = 0.
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Lagrangian volumes are rapidly distorting

¢ \\/L

Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge.

Ringler (2011)
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Filament diagnostic w.rriher uoy

(b) ¢ (t=0), cosine bells

/2

o /2 n Sn/2

(b) ¢ (t=T/2), cosine bells

/2

¢ /R & an/2

The “filament” preservation diaghostic is formulated as follows. Define A(1,t) as the
spherical area for which the spatial distribution of the tracer ¢(1,0) satisfies

P(1.0) =T, (27)

at time t, where 7 is the threshold value. For a non-divergent flow field and a passive
and inert tracer ¢, the area A(7,t) is invariant in time.
The discrete definition of A(7,%) is

= D DA, (28)
keg

where AA, is the spherical area for which @, is representative, K is the number of grid
cells, and G is the set of indices

G={ke(1,...K)|p, =T} (29)

For Eulerian finite-volume schemes AA, is the area of the k-th control volume. For
Eulerian grid-point schemes a control volume for which the grid-point value is rep-
resentative must be defined. Similarly for fully Lagrangian schemes based on point
values (parcels) control volumes for which the point values are representative must
be defined. Note that the “control volumes” should span the entire domain without
overlaps or “cracks” between them.

Define the filament preservation diagnostic

oy=d 190 0x 7otk if A(7,t =0) £0, (30)
n 0.0, otherwise.

For infinite resolution (continuous case) and a non-divergent flow, &(z,t) is invariant
in time: (1,1 =0) = ¢(7,t) =100 for all 7. At finite resolution, however, the filament

This diagnostic does not rely on an analytical solution!

Lauritzen et al. (2012)
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Filament diagnostic

(a) 1%-order CSLAM (b) 3"-order CSLAM
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Fig. 6. Filament diagnostics £;(t =T'/2) as a function of threshold value 7 for different configurations of the CSLAM scheme with Courant
number 5.5. (a) 1°%-order version of CSLAM at AX = 1.5° and A\ = 0.75°, and (b) 3"%-order version of CSLAM with and without
monotone/shape-preserving filter at resolutions A\ =1.5° and AX=0.75°.
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Tracer mass and air mass consistency

Consider the continuity equation for dry air and X (no
sources/sinks)

o

—2+ V- (pgv) =0, (4)
o
E(mxpd)*'v'(mXpdV) =0, (5)

respectively.

Nt)te that if m, is 1 then (5) reduces to (4)}
|

A scheme satisfying this is referred to as “free-stream preserving”
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Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no

respectively.

Nt)te that if m, is 1 then (5) reduces to (4)}
|

A scheme satisfying this is referred to as “free-stream preserving”
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Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
sources/sinks)
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Example: Separating transport and
dynamics grids/methods in CAM-SE

=)

Finite-volume method

| e

Spectral-element method

We need to couple without violating mass-conservation,
shape-preservation, and consistency

NCAR

Al National Center for Atmospheric Research
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Examples of tracer mass and air mass consistency violation

Assume we are solving (4) and (5) with the same finite-volume method:

(5) can be solved with a longer time-step than (4) — “free-stream preservation” can
relatively easily be enforced.

o

—2+ V- (pgv) =0, (4)
o
E(mxl)d)*'v'(mXpdV) =0, (5)

respectively.

Note that if m, is 1 then (5) reduces to (4).

\ }
|

A scheme satisfying this is referred to as “free-stream preserving”
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UCAR | Climate & Global Dynam|cs



Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing

ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -

Plumb (2007)
4

E.g., nitrous oxide (Np O) against ‘total odd nitrogen’ (NO), ) or chlorofluorocarbon (CFC'’s)

300 A"A . - 10
; NO
- 8
200 =
z e
g 6=
: 5
o z.
® -4
100 1
"JCFC11 I
°® A%A — 2
FS
LN
0 * * 0
200 300

NZO (ppbv)

Figures from Plumb (2007).
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Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)

E.g., nitrous oxide (Np O) against ‘total odd nitrogen’ (NO), ) or chlorofluorocarbon (CFC'’s)

Similarly:

@ The total of chemical species within some chemical family may be preserved following an air
parcel although the individual species have a complicated relation to each other and may be
transformed into each other through chemical reactions (e.g., total chlorine)

@ Aerosol-cloud interactions (Ovtchinnikov and Easter, 2009)

The transport operator should ideally not perturb pre-existing functional relationships
¢ )
Wy -
A ~ 4
o
.’ aAa

o ° CFC-11 I
°® A% - 2

a

N
2N

CFC-11

100 1

200 300
N,O (ppbv)

Figures from Plumb (2007).
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Analyzing scatter plots

g(max)

(t?min

IX(min) X xl(max)
Analytical pre-existing functional relationship curve ¢ (linear)

E=v(x)=a-x+b xE€ [x(m'”),x(max)] ,

where a and b are constants, and x and £ are the mixing ratios of the two tracers
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Analyzing scatter plots

g(max)

(t?min

IX(min) X xl(max)
Analytical pre-existing functional relationship curve ¢ (linear)

E=v(x)=a-x+b xE€ [x(m'”),x(max)] ,

where a and b are constants, and x and £ are the mixing ratios of the two tracers
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Analyzing scatter plots

é( max)

g( min

1 1
Ix(min) X XI( ‘max)

Analytical pre-existing functional relationship curve v (linear)

x and & are transported separately by the transport scheme

ittt o= T(),  JeH,
grt o= T, JeH,

where T is the transport operator and H the set of indices defining the ‘halo’ for 7.

NCAR | National Center for Atmospheric Research
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Analyzing scatter plots

gl

g( min

1 1
Ix(min) X Xl(max)

Analytical pre-existing functional relationship curve 1 (linear)

If 7 is ‘semi-linear’ then linear pre-existing functional relations are preserved:
¢l = 7(¢M) = T(ax? + b) = aT(x") + bT(1) = aT(x7) + b = ax{™! + b.
k J J J J k

— If transport operator is non-linear the relationship might be violated.
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Analyzing scatter plots

N20 vs. NOy 12 Jon 1989

‘»%,’ OBSERVATIONS
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TR e e

N20 ppbv

Figures from R.Rood’s talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve 3 (linear)

— carefully designed finite-volume schemes are ‘semi-linear’ even with limiters /filters!
(Thuburn and Mclntyre, 1997; Lin and Rood, 1996)
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The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes

(Lauritzen et al., 2015) | s

See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERMINAZF()R
TEST

Terminator reaction coefficient: k,(A ,0)

Consider 2 reactive chemical species, Cl and Cl, :

Cl, —=CI+Cl:k,
Cl+Cl —CL :k,

Steady-state solution (no flow):

90°S T T T
180° 90°W 0° 90°E 180° 180° 90°W 0° 90°E 180°
(T T 1 [ [ [
2.5e-07 1.25e-06 2.25¢-06 3.25¢-06 2e-07 6e-07 1e-06 1.4e-06 1.8e-06

In any flow-field Cl,=Cl+2*Cl, should be constant at all times
(correlation preservation)

R SciDA

\ )5 Scientific Discovery through National Center for Atmospheric Research NCAR | National Center for Atmospheric Research
RN \dvanced Computing Atmospheric Chemistry Observations & Modeling [l UCAR | Climate & Global Dynamic




The terminator ‘toy’-chemistry test: A simple tool to a ({

. A
4assSessS €rrors in transport schemes 4’ ey
(Lauritzen et al., 2015) i’
See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERMIN j&()P

TEST

Terminator reaction coefficient: k,(A ,0)

» Consider 2 reactive chemical species, Cl and Cl, :

Cl, »Cl+Cl:k,
Cl+Cl —Cl, :k,

® 90°N 90°N
4.10e-6
4.01e-6 40108
45°N | 3.99e-6 450y 3.99e-6
3.90e-6 3.90e-6
3.00e-6 3.00e-6
0° 2.00e-6 0° 2.00e-6
1.00e-6 1.00e-6
0.10e-6 0.10e-6
45°5 0.01e-6 s 0.01e-6
-0.01e-6 -0.01e-6
-0.10e-6 -0.10e-6
90°S T T | 90°S
L S . 90°E 180° 180° 90°W 0 90°E 180°
Day 00 Day 00

* In any flow-field Cl =Cl+2*Cl, should be constant at all times
(linear correlation preservation).

ntific Discovery through National Center for Atmospheric Research NCAR | National Center for Atmospheric Research
omputing Atmospheric Chemistry Observations & Modeling Jll UCAR | Climate & Global Dynamics




The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes

(Lauritzen et al., 2015)

See: http://www.cgd.ucar.edu/cms/pel/terminator.html THE TERMINAZF()R
TEST

CAM-SE

5.00e-6
4.30e-6
4.10e-6
4.03e-6
4.01e-6
3.99¢-6
3.97e-6
3.90e-6
3.70e-6
3.00e-6

180° 90°W 0° 90°E 180°

Day 00
CAM-FV (Lin 2004)

45°N

0°
45°S
90°S

90°W

Day 00

5.00e-6
4.30e-6
4.10e-6
4.03e-6
4.01e-6
3.99%e-6
3.97e-6
3.90e-6
3.70e-6
3.00e-6

* Inany flow-field Cl,=Cl+2*Cl, should be constant at all times (correlation preservation).

National Center for Atmospheric Research NCAR | National Center for Atmospheric Research
Atmospheric Chemistry Observations & Modeling Jll UCAR Climate & Global Dynamics




imiter

No |

imiter

Positive definite |

X/4.e6

1 1
10 4
0.8 - L
0.6 - L
0.4 4 L
0.2 - _
0.0
1 1 1 ||
180 120W  60W 60E 120E 180
1 1 [ [
10 NA
0.8 - L
0.6 L
0.4 - L
02 _
0.0 .
I I I 1
180 120W  60W 60E 120E 180

NCAR

2%/%e6

1
1.0
0.8 - L
0.6 - [
04 - L
0.2 - L
0.0 -
1 1 1 1 1
180 120W 60W 0  60E 120E 180
1 1 1 1 1
10
0.8 - L
0.6 L
04 - _
02 _
0.0
1 1 1 I 1
180 120W 60W 0  60E 120E 180
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3D version: Initial condition
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CAM-SE
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Diagnostics for terminator test: chemistry time—step = 900s

I, error norm for HOMME (1° resolution)

I, error norm for HOMME (1° resolution)

Relative mass change (HOMME 1° resolution)
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Conserving sum of “families” of species

Chlorine (in CAM-chemistry)

Total Organic Chlorine (set at the surface)
TER® = CH3Ce+3CF Cl3+2CF, Clr+3CL CLFC CLF,+HCF, Cl4+4CCly+3CH;3C Cls.
Total Inorganic Chlorine (created from break down of TERC
TVOREG = CL+ CLO+0OCLO +2Cly +2Cl O3 + HOCL+ CLONO, + H CY,

Total Chlorine
TCLY = TORG _|_TINORG

Total chlorine TCLY should be conserved in the upper troposphere and stratosphere
(despite complex chemical reactions between the different chlorine species)!

Reactants Products Rate

PAN + M — CH3CO3+NO2+M k(CH3CO3+NO2+M)-1.111E28
.exp(~14 000/T)

CH3CO3 + CH3CO3 —  2.CH302 + 2-{CO2} 2.50E-12-exp(500/T)

GLYALD + OH — HO2 + 2-GLYOXAL + .8-CH20 + .8-{CO2} 1.00E-11

GLYOXAL + OH — HO2 + CO + {CO2} 1.10E-11

CH3COOH + OH — CH302 + {CO02} + H20 7.00E-13

C2H50H + OH — HO2 + CH3CHO 6.90E-12-exp(-230/T)

C3H6 + OH + M — PO2+M ko=8.00E-27-(300/T)3-9;

ki=3.00E-11; {=0.50

UCAR Cl|mate & Global Dynarmcs



Conserving sum of “famllles” of species

TGLY [mol/mol], ca. 882.55608 hPa, lon TCLY [mol/mol], ca. 35.923248 hPa, lon

(left) longitude-averaged surface TCLY as a function of time and latitude: Constant!
(right) same as (left) but near tropopause: Spurious 7% deviations (near sharp gradients)!

Problem?

Transport scheme can not maintain the sum when transporting the species individually:

lational tr

UCAR | Climate & Global Dynamcs



Conserving sum of “families” of species

TCLY [mol/mol], ca. 35923249 hPa, lon average TCLY [mol/mol], ca. 35.923249 hPa, lon average
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(left) same as previous slide:

@ large unphysical deviations from constancy in TCLY near the edge of the polar
stratospheric vortex = less TCLY over South pole = less ozone loss (error on the

order of 10%).
(right) same as (left) but using a fixer:
@ (i) transport the individual species
@ (ii) transport the total
@ in each grid cell scale the individual species by the difference between (i) and (ii)
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Simple idealized “family of species” test

(a) x (t=0), slotted-cylinders (b) & (t=0), displaced slotted-cylinders (c) T (t=0), residual
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This test does not rely 0

0 ﬂz W on Lauritzen and
NCAR | et or for Thuburn (2010)
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Analyzing scatter plots

g( max)

é( min

| |

I
IX(min) x X(max)
Analytical pre-existing functional relationship curve 9

E=v(x)=a x> +b,

where a and b are constants so that v is concave or convex in [X(’"i”), x(max)]
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Analyzing scatter plots

g( max)

g( min

] ] N
IX(min) X xl(max) -
Discrete pre-existing functional relation (initial condition)

gk:'@b(Xk):a°(Xk)2+b7 k:17°'7K7

where a and b are constants so that ) is concave or convex in [x(mi”), X(max)]
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Analyzing scatter plots
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Analyzing scatter plots

—

[ ) XJ;1+1

A fully Lagrangian model will maintain pre-existing functional relation

1 1
X=Xk & =&

following parcel trajectories (without ‘contour-surgery’ or other mixing mechanisms)
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Analyzing scatter plots

—

[ ) XJ;1+1

A fully Lagrangian model will maintain pre-existing functional relation

1 1
X=Xk & =&

following parcel trajectories (without ‘contour-surgery’ or other mixing mechanisms)
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Analyzing scatter plots
N @

g( min

| | ~
I (min) I (max) -
X X X

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

g =T #£aT(x) +b JjeH

where T is the transport operator and H the set of indices defining the ‘halo’ for 7.
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‘Real’ mixing, e.g., observed during polar vortex breakup
(Waugh et al., 1997)

g( max)

g{min

| | ~
I (min) I (max) -
X X X

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
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‘Real’ mixing, e.g., observed during polar vortex breakup
A

g(max)

gmin

| | ~
I (min) I (max) -
X X X

‘Real mixing' (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
— ldeally numerical mixing should = ‘real mixing'!

However, it may be shown mathematically that schemes that exclusively introduce ‘real
mixing' are 1%'-order schemes (Thuburn and Mclntyre, 1997).

UCAR
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Classification of numerical mixing on scatter plots
A
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X X X

‘Real mixing' (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
— ldeally numerical mixing should = ‘real mixing'!

However, it may be shown mathematically that schemes that exclusively introduce ‘real
mixing' are 1%'-order schemes (Thuburn and Mclntyre, 1997).

v
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Classification of numerical mixing on scatter plots

overshooting

3UI}00YSIIA0

i( min

] ]
Ix( min) X k( max)

Figure from (Lauritzen and Thuburn, 2012)
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

First-order scheme: only "real mixing’

1

Tracer density simulated with monotone CSLAM
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is
shape-preserving, 3. No expanding range unmixing
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is
shape-preserving, 3. No expanding range unmixing
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Preserving pre-existing functional relation between
tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is shape-
preserving, 3. No expanding range unmixing
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Physics dynamics coupling methods

Advance dynamics core (30 minutes)

Compute physics
tendencies based
on dynamics
updated state

&- Update dynamics state with
physics tendencies

NCAR | National REREE
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Physics dynamics coupling methods

Advance dynamics core (30 minutes)

f

For long physics time-steps and less diffusive
dynamical cores this can create spurious noise!

Compute physics
tendencies based
on dynamics

d updated state

%lpsl

b Update dynamics state with
physics tendencies

NCAR | National REREE

Noise can be detected by computing

Center for Atmospheric Research
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Physics dynamics coupling methods

d
10 year average of _.|vs| from AMIP run

Absolute surface pressure tendency Pa/s
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Physics dynamics coupling methods

Advance dynamics core (30 minutes):
add physics tendency “chunks”
during the dynamics time-stepping

- every 15 minutes in this example

(I refer to it as “dribbling”)

\\

Compute physics
tendencies based
on dynamics
updated state

E— Split physics tendencies into
a number of “chunks”

NCAR al Center for Atmosphe rch

UCAR Cllmate & Global Dynam|cs



Physics dynamics coupling methods

d
10 year average of _.|vs| from AMIP run

“Dribbling” physics tendencies State updated every 30 minutes

Absolute surface pressure tendency Pa/s Absolute surface pressure tendency Pa/s
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Physics-dynamics coupling: state update

Arrows show physics
tendencies based on
dynamics updated

state
Dynamics Tendencies are usually designed
updated not to drive a tracer field negative
state or produce unphysical overshoots

longitude
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Physics-dynamics coupling: state update

longitude




Physics-dynamics coupling: “dribbling” tendencies

Black curve is solution without
physics tendencies

longitude
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Physics-dynamics coupling: “dribbling” tendencies
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longitude

NCAR

Al National Center for Atmospheric Research
UCAR | Climate & Global Dynamics



Physics-dynamics coupling: “dribbling” tendencies

ngitude

NCAR | National Center for Atm c Resear

UCAR Cl|mate & Global Dynarmcs



Physics-dynamics coupling: “dribbling” tendencies
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