Separating dynamics, physics and tracer transport grids in a global climate model

Peter Hjort Lauritzen

Atmospheric Modeling and Predictability Section
Climate and Global Dynamics Laboratory
National Center for Atmospheric Research

Thanks to my collaborators

Internal collaborators

Computational \& Information Systems Laboratory
R. Kelly (Consulting Services Group)
R.D. Nair (Institute for Mathematics Applied to Geosciences)
J. Dennis (Application Scalability and Performance Group)

\section*{| NCAR | National Center for Atmosphencr Ressarch |
| :--- | :--- |
| UCAR | Climate \& Global Dynamics |}

S. Goldhaber (Atmospheric Modeling \& Predictability Section)

External collaborators

M.A. Taylor (Sandia National Laboratories)
P.A. Ullrich (University of California, Davis)
T. Dubos (École Polytechnique, France)
C. Erath (Technische Universität Darmstadt, Germany)
J. Overfelt (Sandia National Laboratories)

Overview

1. Long introduction

- NCAR global climate model applications
- Define dynamical core and physics
- Physics-dynamics coupling
- Conservation from a climate modelers perspective!

2. Separating dynamics and tracer grids (motivated by efficiency and accuracy concerns)
3. Separating physics and dynamics grids

Setting the stage: NCAR's CESM (Community Earth System Model)

NCAR	National Center or Armospinerc researca
UCAR	Climate \& Global Dynamics

Simulation time

CAM applications

- Paleo climate

Centuries

Decades

Seasons

Days

- Weather forecast (hurricanes/thyphoons)
~1/8 ${ }^{\circ}$
$1 / 4^{\circ}$
10
2^{0}

Horizontal resolution

[^0]
Separation of scales in CAM

Dynamical core module

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{\tilde{z}^{2}}{ }^{2}+\Phi\right)+\frac{1}{\rho} \nabla p=\nu \nabla^{i} \vec{u}, \\
& \frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{0} \omega} \omega=\nu \nu^{4} T, \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta_{i}}\right)=\nu \nabla^{4}\left(\frac{\partial p_{d}}{\partial \eta}\right) \text {, } \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial m_{i}}\right)+\nabla \cdot\left(\frac{\partial p_{d_{i}}}{\partial \eta} m_{i}\right)=\nu \nabla^{4}\left(m_{i}\right), i=v, v, d, c i, \ldots
\end{aligned}
$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
- forms of water (water vapor, cloud liquid, cloud ice, rain, ...) - quantities needed to represent aerosols
- chemical species

Physics module

Radiation

Boundary layer turbulence
Orographic drag
Shallow and deep convection
Aerosol processes
Vertical mixing

Physics-dynamics coupling layer

Separation of scales in CAM

"Workhorse" dynamical core in CAM is CAM-FV (Lin, 2004).

To improve CAM scalability the spectral-element (SE) dynamical core was implemented/imported into CAM (NCAR/DOE) - referred to as CAM-SE.

- quantities needed to represent aerosols
- chemical species

Physics-dynamics coupling layer

The spectral-element method: discretization grid

Physical Domain

Computational Domain

Element

GLL Quadrature Grid

GLL=Gauss-Lobatto-Legendre

The spectral-element method: discretization grid

Element
For any arbitrary variable f (e.g., T, u, v, p, \ldots) one can approximate f as a function of a tensor product of 1D basis functions on the 2D GLL grid:

$$
f(x, y)=\sum_{i, j} f_{i, j} h_{i}\left(x_{i}\right) h_{j}\left(y_{j}\right)
$$

where $f_{i, j}$ is grid point values of f.
rnysicai vomain

Nodal 1D polynomial basis functions

computauonar vomarn

Separation of scales in CAM

Dynamical core module

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{\tilde{z}^{2}}{ }^{2}+\Phi\right)+\frac{1}{\rho} \nabla p=\nu \nabla^{i} \vec{u}, \\
& \frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{0} \omega} \omega=\nu \nu^{4} T, \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta_{i}}\right)=\nu \nabla^{4}\left(\frac{\partial p_{d}}{\partial \eta}\right) \text {, } \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta} m_{i}\right)+\nabla \cdot\left(\frac{\partial p_{d_{i}}}{\partial \eta} \vec{m}_{i}\right)=\nu \nabla^{4}\left(m_{i}\right), i=v, v, d, c i, \ldots
\end{aligned}
$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
- forms of water (water vapor, cloud liquid, cloud ice, rain, ...) - quantities needed to represent aerosols
- chemical species

Physics module

Radiation

Boundary layer turbulence
Orographic drag
Shallow and deep convection
Aerosol processes
Vertical mixing
....

Physics-dynamics coupling layer

Physics dynamics coupling methods

Advance dynamics core (30 minutes)

Compute physics tendencies based on dynamics updated state

Update dynamics state with physics tendencies

Physics dynamics coupling methods

Advance dynamics core (30 minutes)

For long physics time-steps and less diffusive dynamical cores this can create spurious noise!

Noise can be detected by computing

$$
\frac{d}{d t}\left|p_{s}\right|
$$

Update dynamics state with physics tendencies

Compute physics tendencies based on dynamics updated state

Physics dynamics coupling methods

10 year average of $\frac{d}{d t}\left|p_{s}\right|$ from AMIP run

[^1]
Physics dynamics coupling methods

Advance dynamics core (30 minutes): add physics tendency "chunks" during the dynamics time-stepping - every 15 minutes in this example (I refer to it as "dribbling")

Compute physics tendencies based on dynamics updated state

Split physics tendencies into a number of "chunks"

Physics dynamics coupling methods

10 year average of $\frac{d}{d t}\left|p_{s}\right|$ from AMIP run

Separation of scales in CAM

Dynamical core module

$$
\begin{aligned}
\frac{\partial \vec{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{2} \vec{u}^{2}+\Phi\right)+\frac{1}{\rho} \nabla p & =\nu \nabla^{4} \vec{u}, \\
\frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{p} \rho} \omega & =\nu \nabla^{4} T,, \\
\frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} \vec{u}\right) & =\nu \nabla^{4}\left(\frac{\partial p_{d}}{\partial \eta}\right), \\
\frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta} m_{i}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} m_{i} \vec{u}\right) & =\nu \nabla^{4}\left(m_{i}\right), \quad i=v, c l, c i, \ldots
\end{aligned}
$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
- forms of water (water vapor, cloud liquid, cloud ice, rain, ...) - quantities needed to represent aerosols
- chemical species

Physics module

Radiation

Boundary layer turbulence
Orographic drag
Shallow and deep convection
Aerosol processes
Vertical mixing

Separation of scales in CAM

Dynamical core module

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)

Balancing energy and mass budgets is

 very very important

Physics module

Radiation

Boundary layer turbulence
Orographic drag
Shallow and deep convection
Aerosol processes
Vertical mixing

- Continuity equation for
- forms of water (water vapor, cloud liquid, cloud ice, rain, ...) - quantities needed to represent aerosols
- chemical species

Aside: Energy conservation

Dynamical core module

$$
\begin{aligned}
& \frac{\partial T}{\partial t}+\pi \cdot \nabla T-\frac{1}{\omega_{0}} \omega=\nu \nabla^{\top} T,
\end{aligned}
$$

where K kinetic energy, \backslash rho is density, \mathbf{P} pressure, \mathbf{T} temperature, \backslash Phi geopotential height and $F_{\text {net }}$ are net fluxes computed by parameterization (e.g., heating and momentum forcing).

Physics-dynamics coupling layer

Physics module

ide: Energy conservation

 rate is calculated from K energy tendency produced from momentum diffusion and added to TDynamical cor module

$$
\begin{aligned}
\frac{\partial \vec{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{2} \vec{u}^{2}+\Phi\right)+\frac{1}{\rho} \nabla p & =\nu \nabla^{4} \vec{u}, \\
\frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{p} \rho} \omega & =\nu \nabla^{4} T,, \\
\frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} \vec{u}\right) & =\nu \nabla^{4}\left(\frac{\partial p_{d}}{\partial \eta}\right), \\
\frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial \eta} m_{i}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} m_{i} \vec{u}\right) & =\nu \nabla^{4}\left(m_{i}\right), \quad i=v, c l, c i, \ldots
\end{aligned}
$$

The dynamical core may not conserve energy due to inherent numerical dissipation,
non-conservation due to time truncation errors, etc.

For a coupled climate model total energy conservation is important (otherwise climate will drift)
$=>$ Need to satisfy

$$
\frac{d}{d t}\left(K+c_{p} T+\Phi\right)=\frac{1}{\rho} \frac{\partial p}{\partial t}+F_{n e t}
$$

where K kinetic energy, \backslash rho is density, P pressure, T temperature, \backslash Phi geopotential height and $F_{\text {net }}$ are net fluxes computed by parameterization (e.g., heating and momentum forcing).

Physics-dynamics coupling layer

Aside: Energy conservation

Dynamical core module

$$
\begin{aligned}
& \frac{\partial \bar{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{\overline{2}} \bar{u}^{2}+\Phi\right)+\frac{1}{\rho} \nabla p=\nu \nabla^{i} \vec{u}, \\
& \frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{p} \omega}=\nu \nu^{4} T \text {, } \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{t}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta}\right)=\nu \nabla^{4}\left(\frac{\partial p_{t}}{\partial \eta}\right), \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial m_{i}}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} m_{i} \bar{u}\right)=\nu \nabla^{4}\left(m_{i}\right), \quad i=v, v, d, c i, \ldots
\end{aligned}
$$

The dynamical core may not conserve energy due to inherent numerical dissipation,
non-conservation due to time truncation errors, etc.

For a coupled climate model total energy conservation is important (otherwise climate will drift)
=> Need to satisfy

$$
\frac{d}{d t}\left(K+c_{p} T+\Phi\right)=\frac{1}{\rho} \frac{\partial p}{\partial t}+F_{n e t}
$$

where K kinetic energy, \rho is density, P pressure, T temperature, \backslash Phi geopotential height and $F_{\text {net }}$ are net fluxes computed by parameterization (e.g., heating and momentum forcing).

Physics-dynamics coupling layer

> Note that weather model parameterizations do not conserve total energy

Physics module

CAM physics does not change surface pressure under that assumption each paramerization conserves energy (i.e. energy change due to state variables changing is exactly balanced by net fluxes).

However, changes in water variables does change pressure => When pressure is updated energy conservation is violated

Aside: Energy conservation

Dynamical core module

$$
\begin{aligned}
& \frac{\partial \bar{u}}{\partial t}+(\zeta+f) \hat{k} \times \vec{u}+\nabla\left(\frac{1}{\overline{2}} \bar{u}^{2}+\Phi\right)+\frac{1}{\rho} \nabla p=\nu \nabla^{i} \vec{u}, \\
& \frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\frac{1}{c_{p}} \omega=\nu \nu^{4} T, \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{t}}{\partial \eta}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta}\right)=\nu \nabla^{4}\left(\frac{\partial p_{t}}{\partial \eta}\right) \text {, } \\
& \frac{\partial}{\partial t}\left(\frac{\partial p_{d}}{\partial m_{i}}\right)+\nabla \cdot\left(\frac{\partial p_{d}}{\partial \eta} m_{i} \bar{u}\right)=\nu \nabla^{4}\left(m_{i}\right), \quad i=v, v, d, c i, \ldots
\end{aligned}
$$

The dynamical core may not conserve energy due to inherent numerical dissipation,
non-conservation due to time truncation errors, etc.

For a coupled climate model total energy conservation is important (otherwise climate will drift)
=> Need to satisfy

$$
\frac{d}{d t}\left(K+c_{p} T+\Phi\right)=\frac{1}{\rho} \frac{\partial p}{\partial t}+F_{n e t}
$$

where K kinetic energy, \rho is density, P pressure, T temperature, \backslash Phi geopotential height and $F_{\text {net }}$ are net fluxes computed by parameterization (e.g., heating and momentum forcing).

Energy conservation can be violated in physics-dynamics coupling if the physics tendencies are added during the time-stepping (underlying pressure changes!)

Physics-dynamics coupling layer

Note that weather model parameterizations do not conserve total energy

Physics module

CAM physics does not change surface pressure under that assumption each paramerization conserves energy (i.e. energy change due to state variables changing is exactly balanced by net fluxes).

However, changes in water variables does change pressure => When pressure is updated energy conservation is violated

Aside: Energy budgets in CAM-SE

10 year averages from AMIP simulation (specified SSTs cycling over same year)

Dynamical core module

- Rate of energy change due to explicit dissipation (hyperviscosity)

```
    dE/dt = 0.0729 W/m
```

- Frictional heating rate is calculated from K tendency produced from momentum diffusion and added to T :

$$
\mathrm{dE} / \mathrm{dt}=0.6997 \mathrm{~W} / \mathrm{m}^{2}
$$

- Vertical remapping

$$
\mathrm{dE} / \mathrm{dt}=-0.1547 \mathrm{~W} / \mathrm{m}^{2}
$$

Total loss of energy in dynamics

$$
\mathrm{d} E / d t=-0.0723 \mathrm{~W} / \mathrm{m}^{2}
$$

Rate of energy change due to "dribbling" physics tendencies in the dynamics
$\mathrm{dE} / \mathrm{dt}=0.056 \mathrm{~W} / \mathrm{m}^{2}$

Physics module

- "physical" changes in energy due to water change

$$
\mathrm{dE} / \mathrm{dt}=-0.0016 \mathrm{~W} / \mathrm{m}^{2}
$$

- Change in energy due to change in pressure due to water vapor change ("dme_adjust")

$$
\mathrm{dE} / \mathrm{dt}=0.2667 \mathrm{~W} / \mathrm{m}^{2}
$$

- Energy fixer

$$
\mathrm{dE} / \mathrm{dt}=-0.1843
$$

(= loss in dynamics +
dme_adjust)

Part I: separating transport and dynamics grids/methods in CAM-SE

Why?

Cost per additional tracer (dynamical core timings using 1728 tasks)

1 degree horizontal resolution, 30 levels

UCAR | NCAR | Climate $\&$ Global Dynamics |
| :--- | :--- |

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

- Consider 2 reactive chemical species, Cl and Cl_{2} :

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}: \mathrm{k}_{1} \\
& \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl} l_{2}: k_{2}
\end{aligned}
$$

- Steady-state solution (no flow):

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation)

SciDAC
Scientific Discovery th
Advanced Computing

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

- Consider 2 reactive chemical species, Cl and Cl_{2} :

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}: \mathrm{k}_{1} \\
& \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl} l_{2}: k_{2}
\end{aligned}
$$

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation).

SciDAC
Scientific Discovery
Advanced Computing

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
 See: http://www.cgd.ucar.edu/cms/pel/terminator.html

CAM-SE

Errors are due to non-conservation of linear correlations in tracer transport scheme and/or physics-dynamics coupling

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation).

Problem formulation

Improve the efficiency and accuracy of tracer transport in CAM-SE

Solution?

Note: It is easy to make an efficient model that is inaccurate or an accurate model that is inefficient (at least for smooth problems) ...

Tracer transport: Continuity equation

Consider the continuity equation of air mass (pressure level thickness Δp), and tracer mass ($\Delta p q$, where q mixing ratio)

$$
\frac{\partial \psi}{\partial t}+\nabla \cdot(\psi \vec{v})=0, \quad \psi=\Delta p, \Delta p q
$$

No sources/ sinks
respectively, where \vec{v} wind vector.

Requirements for transport schemes intended for global climate/climate-chemistry applications:

1. Global (and local) Mass-conservation

The solution to the continuity equation without sources/sinks must conserve mass. Very important!
2. Physical realizable solutions (shape-preservation)

Scheme must not produce new extrema (in particular negatives) in q

Example of unphysical solution

Requirements for transport schemes intended for global climate/climate-chemistry applications:

3. Preservation of functional relations between tracers

Transport scheme preserves $q_{2}=f\left(q_{1}\right)$

Figure: Aircraft observations of long-lived species in the stratosphere

Tracer transport scheme should not unphysically perturb these relations between tracers

Plumb (2007)

$$
\begin{array}{l|l}
\text { NCAR } & \text { National Center for Atmospheric Research } \\
\text { UCAR } & \text { Climate \& Global Dynamics } \\
\hline
\end{array}
$$

Requirements for transport schemes intended for global climate/climate-chemistry applications:

4. Consistency (tracer and air mass are coupled!)

Continuity equations for air mass and tracer mass:

$$
\begin{align*}
\frac{\partial(\Delta p)}{\partial t}+\nabla \cdot(\Delta p \vec{v}) & =0 \tag{1}\\
\frac{\partial(\Delta p q)}{\partial t}+\nabla \cdot(\Delta p q \vec{v}) & =0 \tag{2}
\end{align*}
$$

If $q=1$ then the transport scheme should reduce to the continuity equation for air.

In model consistency is non-trivial if:

- Using prescribed wind and mass fields from, e.g., re-analysis.
- (2) is solved with a different numerical method than (1)

A way to accelerate tracer transport:

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a)

$$
\frac{\partial \psi}{\partial t}+\nabla \cdot(\psi \vec{v})=0
$$

(b)

Finite-volume Lagrangian form of continuity equation for air (pressure level thickness, Δp), and tracer (mixing ratio, q):

$$
\int_{A_{k}} \psi_{k}^{n+1} d A=\int_{a_{k}} \psi_{k}^{n} d A=\sum_{\ell=1}^{L_{k}}\left[\int_{a_{k \ell}} \psi_{k \ell}^{n}(x, y) d A\right], \quad \psi=\Delta p, \Delta p q
$$

where n time-level, $a_{k \ell}$ overlap areas, L_{k} \#overlap areas, and $\psi_{k \ell}^{n}(x, y)$ reconstruction function in cell $k \ell$.

A way to accelerate tracer transport:

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

$$
\psi_{k \ell}^{n}(x, y)=\sum_{2+\gamma 3} c^{(2, j)} x^{2} y^{\jmath}
$$

(b)

Finite-volume Lagrangian form of continuity equation for air (pressure level thickness, Δp), and tracer (mixing ratio, q):

$$
\int_{A_{k}} \psi_{k}^{n+1} d A=\int_{a_{k}} \psi_{k}^{n} d A=\sum_{\ell=1}^{L_{k}}\left[\int_{a_{k \ell}} \psi_{k \ell}^{n}(x, y) d A\right], \quad \psi=\Delta p, \Delta p q
$$

where n time-level, $a_{k \ell}$ overlap areas, L_{k} \#overlap areas, and $\psi_{k \ell}^{n}(x, y)$ reconstruction function in cell $k \ell$.

A way to accelerate tracer transport:

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

$$
\psi_{k \ell}^{n}(x, y)=\sum_{2+\langle<3} c^{(2, j)} x^{2} y^{j}
$$

(b)

Finite-volume Lagrangian t continuity equation for air (pressure level thickness, Δp), and tracer (mixin ratio, q):

$$
\int_{A_{k}} \psi_{k}^{n+1} d A=\int_{a_{k}} \psi_{k}^{n} d A=\sum_{\ell=1}^{L_{k}}\left[\int_{a_{k \ell}} \psi_{k \ell}^{n}(x, y) d A\right], \quad \psi=\Delta p, \Delta p q
$$

where n time-level, $a_{k \ell}$ overlap areas, L_{k} \#overlap areas, and $\psi_{k \ell}^{n}(x, y)$ reconstruction function in cell $k \ell$.

A way to accelerate tracer transport:

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

$$
\psi_{k \ell}^{n}(x, y)=\sum_{2+\langle<3} c^{(2, j)} x^{2} y^{\jmath}
$$

(b)

$$
\int_{A_{k}} \psi_{k}^{n+1} d A=\int_{a_{k}} \psi_{k}^{n} d A=\sum_{\ell=1}^{L_{k}}\left[\sum_{\imath+\jmath \leq 2} c_{\ell}^{(i, \jmath)} w_{k \ell}^{(i, j)}\right], \quad \psi=\Delta p, \Delta p q
$$

- Multi-tracer efficient: $w_{k \ell}^{(i, j)}$ re-used for each additional tracer (Dukowicz and Baumgardner, 2000).
- Scheme allows for large time-steps (flow deformation limited).
- Conserves mass, shape, linear correlations (Lauritzen et al., 2014).

A way to accelerate tracer transport:

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

Shape-preservation

- Apply limiter to mixing ratio sub-grid cell distribution:

$$
q(x, y)=\sum_{\imath+\jmath<3} c^{(2, \jmath)} x^{\imath} y^{\jmath}
$$

(Barth and Jespersen, 1989) so that extrema of $q(x, y)$ are within range of neighboring \bar{q}.

Extension to cubed-sphere: Figure shows upstream Lagrangian grid

A way to accelerate tracer transport:

Basic formulation Harris et al. (2010)

Flux-form CSLAM \equiv Lagrangian CSLAM

$$
\int_{A_{k}} \psi_{k}^{n+1} d A=\int_{A_{k}} \psi_{k}^{n} d A-\sum_{\epsilon=1}^{4} s_{k \ell}^{\epsilon} \int_{a_{k}^{\epsilon}} \psi d A, \quad \psi=\Delta p, \Delta p q
$$

where

- $a_{k}^{\epsilon}=$ 'flux-area' (yellow area) $=$ area swept through face ϵ
- $s_{k \ell}^{\epsilon}=1$ for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent (Lauritzen et al., 2011).

Coupling finite-volume semiLagrangian transport with spectral element dynamics

4. Consistency (tracer and air mass are coupled!)

Continuity equations for air mass and tracer mass:
Spectral elements $\quad \frac{\partial(\Delta p)}{\partial t}+\nabla \cdot(\Delta p \vec{v})=0$,

$$
\operatorname{CSLAM} \quad \int_{A_{k}}(\Delta p q)_{k}^{n+1} d A=\int_{a_{k}}(\Delta p q)^{n} d A .
$$

If $q=1$ then the transport scheme should reduce to the continuity equation for air.

We need to couple without violating mass-conservation, shape-preservation, and consistency

The spectral-element method

Spectral-Element Method (SEM)

Continuity equation for Δp :

$$
\frac{\partial \Delta p}{\partial t}=-\nabla \cdot \Delta p \vec{v}+\tau \nabla^{4} \Delta p .
$$

The spectral-element method

Spectral-Element Method (SEM)

Continuity equation for Δp :

$$
\left\langle h_{k}, \frac{\partial \Delta p}{\partial t}\right\rangle=\left\langle h_{k},-\nabla \cdot \Delta p \vec{v}\right\rangle+\left\langle h_{k}, \tau \nabla^{4} \Delta p\right\rangle,
$$

where $\left\langle h_{k}, \cdot\right\rangle$ is inner product

$$
\left\langle h_{k}, f\right\rangle=\sum_{i, j} w_{i, j} h_{k}\left(x_{i}, y_{j}\right) f\left(x_{i}, y_{j}\right) \sim \iint h_{k} f d A .
$$

The spectral-element method

Spectral-Element Method (SEM)

Continuity equation for Δp :

$$
\left\langle h_{k}, \frac{\Delta p^{*}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle h_{k},-\nabla \cdot \Delta p \vec{v}\right\rangle+\left\langle h_{k}, \tau \nabla^{4} \Delta p\right\rangle .
$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

The spectral-element method

(b)

(c)

Continuity equation for Δp :

$$
\left\langle h_{k}, \frac{\Delta p^{*}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle h_{k},-\nabla \cdot \Delta p \vec{v}\right\rangle+\left\langle h_{k}, \tau \nabla^{4} \Delta p\right\rangle .
$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

The spectral-element method

(b)

(c)

- Projection step

$$
\Delta p^{n+1}=D S S\left(\Delta p^{*}\right)
$$

where DSS refers to Direct Stiffness Summation (also referred to as assembly or inverse mass matrix step).

- Choice of GLL quadrature based inner product and nodal basis functions gives a diagonal mass matrix (Maday and Patera, 1987).

The spectral-element method

Continuity equation for Δp :

$$
\left\langle h_{k}, \frac{\Delta p^{n+1}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle h_{k},-\nabla \cdot \Delta p \vec{v}\right\rangle+\left\langle h_{k}, \tau \nabla^{4} \Delta p\right\rangle+\left\langle h_{k}, D\right\rangle .
$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

The spectral-element method

(b)

(c)

Continuity equation for Δp :

$$
\left\langle h_{k}, \frac{\Delta p^{n+1}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle h_{k}, F\right\rangle+\left\langle h_{k}, G\right\rangle+\left\langle h_{k}, D\right\rangle
$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

The spectral-element method

(b)

Setting basis function to 1 yields the mass change in each element

$$
\left\langle h_{k}, \frac{\Delta p^{n+1}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle h_{k}, F\right\rangle+\left\langle h_{k}, G\right\rangle+\left\langle h_{k}, D\right\rangle .
$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

Diagnosing fluxes from spectral-element method

- There exist a basis ϕ_{k} so that

$$
\left\langle\phi_{k}, \frac{\Delta p^{n+1}-\Delta p^{n}}{\Delta t}\right\rangle=\left\langle\phi_{k}, F\right\rangle+\left\langle\phi_{k}, G\right\rangle+\left\langle\phi_{k}, D\right\rangle,
$$

gives the change of mass in each CSLAM control volume.

- Moreover, each term on right-hand side can be expressed in terms of edge fluxes:

$$
\left(\Delta p^{n+1}-\Delta p^{n}\right) \Delta A_{k}=\sum_{\epsilon=1}^{4}\left[\mathcal{F}_{F}^{(\epsilon)}+\mathcal{F}_{G}^{(\epsilon)}+\mathcal{F}_{D}^{(\epsilon)}\right]
$$

The story so far

Spectral-Element Method: CAM-SE
Mass change over CSLAM control volume A_{k} implied by SE

$$
\left(\Delta p^{n+1}-\Delta p^{n}\right) \Delta A_{k}=\sum_{\epsilon=1}^{4}\left[\mathcal{F}_{F}^{(\epsilon)}+\mathcal{F}_{G}^{(\epsilon)}+\mathcal{F}_{D}^{(\epsilon)}\right]
$$

(Lauritzen et al., 2016; in prep).

Finite-Volume Method: CSLAM

CSLAM discretization is given by

$$
\left(\widetilde{\Delta p}^{n+1}-\widetilde{\Delta p}^{n}\right) \Delta A_{k}=\sum_{\epsilon=1}^{4}\left[\mathcal{F}_{\text {CSLAM }}^{(\epsilon)}\right]=-\sum_{\epsilon=1}^{4} s_{k \ell}^{\epsilon} \int_{a_{k}^{\epsilon}} \Delta p^{n} d A
$$

Lauritzen et al., (2011)

The story so far

Spectral-Element Method: CAM-SE

Mass change over CSLAM control volume A_{k} implied by SE

$$
\left(\Delta p^{n+1}-\Delta p^{n}\right) \Delta A_{k}=\sum_{\epsilon=1}^{4}\left[\mathcal{F}_{F}^{(\epsilon)}+\mathcal{F}_{G}^{(\epsilon)}+\mathcal{F}_{D}^{(\epsilon)}\right]
$$

(Lauritzen et al., 2016; in prep).
For each face ϵ in cell a_{k}, find a swept area $a_{k}^{(\epsilon)}$ so that

$$
\mathcal{F}_{\text {CSLAM }}^{(\epsilon)}=\mathcal{F}_{F}^{(\epsilon)}+\mathcal{F}_{G}^{(\epsilon)}+\mathcal{F}_{D}^{(\epsilon)} .
$$

Lagrangian consistency constraint: The upstream areas must span the sphere without cracks or overlaps

CSLAM discretization is given by

$$
\left(\widetilde{\Delta p}^{n+1}-\widetilde{\Delta p}^{n}\right) \Delta A_{k}=\sum_{\epsilon=1}^{4}\left[\mathcal{F}_{\text {CSLAM }}^{(\epsilon)}\right]=-\sum_{\epsilon==}^{4}
$$

Consistent SE-CSLAM algorithm: step-by-step example

(a) perpendicular x-flux

(d) 1st guess swept area

(b) perpendicular y-flux

(e) 1st iteration swept area

(c) departure points

(f) SE consistent flux

Well-posed? As long as flow deformation $\left|\frac{\partial u}{\partial x}\right| \Delta t \lesssim 1$ (Lipschitz criterion)

Consistent SE-CSLAM algorithm: step-by-step example

Local iteration problem generating an upstream grid that spans the sphere without cracks and overlaps
 => all CSLAM technology from Lauritzen et al. (2010) can be used

(b)

Well-posed? As long as flow deformation $\left|\frac{\partial u}{\partial x}\right| \Delta t \lesssim 1$ (Lipschitz criterion)

Consistent CSLAM algorithm is general

In principle, the consistent CSLAM algorithm can be made consistent with any fluxes that obey the Lipschitz criterion ...

Idealized baroclinic wave test

No sub-grid-scale forcing, dry, balanced initial condition with perturbation Jablonowski and Williamson (2006)

3 tracers: initial conditions

CAM-SE
CAM-SE-CSLAM
CAM-SE reference

CAM-SE
CAM-SE-CSLAM
CAM-SE reference

CAM-SE
CAM-SE-CSLAM
CAM-SE reference

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

- Consider 2 reactive chemical species, Cl and Cl_{2} :

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}: \mathrm{k}_{1} \\
& \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl} l_{2}: k_{2}
\end{aligned}
$$

- Steady-state solution (no flow):

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation)

SciDAC
Scientific Discovery th
Advanced Computing

Initial condition

CAM-SE

CAM-SE-CSLAM

Performance

- All simulations run on NCAR's Yellowstone computer
- No exploration of threading

MPI communication

For every 30 minute physics time-step:

- SE performs 6 tracer time-steps ($\mathbf{d t = 3 0 0 s}$) => 42 MPI calls (7 per tracer dt)
- CSLAM performs 2 tracer time-steps $(\mathrm{dt}=\mathbf{9 0 0}) \quad=>2 \mathrm{MPI}$ calls (1 per tracer dt)

That said, CSLAM needs a much larger halo than SE:

Performance

1 degree horizontal resolution, 30 levels, 256 tasks

Performance: strong scaling

1 degree horizontal resolution, 30 levels, 40 tracers

How do we compare with CAM-FV (dynamical core timings using 1728 tasks)

1 degree horizontal resolution, 30 levels

How do we compare with CAM-FV (dynamical core timings using 1728 tasks)

1 degree horizontal resolution, 30 levels

Performance: break-down of CSLAM algorithm

1 degree horizontal resolution, 30 levels, 256 tasks

Part II: Coupling to physics

Why?

Coarser physics grid

Finer physics grid

Non-uniform sampling of atmospheric state

Current physics/"coupler" grid

(a)

(c)

(b)

(d)

Grid-scale forcing

Held-Suarez with topography

UCAR	Climate \& Global Dynamics

NCAR Climate \& Global Dynamics

Held-Suarez with topography

UCAR	Climate \& Global Dynamics

CAM-SE-physgrid

- Implemented dry-mass vertical coordinates in CAM-SE (vertical levels do not change during physics-dynamics coupling)
- Inherently conservative mapping between grids (Ullich and Taylor, 2015)
- Capability to run physics on $2 \times 2,3 \times 3,4 \times 4, \ldots$ grids
Lander and Hoskins
(1997): only pass
"believable" scales to physics!

Coarser physics grid

Finer physics grid

Wet mass vertical coordinates

2.1. Definition of vertical coordinate. Consider a (wet mass) terrain following hybrid vertical coordinate where the pressure p is given by

$$
\begin{equation*}
p(\eta)=A(\eta) p_{0}+B(\eta) p s \tag{24}
\end{equation*}
$$

where $A(\eta)$ and $B(\eta)$ define the vertical level spacing, p_{0} the pressure at the top of the model atsmophere, and $p s$ is the moist (full) surface pressure. We choose a floating vertical coordinate so that
(25)

$$
\dot{\eta}=0 .
$$

Figure courtesy of David Hall (CU Boulder).

[^2]
CAM-SE-physgrid

- Implemented dry-mass vertical coordinates in CAM-SE (vertical levels do not change during physics-dynamics coupling)
- Inherently conservative mapping between grids (Ullich and Taylor, 2015)
- Capability to run physics on $2 \times 2,3 \times 3,4 \times 4, \ldots$ grids
Lander and Hoskins
(1997): only pass
"believable" scales to physics!

Coarser physics grid

Finer physics grid

Summary

- Presented algorithm to consistently couple spectral-element dynamics with remap finite-volume transport
- Accuracy is improved for "non-smooth" tracer distributions when using CAM-SE-CSLAM compared to CAM-SE.
- Note that our modeling framework is quite unique in the sense that we support finite-volume and high-order Galerkin methods in the same framework
- Capability to run physics on different grid than dynamics
- CAM-SE physgrid and CAM-SE-CSLAM (uses physgrid) are scheduled to be released with CESM2 later this year

[^0]: NCAR
 UCAR

[^1]: NCAR
 UCAR

[^2]: NCAR
 Climate \& Global Dynamics

