





## Separating dynamics, physics and tracer transport grids in a global climate model

## **Peter Hjort Lauritzen**

Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research

Workshop on Multiscale Modeling and its Applications: From Weather and Climate Models to Models of Materials Defects April 24, 2016 The Fields Institute, Toronto

UCAR Climate & Global Dynamics climate • models • society

## **Thanks to my collaborators**



J.-F. Lamarque & A. Conley (Atmospheric Chemistry Observations & Modeling Laboratory)



#### **External collaborators**

M.A. Taylor (Sandia National Laboratories) P.A. Ullrich (University of California, Davis) T. Dubos (École Polytechnique , France)

- C. Erath (Technische Universität Darmstadt, Germany)
- J. Overfelt (Sandia National Laboratories)

NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics



## **1. Long introduction**

- NCAR global climate model applications
- Define dynamical core and physics
- Physics-dynamics coupling
- Conservation from a climate modelers perspective!
- 2. Separating dynamics and tracer grids (motivated by efficiency and accuracy concerns)
- 3. Separating physics and dynamics grids

#### Setting the stage: NCAR's CESM (Community Earth System Model)





NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society



## **Separation of scales in CAM**

#### **Dynamical core module**

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, ... \end{split}$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
  - forms of water (water vapor, cloud liquid, cloud ice, rain, ...)
  - quantities needed to represent aerosols
  - chemical species

Physics-dynamics coupling layer

### **Physics module**



Radiation Boundary layer turbulence Orographic drag Shallow and deep convection Aerosol processes Vertical mixing

•••

## **Separation of scales in CAM**

"Workhorse" dynamical core in CAM is CAM-FV (Lin, 2004).



To improve CAM scalability the <u>spectral-element</u> (SE) dynamical core was implemented/imported into CAM (NCAR/DOE) - referred to as CAM-SE.



- quantities needed to represent aerosols

- chemical species

Physics-dynamics coupling layer

## The spectral-element method: discretization grid



## The spectral-element method: discretization grid



## **Separation of scales in CAM**

#### **Dynamical core module**

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, ... \end{split}$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
  - forms of water (water vapor, cloud liquid, cloud ice, rain, ...)
  - quantities needed to represent aerosols
  - chemical species

**Physics-dynamics** coupling layer

### **Physics module**



Radiation **Boundary layer turbulence Orographic drag** Shallow and deep convection **Aerosol processes** Vertical mixing

....

**Advance dynamics core (30 minutes)** 

Compute physics tendencies based on dynamics updated state

Update dynamics state with physics tendencies





**10 year average of**  $\frac{d}{dt}|p_s|$  **from AMIP run** 



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society

Advance dynamics core (30 minutes): add physics tendency "chunks" during the dynamics time-stepping - every 15 minutes in this example (I refer to it as "dribbling")

> Compute physics tendencies based on dynamics updated state

Split physics tendencies into a number of "chunks"



**10 year average of**  $\frac{d}{dt}|p_s|$  **from AMIP run** 

#### "Dribbling" physics tendencies **State updated every 30 minutes** Absolute surface pressure tendency Absolute surface pressure tendency Pa/s Pa/s 90N 90N 60N 60N 30N 30N 0 0 30S 30S 60S 60S 90S 90S 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0.0001 0.00012 0.00014 0.00016 0.00018 0.00032 0.0004 0.00048 4e-05 6e-05 8e-05 8e-05 0.00016 0.00024

## **Separation of scales in CAM**

#### **Dynamical core module**

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, ... \end{split}$$

Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
  - forms of water (water vapor, cloud liquid, cloud ice, rain, ...)
  - quantities needed to represent aerosols
  - chemical species

Physics-dynamics coupling layer

#### Physics module



Radiation Boundary layer turbulence Orographic drag Shallow and deep convection Aerosol processes Vertical mixing

## **Separation of scales in CAM**

#### **Dynamical core module**

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_{p\rho}} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, ... \end{split}$$

### Approximates the solution to the adiabatic equations of motion:

- Momentum (u,v)
- Thermodynamic equation (T)
- Continuity equation for air (p)
- Continuity equation for
  - forms of water (water vapor, cloud liquid, cloud ice, rain, ...)
  - quantities needed to represent aerosols
  - chemical species

#### Balancing energy and mass budgets is very very important



#### Physics-dynamics coupling layer

#### **Physics module**



Radiation Boundary layer turbulence Orographic drag Shallow and deep convection Aerosol processes Vertical mixing

## **Aside: Energy conservation**

For a coupled climate model total energy conservation is important (otherwise climate will drift)

=> Need to satisfy

$$\frac{d}{dt}\left(K+c_{p}T+\Phi\right)=\frac{1}{\rho}\frac{\partial p}{\partial t}+F_{net}$$

where K kinetic energy, \rho is density, p pressure, T temperature, \Phi geopotential height and  $F_{net}$  are net fluxes computed by parameterization (e.g., heating and momentum forcing).

#### **Physics module**



Physics-dynamics coupling layer

## $$\begin{split} & \frac{\partial}{\partial t} \left( \frac{\partial p_d}{\partial \eta} \right) + \nabla \cdot \left( \frac{\partial p_d}{\partial \eta} \vec{u} \right) = \nu \nabla^4 \left( \frac{\partial p_d}{\partial \eta} \right), \\ & \frac{\partial}{\partial t} \left( \frac{\partial p_d}{\partial \eta} m_i \right) + \nabla \cdot \left( \frac{\partial p_d}{\partial \eta} m_i \vec{u} \right) = \nu \nabla^4 \left( m_i \right), \quad i = v, cl, ci, \dots \end{split}$$

**Dynamical core module** 

 $\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega = \nu \nabla^4 T,,$ 

 $\frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p = \nu \nabla^4 \vec{u},$ 

Frictional heating ide: Energy conservation rate is calculated from K energy tendency produced from momentum diffusion and added to T

#### Dynamical cor\ module

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, \end{split}$$

The dynamical core may not conserve energy due to inherent numerical dissipation, non-conservation due to time truncation errors, etc.

For a coupled climate model total energy conservation is important (otherwise climate will drift)

=> Need to satisfy

$$\frac{d}{dt}\left(K+c_{p}T+\Phi\right)=\frac{1}{\rho}\frac{\partial p}{\partial t}+F_{net}$$

where K kinetic energy, \rho is density, p pressure, T temperature, \Phi geopotential height and F<sub>net</sub> are net fluxes computed by parameterization (e.g., heating and momentum forcing).

#### **Physics module**



**Physics-dynamics** coupling layer

## **Aside: Energy conservation**

For a coupled climate model total energy conservation is important (otherwise climate will drift)

=> Need to satisfy

$$\frac{d}{dt}\left(K+c_{p}T+\Phi\right)=\frac{1}{\rho}\frac{\partial p}{\partial t}+F_{net}$$

where K kinetic energy, \rho is density, p pressure, T temperature, \Phi geopotential height and  $F_{net}$  are net fluxes computed by parameterization (e.g., heating and momentum forcing). Note that weather model parameterizations do not conserve total energy

#### **Physics module**

CAM physics does not change surface pressure – under that assumption each paramerization conserves energy (i.e. energy change due to state variables changing is exactly balanced by net fluxes).

However, changes in water variables does change pressure => When pressure is updated energy conservation is violated

#### **Dynamical core module**

$$\begin{split} \frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p &= \nu \nabla^4 \vec{u}, \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega &= \nu \nabla^4 T, , \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta}\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u}\right) &= \nu \nabla^4 \left(\frac{\partial p_d}{\partial \eta}\right), \\ \frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i\right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u}\right) &= \nu \nabla^4 \left(m_i\right), \quad i = v, cl, ci, \dots \end{split}$$

The dynamical core may not conserve energy due to inherent numerical dissipation, non-conservation due to time truncation errors, etc.

Physics-dynamics coupling layer

## **Aside: Energy conservation**

For a coupled climate model total energy conservation is important (otherwise climate will drift)

=> Need to satisfy

$$\frac{d}{dt}\left(K+c_{p}T+\Phi\right)=\frac{1}{\rho}\frac{\partial p}{\partial t}+F_{net}$$

where K kinetic energy, \rho is density, p pressure, T temperature, \Phi geopotential height and  $F_{net}$  are net fluxes computed by parameterization (e.g., heating and momentum forcing).

Energy conservation can be violated in physics-dynamics coupling if the physics tendencies are added during the time-stepping (underlying pressure changes!)

The dynamical core may not conserve energy due to inherent numerical dissipation, non-conservation due to time truncation errors, etc.

**Dynamical core module** 

 $\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega = \nu \nabla^4 T,,$ 

 $\frac{\partial}{\partial t} \left( \frac{\partial p_d}{\partial \eta} \right) + \nabla \cdot \left( \frac{\partial p_d}{\partial \eta} \vec{u} \right) = \nu \nabla^4 \left( \frac{\partial p_d}{\partial \eta} \right),$ 

 $\frac{\partial}{\partial t} \left( \frac{\partial p_d}{\partial \eta} m_i \right) + \nabla \cdot \left( \frac{\partial p_d}{\partial \eta} m_i \vec{u} \right) = \nu \nabla^4 \left( m_i \right), \quad i = v, cl, ci, \dots$ 

 $\frac{\partial \vec{u}}{\partial t} + \left(\boldsymbol{\zeta} + f\right) \hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi\right) + \frac{1}{\rho} \nabla p = \nu \nabla^4 \vec{u},$ 

Physics-dynamics coupling layer Note that weather model parameterizations do not conserve total energy

#### **Physics module**

CAM physics does not change surface pressure – under that assumption each paramerization conserves energy (i.e. energy change due to state variables changing is exactly balanced by net fluxes).

However, changes in water variables does change pressure => When pressure is updated energy conservation is violated

## **Aside: Energy budgets in CAM-SE**

10 year averages from AMIP simulation (specified SSTs cycling over same year)







## Why?





## Cost per additional tracer (dynamical core timings using 1728 tasks)



# The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes

(Lauritzen et al., 2015) See: <u>http://www.cgd.ucar.edu/cms/pel/terminator.html</u>

• Consider 2 reactive chemical species, Cl and Cl<sub>2</sub>:

 $Cl_2 \rightarrow Cl + Cl : k_1$  $Cl + Cl \rightarrow Cl_2 : k_2$ 

45"N

0\*

45"5 -

• Steady-state solution (no flow):

45°N

04

45'5

90\*5 -

• In any flow-field Cl<sub>y</sub>=Cl+2\*Cl<sub>2</sub> should be constant at all times (correlation preservation)

90°E

3,250-06



2 25e-06

1,25e-06

90°W

10-05





90°E

1.4e-06



# The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes

(Lauritzen et al., 2015) See: http://www.cgd.ucar.edu/cms/pel/terminator.html



Terminator reaction coefficient:  $k_1(\lambda, \theta)$ 

• Consider 2 reactive chemical species, Cl and Cl<sub>2</sub>:

 $Cl_2 \rightarrow Cl + Cl : k_1$  $Cl + Cl \rightarrow Cl_2 : k_2$ 



• In any flow-field Cl<sub>y</sub>=Cl+2\*Cl<sub>2</sub> should be constant at all times (correlation preservation).



45°N

0\*

45°S

90°S

# The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes

(Lauritzen et al., 2015)

See: http://www.cgd.ucar.edu/cms/pel/terminator.html





Errors are due to non-conservation of linear correlations in tracer transport scheme and/or physics-dynamics coupling





• In any flow-field Cl<sub>y</sub>=Cl+2\*Cl<sub>2</sub> should be constant at all times (correlation preservation).



National Center for Atmospheric Research Atmospheric Chemistry Observations & Modeling

NCAR National Center for Atmospheric Research

## **Problem formulation**

# Improve the efficiency and accuracy of tracer transport in CAM-SE



Note: It is easy to make an efficient model that is inaccurate or an accurate model that is inefficient (at least for smooth problems) ...

## **Tracer transport: Continuity equation**

Consider the continuity equation of air mass (pressure level thickness  $\Delta p$ ), and tracer mass ( $\Delta pq$ , where q mixing ratio)

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \vec{v}) = 0, \qquad \psi = \Delta p, \Delta pq,$$

No sources/ sinks

respectively, where v wind vector.



# **Requirements for transport schemes intended for global climate/climate-chemistry applications:**

### 1. Global (and local) Mass-conservation

The solution to the continuity equation without sources/sinks must conserve mass. Very important!

#### 2. Physical realizable solutions (shape-preservation)

Scheme must not produce new extrema (in particular negatives) in q



## Example of unphysical solution

 NCAR
 National Center for Atmospheric Research

 UCAR
 Climate & Global Dynamics
 Climate • models • society

# **Requirements for transport schemes intended for global climate/climate-chemistry applications:**

#### 3. Preservation of functional relations between tracers

Transport scheme preserves  $q_2 = f(q_1)$ 



Figure: Aircraft observations of long-lived species in the stratosphere

Tracer transport scheme should not unphysically perturb these relations between tracers

# **Requirements for transport schemes intended for global climate/climate-chemistry applications:**

4. Consistency (tracer and air mass are coupled!)

Continuity equations for air mass and tracer mass:

$$\frac{\partial \left(\Delta p\right)}{\partial t} + \nabla \cdot \left(\Delta p \vec{v}\right) = 0, \qquad (1)$$

$$\frac{\partial \left(\Delta pq\right)}{\partial t} + \nabla \cdot \left(\Delta pq\vec{v}\right) = 0, \qquad (2)$$

If q = 1 then the transport scheme should reduce to the continuity equation for air.

### In model consistency is non-trivial if:

- Using prescribed wind and mass fields from , e.g., re-analysis.
- (2) is solved with a different numerical method than (1)



Basic formulation

Lauritzen et al. (2010)

## Conservative Semi-LAgrangian Multi-tracer (CSLAM)



Finite-volume Lagrangian form of continuity equation for air (pressure level thickness,  $\Delta p$ ), and tracer (mixing ratio, q):

$$\int_{A_k} \psi_k^{n+1} dA = \int_{a_k} \psi_k^n dA = \sum_{\ell=1}^{L_k} \left[ \int_{a_{k\ell}} \psi_{k\ell}^n(x, y) dA \right], \quad \psi = \Delta p, \, \Delta p \, q,$$

where *n* time-level,  $a_{k\ell}$  overlap areas,  $L_k$  #overlap areas, and  $\psi_{k\ell}^n(x, y)$  reconstruction function in cell  $k\ell$ .



Basic formulation

Lauritzen et al. (2010)

## Conservative Semi-LAgrangian Multi-tracer (CSLAM)



Finite-volume Lagrangian form of continuity equation for air (pressure level thickness,  $\Delta p$ ), and tracer (mixing ratio, q):

$$\int_{A_k} \psi_k^{n+1} dA = \int_{a_k} \psi_k^n dA = \sum_{\ell=1}^{L_k} \left[ \int_{a_{k\ell}} \psi_{k\ell}^n(x, y) dA \right], \quad \psi = \Delta p, \, \Delta p \, q,$$

where *n* time-level,  $a_{k\ell}$  overlap areas,  $L_k$  #overlap areas, and  $\psi_{k\ell}^n(x, y)$  reconstruction function in cell  $k\ell$ .

# A way to accelerate tracer transport:



**Basic formulation** 

Lauritzen et al. (2010)

## Conservative Semi-LAgrangian Multi-tracer (CSLAM)



$$\int_{A_k} \psi_k^{n+1} dA = \int_{a_k} \psi_k^n dA = \sum_{\ell=1}^{L_k} \left[ \int_{a_{k\ell}} \psi_{k\ell}^n(x,y) dA \right], \quad \psi = \Delta p, \, \Delta p \, q,$$

where *n* time-level,  $a_{k\ell}$  overlap areas,  $L_k$  #overlap areas, and  $\psi_{k\ell}^n(x, y)$  reconstruction function in cell  $k\ell$ .
# A way to accelerate tracer transport: 🚳



Lauritzen et al. (2010)

## Conservative Semi-LAgrangian Multi-tracer (CSLAM)



- Multi-tracer efficient: w<sup>(i,j)</sup><sub>kl</sub> re-used for each additional tracer (Dukowicz and Baumgardner, 2000).
- Scheme allows for large time-steps (flow deformation limited).
- Conserves mass, shape, linear correlations (Lauritzen et al., 2014).



Basic formulation

Lauritzen et al. (2010)

## Conservative Semi-LAgrangian Multi-tracer (CSLAM)

Shape-preservation

• Apply limiter to mixing ratio sub-grid cell distribution:

$$q(x,y) = \sum_{i+j<3} c^{(i,j)} x^i y^j,$$

(Barth and Jespersen, 1989) so that extrema of q(x, y) are within range of neighboring  $\overline{q}$ .



## **Extension to cubed-sphere:** Figure shows upstream Lagrangian grid



| THE |  |
|-----|--|
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |



Basic formulation Harris et al. (2010)

### Flux-form CSLAM = Lagrangian CSLAM



$$\int_{A_k} \psi_k^{n+1} \, dA = \int_{A_k} \psi_k^n \, dA - \sum_{\epsilon=1}^4 s_{k\ell}^\epsilon \int_{a_k^\epsilon} \psi \, dA, \quad \psi = \Delta p, \, \Delta p \, q.$$

where

- $a_k^{\epsilon} = \text{`flux-area'} (\text{yellow area}) = \text{area swept through face } \epsilon$
- $s_{k\ell}^{\epsilon} = 1$  for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent (Lauritzen et al., 2011).



# Coupling finite-volume semi-Lagrangian transport with spectral element dynamics

4. Consistency (tracer and air mass are coupled!) Continuity equations for air mass and tracer mass:

**Spectral elements** 

**CSI AM** 

$$\frac{\partial (\Delta p)}{\partial t} + \nabla \cdot (\Delta p \vec{v}) = 0,$$
$$\int_{A_k} (\Delta p q)_k^{n+1} dA = \int_{a_k} (\Delta p q)^n dA.$$

If q = 1 then the transport scheme should reduce to the continuity equation for air.

We need to couple without violating mass-conservation, shape-preservation, and consistency

NCAR



Continuity equation for  $\Delta p$ :

$$\frac{\partial \Delta p}{\partial t} = -\nabla \cdot \Delta p \vec{v} + \tau \nabla^4 \Delta p.$$

NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society



Continuity equation for  $\Delta p$ :

$$\left(h_k, \frac{\partial \Delta p}{\partial t}\right) = \left\langle h_k, -\nabla \cdot \Delta p \vec{v} \right\rangle + \left\langle h_k, \tau \nabla^4 \Delta p \right\rangle,$$

where  $\langle h_k, \cdot \rangle$  is inner product

$$\langle h_k, f \rangle = \sum_{i,j} w_{i,j} h_k(x_i, y_j) f(x_i, y_j) \sim \iint h_k f \, dA.$$



Continuity equation for  $\Delta p$ :

$$\left(h_k, \frac{\Delta p^* - \Delta p^n}{\Delta t}\right) = \left\langle h_k, -\nabla \cdot \Delta p \vec{v} \right\rangle + \left\langle h_k, \tau \nabla^4 \Delta p \right\rangle.$$

Temporal discretization: multi-stage Runge-Kutta time-stepping



Continuity equation for  $\Delta p$ :

$$\left(h_k, \frac{\Delta p^* - \Delta p^n}{\Delta t}\right) = \langle h_k, -\nabla \cdot \Delta p \vec{v} \rangle + \langle h_k, \tau \nabla^4 \Delta p \rangle.$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society



Projection step

$$\Delta p^{n+1} = DSS\left(\Delta p^*\right)$$

where DSS refers to Direct Stiffness Summation (also referred to as assembly or inverse mass matrix step).

 Choice of GLL quadrature based inner product and nodal basis functions gives a diagonal mass matrix (Maday and Patera, 1987).



Continuity equation for  $\Delta p$ :

$$\left(h_k, \frac{\Delta p^{n+1} - \Delta p^n}{\Delta t}\right) = \left\langle h_k, -\nabla \cdot \Delta p \vec{v} \right\rangle + \left\langle h_k, \tau \nabla^4 \Delta p \right\rangle + \left\langle h_k, D \right\rangle.$$

Temporal discretization: multi-stage Runge-Kutta time-stepping

NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society



Continuity equation for  $\Delta p$ :

$$\left(h_k,\frac{\Delta p^{n+1}-\Delta p^n}{\Delta t}\right)=\left\langle h_k,F\right\rangle+\left\langle h_k,G\right\rangle+\left\langle h_k,D\right\rangle.$$

Temporal discretization: multi-stage Runge-Kutta time-stepping



Temporal discretization: multi-stage Runge-Kutta time-stepping

### **Diagnosing fluxes from spectral-element method**

There exist a basis \u03c6k so that

$$\left(\phi_k, \frac{\Delta p^{n+1} - \Delta p^n}{\Delta t}\right) = \left\langle\phi_k, F\right\rangle + \left\langle\phi_k, G\right\rangle + \left\langle\phi_k, D\right\rangle,$$

gives the change of mass in each CSLAM control volume.

 Moreover, each term on right-hand side can be expressed in terms of edge fluxes:

$$\left(\Delta p^{n+1} - \Delta p^n\right) \Delta A_k = \sum_{\epsilon=1}^4 \left[\mathcal{F}_F^{(\epsilon)} + \mathcal{F}_G^{(\epsilon)} + \mathcal{F}_D^{(\epsilon)}\right].$$



## The story so far

#### **Spectral-Element Method: CAM-SE**

Mass change over CSLAM control volume  $A_k$  implied by SE

$$\left(\Delta p^{n+1} - \Delta p^n\right) \Delta A_k = \sum_{\epsilon=1}^4 \left[\mathcal{F}_F^{(\epsilon)} + \mathcal{F}_G^{(\epsilon)} + \mathcal{F}_D^{(\epsilon)}\right],$$

(Lauritzen et al., 2016; in prep).

#### **Finite-Volume Method: CSLAM**



CSLAM discretization is given by

$$\left(\widetilde{\Delta p}^{n+1} - \widetilde{\Delta p}^n\right) \Delta A_k = \sum_{\epsilon=1}^4 \left[\mathcal{F}_{CSLAM}^{(\epsilon)}\right] = -\sum_{\epsilon=1}^4 s_{k\ell}^\epsilon \int_{a_k^\epsilon} \Delta p^n \, dA.$$

Lauritzen et al., (2011)

## The story so far

#### **Spectral-Element Method: CAM-SE**

Mass change over CSLAM control volume Ak implied by SE



## Consistent SE-CSLAM algorithm: step-by-step example



Well-posed? As long as flow deformation  $\left|\frac{\partial u}{\partial x}\right|\Delta t \lesssim 1$  (Lipschitz criterion)

#### Lauritzen et al., 2016 (in prep.)

### Consistent SE-CSLAM algorithm: step-by-step example

Local iteration problem generating an upstream grid that spans the sphere without cracks and overlaps

=> all CSLAM technology from Lauritzen et al. (2010) can be used



Well-posed? As long as flow deformation  $\left|\frac{\partial u}{\partial x}\right|\Delta t \lesssim 1$  (Lipschitz criterion)

## **Consistent CSLAM algorithm is general**

In principle, the consistent CSLAM algorithm can be made consistent with any fluxes that obey the Lipschitz criterion ...





## **Idealized baroclinic wave test**

No sub-grid-scale forcing, dry, balanced initial condition with perturbation Jablonowski and Williamson (2006)

**Surface pressure computed with CSLAM is identical to SE (to round-off)** 





NCAR



#### **CAM-SE-CSLAM**

#### **CAM-SE reference**

#### CAM-SE



#### CAM-SE

#### **CAM-SE-CSLAM**

#### **CAM-SE reference**



#### CAM-SE

#### **CAM-SE-CSLAM**

#### **CAM-SE reference**



# The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes

(Lauritzen et al., 2015) See: <u>http://www.cgd.ucar.edu/cms/pel/terminator.html</u>

• Consider 2 reactive chemical species, Cl and Cl<sub>2</sub>:

 $Cl_2 \rightarrow Cl + Cl : k_1$  $Cl + Cl \rightarrow Cl_2 : k_2$ 

45"N

0\*

45"5 -

• Steady-state solution (no flow):

45°N

04

45'5

90\*5

• In any flow-field Cl<sub>y</sub>=Cl+2\*Cl<sub>2</sub> should be constant at all times (correlation preservation)

90°E

3,250-06



2 25e-06

1,25e-06

90°W

10-05





90°E

1.4e-06



## **Initial condition**



## CAM-SE



## **CAM-SE-CSLAM**



## Performance



- All simulations run on NCAR's Yellowstone computer
- No exploration of threading



## **MPI communication**



For every 30 minute physics time-step:

- SE performs 6 tracer time-steps (dt=300s) => 42 MPI calls (7 per tracer dt)
- CSLAM performs 2 tracer time-steps (dt=900s) => 2 MPI calls (1 per tracer dt)

That said, CSLAM needs a much larger halo than SE:





## Performance



## **Performance: strong scaling**



nety Computational & Information Systems Laboratory

## How do we compare with CAM-FV (dynamical core timings using 1728 tasks)

#### 1 degree horizontal resolution, 30 levels



NCAR National Center for Atmospheric Research

clels • *society* Computational & Information Systems Laboratory

## How do we compare with CAM-FV (dynamical core timings using 1728 tasks)

#### 1 degree horizontal resolution, 30 levels



Climate & Global Dynamics

UCAR

Computational & Information Systems Laboratory
#### **Performance: break-down of CSLAM algorithm**



NCAR





# **Part II: Coupling to physics**





### **Non-uniform sampling of atmospheric state**



Gets worse with increasing order!





 NCAR
 National Center for Atmospheric Research

 UCAR
 Climate & Global Dynamics
 Climate • models • society





### **Grid-scale forcing**



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society

### Held-Suarez with topography



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society







NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics







NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics

## Held-Suarez with topography



NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics climate • models • society









# Wet mass vertical coordinates

2.1. Definition of vertical coordinate. Consider a (wet mass) terrain following hybrid vertical coordinate where the pressure p is given by

(24) 
$$p(\eta) = A(\eta)p_0 + B(\eta)p_s,$$

where  $A(\eta)$  and  $B(\eta)$  define the vertical level spacing,  $p_0$  the pressure at the top of the model atsmophere, and ps is the moist (full) surface pressure. We choose a floating vertical coordinate so that

0.

(25) 
$$\dot{\eta} =$$



Figure courtesy of David Hall (CU Boulder).

 NCAR
 National Center for Atmospheric Research

 UCAR
 Climate & Global Dynamics
 Climate • models • society











- Presented algorithm to consistently couple spectral-element dynamics with remap finite-volume transport
- Accuracy is improved for "non-smooth" tracer distributions when using CAM-SE-CSLAM compared to CAM-SE.
- Note that our modeling framework is quite unique in the sense that we support finite-volume and high-order Galerkin methods in the same framework
- Capability to run physics on different grid than dynamics
- CAM-SE physgrid and CAM-SE-CSLAM (uses physgrid) are scheduled to be released with CESM2 later this year





NCAR National Center for Atmospheric Research UCAR Climate & Global Dynamics