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“Workhorse” dynamical core in CAM is CAM-FV (Lin, 2004). 
 
 
 
To improve CAM scalability the spectral-element (SE) dynamical core was 
implemented/imported into CAM (NCAR/DOE) - referred to as CAM-SE. 
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(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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test 

•  Consider 2 reactive chemical species, Cl and Cl2 : !
 

 
 
 
•  Steady-state solution (no flow): 
 
 
 
 
 
 
 
•  In any flow-field Cly=Cl+2*Cl2 should be constant at all times 

(correlation preservation)  
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•  In any flow-field Cly=Cl+2*Cl2 should be constant at all times (correlation preservation).  
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Figure: Aircraft observations of 
long-lived species in the 
stratosphere 

Tracer transport scheme should 
not unphysically perturb these 
relations between tracers 



DTqdiaT\T]cb Uoa caP]b_oac bRWT\Tb i]cT]STS Uoa 
V[obP[ R[i\PcT/R[i\PcT-RWT\ibcah P__[iRPcio]b/  

In model consistency is non-trivial if: !
 
•  Using prescribed wind and mass fields from , e.g., re-analysis. 
•  (2) is solved with a different numerical method than (1) 
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 Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

�
Ak

 n+1
k dA = �

ak
 n
k dA = Lk�̀=1

������ �ı+|≤2 c
(ı,|)
` w

(ı,|)
k`

������ ,  =�p, �p q,

Multi-tracer e�cient: w

(i ,j)
k` re-used for each additional tracer

(Dukowicz and Baumgardner, 2000).

Scheme allows for large time-steps (flow deformation limited).

Conserves mass, shape, linear correlations (Lauritzen et al., 2014).
Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 5 / 20

Basic formulation

How does CSLAM fulfill requirements?

2. Shape-preservation

Apply limiter to mixing ratio sub-grid cell distribution:

q(x , y) = �
ı+|<3 c

(ı,|)
x

ı
y

|,

(Barth and Jespersen, 1989) so that extrema of q(x , y) are within range of
neighboring q.

And upstream areas span domain ⌦ without cracks & overlaps

Limiters and filters

In the literature: Many 1D limiters but few fully 2D limiters!

A priori (‘Monotone filtering’): Filter the reconstruction

f� (x,y)
so that extreme values lie within the adjacent

cell-average values (Barth and Jespersen, 1989).

no filter
monotone filter

A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema in

�
n+1

using flux-corrected transport (Zalesak, 1979).

Monotone filters/limiters tend to ‘clip’ physical extrema

0

�0

 12  20  28  36

a) Unlimited

 12  20  28  36

b) Monotone filter/limiter

 12  20  28  36

c) Selective filter/limiter 
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM
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 n+1
k dA = �

Ak

 n
k dA − 4�

✏=1 s
✏
k`�

a✏k

 dA,  =�p, �p q.

where

a

✏
k = ‘flux-area’ (yellow area) = area swept through face ✏

s

✏
k` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent

(Lauritzen et al., 2011).

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 6 / 20



6od_[i]V s]icT-eo[d\T bT\i-
?PVaP]ViP] caP]b_oac ficW b_TRcaP[ 

T[T\T]c Sh]P\iRb 

We need to couple without violating mass-conservation, 
shape-preservation, and consistency 

6E?4M 

E_TRcaP[ T[T\T]cb 



FWT b_TRcaP[-T[T\T]c \TcWoS 

E_TRcaP[-8[T\T]c MTcWoS (E8M) !

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

h0(ξ)
h1(ξ)

h2(ξ)
h3(ξ)

GLL points



E_TRcaP[-8[T\T]c MTcWoS (E8M) !

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

h0(ξ)
h1(ξ)

h2(ξ)
h3(ξ)

GLL points

FWT b_TRcaP[-T[T\T]c \TcWoS 



E_TRcaP[-8[T\T]c MTcWoS (E8M) !

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

h0(ξ)
h1(ξ)

h2(ξ)
h3(ξ)

GLL points

FWT b_TRcaP[-T[T\T]c \TcWoS 



4 M O N T H L Y W E A T H E R R E V I E W

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(a) (b) (c) 

FIG. 4. A graphical illustration of the physics grid in one dimension. Three elements are shown and the filled red circles are the GLL quadrature
points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(a) (b) 

(d) 

(c) 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(e) (f) 

FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.
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points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.
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FIG. 4. A graphical illustration of the physics grid in one dimension. Three elements are shown and the filled red circles are the GLL quadrature
points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.
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points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.
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 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(a) (b) 

(d) 

(c) 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(e) (f) 

FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
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in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
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an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.
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Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example
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Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)
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No sub-grid-scale forcing, dry, balanced initial condition with perturbation !
Jablonowski and Williamson (2006) 
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Predictability limit for flow is 
approximately 12 days !

=> wind and mass fields 
“driving” transport start to 

diverge 
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 configuration 
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•  Consider 2 reactive chemical species, Cl and Cl2 : !
 

 
 
 
•  Steady-state solution (no flow): 
 
 
 
 
 
 
 
•  In any flow-field Cly=Cl+2*Cl2 should be constant at all times 

(correlation preservation)  
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For every 30 minute physics time-step: 
 
- SE performs 6 tracer time-steps (dt=300s)   => 42 MPI calls (7 per tracer dt) 
- CSLAM performs 2 tracer time-steps (dt=900s)  => 2 MPI calls   (1 per tracer dt) 

That said, CSLAM needs a much larger halo than SE: 
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
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based on the Lin and Rood (1996) method but adapted
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Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases
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contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an
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izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.
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spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
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ible, meaning it has discrete analogs of the key integral
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More information: http://www.cgd.ucar.edu/cms/pel  
Email: pel@ucar.edu  


