

Conservation and coupling in CAM-SE

(CAM=Community Atmosphere Model; SE=Spectral Elements)

Peter Hjort Lauritzen

Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research

Workshop on Physics Dynamics Coupling in Weather and Climate Models September 20-22, 2016 Pacific Northwest National Laboratory Richland, WA, USA

The spectral-element (SE) method: discretization grid

Conservation and coupling

- Mass-conservation in dynamical core: In the absence of sources and sinks, dry air mass and tracer mass should be conserved
- Mass-conservation in physics-dynamics coupling: When adding physics tendencies to tracers in the dynamical core, the mass budget should be closed (not necessarily strictly enforced!)
- Closed energy budget: Atmospheric component as a whole should have a closed energy budget (no spurious sources and sinks)
- Closed energy budget in physics-dynamics coupling: When adding physics tendencies to the state, the energy change in tendencies should match the energy change in the atmospheric state when tendencies have been added (not necessarily strictly enforced!)

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: YES if "ftype=1"
 - 1. Physics updates state ("ftype=1"): mass budget closed but ...

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: YES if "ftype=1"
- 1. Physics updates state ("ftype=1"): mass budget closed but ...

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling:

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling:

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
- 2. "Dribbling" ("ftype=0"): mass budget not always closed!

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

10-year average of column integrated cloud ice (CLDICE) gained in physics-dynamics coupling

O(5E-7hPa) vertically integrated CLDICE gained in PDC

=> tendencies added every 15 minutes so in a 10 year simulation tendencies are added O(3.5E5) times => accumulated CLDICE gained in PDC is O(0.175hPa).

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

10-year average of column integrated cloud ice (CLDICE)

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

10-year average of column integrated cloud liquid (CLDLIQ) gained in physics-dynamics coupling

O(1E-6hPa) vertically integrated CLDLIQ lost in PDC

=> tendencies added every 15 minutes so in a 10 year simulation tendencies are added O(3.5E5) times => accumulated CLDLIQ gained in PDC is O(0.35hPa).

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

10-year average of column integrated cloud liquid (CLDLIQ)

Global integral if CLDLIQ corresponds to approximately 2.6E-4hPa

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

10-year average of column integrated water vapor (WV)

O(1E-8hPa) vertically integrated CLDLIQ gained in PDC

=> tendencies added every 15 minutes so in a 10 year simulation tendencies are added O(3.5E5) times => accumulated WV gained in PDC is O(1E-3hPa).

- Mass-conservation in dynamical core: YES!
- Mass-conservation in physics-dynamics coupling: No!
 - 2. "Dribbling" ("ftype=0"): mass budget not always closed!

Solution(s):

- Advect tendencies (expensive....!)
- Other?

Conservation and coupling: CAM-SE

- Mass-conservation in dynamical core: In the absence of source and sinks, air/tracer mass should be conserved
- Mass-conservation in physics-dynamics coupling: When adding physics tendencies to tracers in the dynamical core the mass budget should be closed (not necessarily strictly enforced!)
- Closed energy budget: Atmospheric component as a whole should have a closed energy budget (no spurious sources and sinks)
- Closed energy budget in physics-dynamics coupling: When adding physics tendencies to the state the energy change in tendencies should match the energy change in the atmospheric state when tendencies have been added (not necessarily strictly enforced!)

Energy Conservation and coupling in CAM-SE

10 year averages from AMIP simulation (specified SSTs cycling over same year)

Dynamical core module

 Rate of energy change due to explicit dissipation (hyperviscosity)

 $dE/dt = 0.0729 W/m^2$

 Frictional heating rate is calculated from K tendency produced from momentum diffusion and added to T:

 $dE/dt = 0.6997 W/m^2$

Vertical remapping

 $dE/dt = -0.1547 W/m^2$

Total loss of energy in dynamics

 $dE/dt = -0.0723 W/m^2$

Rate of energy change due to "dribbling" physics tendencies in the dynamics

 $dE/dt = 0.056 W/m^2$

Physicsdynamics coupling layer

Physics module

 "physical" changes in energy due to water change

 $dE/dt = -0.0016 W/m^2$

 Change in energy due to change in pressure due to water vapor change ("dme_adjust")

 $dE/dt = 0.2667 W/m^2$

Energy fixer

dE/dt = -0.1843

(= loss in dynamics +
dme_adjust)

Separating dynamics, tracer and physics grids in CAM-SE

1. Why separate tracer grid? SE tracer transport cost

2. Why separate physics grid? Non-uniform sampling of atmospheric state

Current physics/"coupler" grid

Gets worse with increasing order!

Separating transport and dynamics grids/ methods in CAM-SE

Coupling cell-integrated semi-Lagrangian scheme (CSLAM) with spectral-element dynamics

- Find upstream Lagrangian grid so that air mass-change in CSLAM cell exactly matches air mass change in the same cell but by integrating SE basis functions (see Lauritzen et al., 2016 for details)
- Inherent mass-conservation, consistency, shapepreservation as described in Lauritzen et al., (2010)

Separating transport and dynamics grids/ methods in CAM-SE

CSLAM transport is (a) faster than, (b) as scalable as and (c) more accurate than CAM-SE transport

(b) 1 degree horizontal resolution, 30 levels, 40 tracers

(a) 1 degree horizontal resolution, 30 levels, 1728 tasks

(C) Inert & passive tracer in dry baroclinic wave flow

Lauritzen et al.,(2016)

Separating transport and dynamics grids/ methods in CAM-SE with moisture

Most global models used a moist pressure vertical coordinate

$$p(\eta) = A(\eta)p_0 + B(\eta)ps$$

=> If there is a change in water vapor then levels move (problematic when coupling CSLAM and SE)

Solution: dry mass vertical coordinates (also makes it straight forward to add water loading in dynamical core)

Dry mass vertical coordinates

1.4. **Primitive equations.** The η_d -coordinate atmospheric primitive equations assuming floating Lagrangian vertical coordinates, neglecting dissipation and forcing terms can be written as

(17)
$$\frac{\partial \vec{u}}{\partial t} + (\zeta + f) \,\hat{k} \times \vec{u} + \nabla \left(\frac{1}{2} \vec{u}^2 + \Phi \right) + \frac{1}{\rho} \nabla p = 0$$

(18)
$$\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T - \frac{1}{c_p \rho} \omega = 0$$

(19)
$$\frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} \right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} \vec{u} \right) = 0$$

(20)
$$\frac{\partial}{\partial t} \left(\frac{\partial p_d}{\partial \eta} m_i \right) + \nabla \cdot \left(\frac{\partial p_d}{\partial \eta} m_i \vec{u} \right) = F_i, \quad i = v, cl, ci, \dots$$

Let m_i be the amount of water substance, chemical species, etc. of type i associated with unit mass of dry air:

$$m_i \equiv \frac{\rho_i}{\rho_d},$$

where ρ_d is the mass of dry air per unit volume of moist air and ρ_i the mass of water substance of type i per unit volume of moist air. Here we consider the water substances water vapor m_v , cloud

Adding condensate loading is straight forward!

Initialization of idealized moist baroclinic wave (Ullrich et al., 2013) with dry-mass vertical coordinates

Relative humidity at level 30, day 0

Dry surface pressure is obtained by high-order Gaussian quadrature integration of analytic moisture profile to get water vapor pressure (WVP):

$$ps_{dry} = ps_{wet}-wvp$$

$$p(\eta) = A(\eta)p_0 + B(\eta)ps_d,$$

For the dry-mass vertical coordinate ps_{dry} and q (dry mixing ratio for water vapor) must be initialized carefully to get a balanced initial state:

Ps_{wet} matches 1000hPa to 1E-10!

Initialization of idealized moist baroclinic wave (Ullrich et al., 2013) with dry-mass vertical coordinates

Full (moist) surface pressure at day 15

Separating dynamics, tracer and physics grids in CAM-SE

