
Reduced damping
Viscosity coefficients have been reduced significantly:

Figure Total kinetic energy spectrum of the horizontal winds
at the 200 hPa level in CAM-HOMME and CAM-SE at 1�
horizontal resolution, computed as the mean spectra from 30
days of 6-hourly instantaneous spectra. Black line is the κ−3

reference scaling, where κ is spherical wave-number.

Improved performance

Figure Throughput in terms of simulated years per day for
CAM6 Aqua-planet including standard I/O as a function of
number of nodes on NCAR’s Cheyenne supercomputer..
Note that for the right-most data-points there is only 9
physics columns per processor.

Introduction
For some time the atmosphere component of the CESM 
(Community Earth System Model), called CAM 
(Community Atmosphere Model), has supported a Spectral-
Element (SE) dynamical core option; the SE dynamical core 
is based on a continuous Galerkin finite-element method 
discretized on the gnomonic cubed-sphere and it supports 
static mesh-refinement (see Figure) .

In CESM1 the SE dynamical core was imported from
HOMME (High-Order Methods Modeling Environment) as
an external code base. In CESM2 the SE dynamical core
resides in the CESM repository and has undergone
numerous software engineering changes, science changes
and performance optimizations described in separate
sections below. The new version is referred to as CAM-SE
(�SE in CESM2) and its predecessor is referred to as CAM-
HOMME (�SE in CESM1).

Dry-mass vertical coordinate
Consider a general terrain following vertical coordinate η(d)

that is a function of dry air mass per unit area M(d)

where Ms
(d) is dry air mass in a column (per unit area) and

where Mt
(d) is dry air mass (per unit area) above model top.

=> Model interface levels (index k+1/2) are defined as

where Ak+/12 and Bk+1/2 are the ‘usual’ hybrid coefficients.

Note that by removing superscript (d) from the equations
above (so that the dry variables represent moist variables),
then the vertical coordinate is the usual hybrid-pressure
coordinate widely used in hydrostatic global modeling
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Condensate loading
Define set of components of moist air

referring to dry air, water vapor, cloud liquid, cloud ice, rain,
and snow. Including condensates in the equations of motion
has the following consequences:

Hydrostatic equation includes condensates

where g is gravitational acceleration, ρ(d) is the density of
dry air and total density is

where m(l) is (dry) mixing ratio for component l of moist air.

Energy conversion term in the thermodynamic equation

where ω is vertical pressure velocity, T temperature and

where cp
(l) is the heat capacity of component l at constant p,

includes condensates. Same for pressure-gradient force.

Total energy equation includes condensates

Integrate adiabatic and frictionless equations of motion over
the entire domain:

where K=0.5�v2 is kinetic energy (per unit mass), and Φs is 
surface geopotential. 

Modified hyperviscosity
Hyperviscosity applied on approximate pressure surfaces 

and for ΔM(d) (=dry layer mass ) only apply hyperviscosity
to difference between ΔM(d) and reference dry layer mass.

CAM6 Aqua-planet simulation

Figure 4.5 year average zonally averaged total precipitation 
rate as a function of latitude for CAM6 Aqua-planet 
simulations.

CAM-SE = new SE dynamical core (CESM2)
CAM-HOMME = old SE dynamical core (CESM1)
-oldvisc = CAM-SE with CAM-HOMME

viscosity coefficients
-cpcnst = CAM-SE with cp=cp

(d)

(CAM-HOMME setting) 
-ppmlimter = CAM-SE with limiter on the vertical 

remapping of wind components
-all = CAM-SE with the 3 above changes

Optional finite-volume tracer transport 
and finite-volume physics grid

Tracer transport with CSLAM (Conservative Semi-
Lagrangian Muli-tracer) scheme consistently coupled to SE 
(Mon. Wea. Rev. paper: DOI:10.1175/MWR-D-16-0258.1).

State passed to physics is integrated over (CSLAM) finite-
volumes (manuscript in preparation).
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(a) (b)

Figure 1. (a) The gnomonic equi-angular cubed-sphere grid that define the elements in CAM-SE. The red
lines show the cubed-sphere panel edges. (b) A low resolution conformal mesh-refinement grid (elements)
referred to as the CONUS-grid (Contiguous United States) used in CAM-SE.

cluding the thermodynamic and mass e�ect of condensates in the dynamical core is easier
when using a dry-mass hybrid-sigma vertical coordinate than when using the usual moist-
mass hybrid-sigma vertical coordinate [e.g., Simmons and Burridge, 1981]. This is the
initial motivation for using a dry-mass vertical coordinate.

A second motivation for switching to a dry-mass vertical coordinate is the consis-
tent coupling with the physical parameterizations. CAM physics assumes that the (moist)
pressure levels are constant during the parameterization updates. Consequently the moist
pressure levels stay constant even when moisture leaves the column (e.g., rains out). At
the very end of CAM physics the change in water vapor in each column is taken into ac-
count by scaling the mixing ratios for all tracers that are based on specific/moist mixing
ratios so that dry air mass and tracer mass is conserved [see Section 3.1.6 in Neale et al.,
2012]. This scaling does not guarantee shape-preservation and changes the total energy. In
addition, the pressure field in CAM physics does not take into account the mass of con-
densates. When using a dry-mass vertical coordinate, the coordinate surfaces (assuming
dry mass is constant) remain constant throughout the physics updates and there is no need
to adjust tracer mixing ratios, and one can more rigorously take into account the work per-
formed by water variables in the context of the energy cycle.

The third motivation for using a dry-mass vertical coordinate relates to total energy
conservation. Currently the energy fixer in CAM is based on a dry total energy [Williamson
et al., 2015] that uses the same heat-capacity for dry air and water vapor, and does not in-
clude the e�ect of condensates. To move towards a more accurate treatment of energy in
CAM, a first step is to develop a dynamical core based on equations of motion conserv-
ing an energy that more accurately represents water vapor as well as condensates. This
is most easily done when using a dry-mass vertical coordinate so that the energies asso-
ciates with all water variables are clearly separated. Similarly for axial angular momentum
(AAM) which is an important conserved quantity of the continuous equations of motion
[e.g., Lebonnois et al., 2010].

The paper is organized as follows. In section 2 the continuous equations of motion
are derived which involves a detailed discussion of moist thermodynamics in the presence
of condensates. The AAM and total energy conservation properties of continuous system
of equations is also discussed. In section 3 the discretized equations of motion with focus
on the vertical discretization in dry-mass vertical coordinates are derived. Details on the
horizontal SE discretization on the cubed-sphere are also presented. Section 4 presents
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Figure 12. Throughput in terms of simulated years per day for CAM6 Aqua-planet including I/O for CAM-
SE and CAM-HOMME as a function of number of nodes. The curved line is a parabolic Least-Squares fit
to the data points. Note that for the right-most data-point there is only one element in the horizontal per
processor (150 nodes is 5400 processors and there are 6 ⇥ N

2
e

= 6 ⇥ 302 = 5400 elements in the horizontal).
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Figure 6. Total kinetic energy spectrum of the horizontal winds at the 200 hPa level in CAM-HOMME and
CAM-SE at 1� horizontal resolution (N

e

= 30 and N

p

= 4), computed as the mean spectra from 30 days of
6-hourly instantaneous spectra. Black line is the �3 reference scaling, where  is wave-number.
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some results, validating the new dynamical core in idealized configurations. First, a moist
baroclinic wave with simple warm-rain micro-physics and secondly in a CAM61 aqua-
planet configuration. The computational performance of CAM-SE is presented in section
4. The paper ends with summary and conclusions in section 5.

2 Continuous equations

Before writing the continuous equations of motion using a dry-mass vertical coor-
dinate (section 2.5), we first need to discuss the representation of water variables (section
2.1), discuss the ideal gas law (section 2.2) and derive the thermodynamic equation for
a mixture containing all water species (section 2.3). The discussion of the equations of
motion in the presence of water vapor, cloud liquid, ice, rain and snow closely follows
Staniforth et al. [2006]. As noted in Cotton et al. [2010] ’ ... the fundamental equations
governing dry air are generally accepted in fluid dynamics communities. By contrast, the
governing equations for moist atmosphere flows remain a source of some controversy and
active research’. Therefore the derivation of the equations of motion including non-gas
components is discussed in detail.

Thereafter the dry mass vertical coordinate is defined in section 2.4. Details on vis-
cosity and frictional heating are presented in section 2.6 and global conservation proper-
ties derived in section 2.7.

2.1 Representation of water phases in terms of dry and wet (specific) mixing ra-
tios

Define the dry mixing ratios for the water variables (vapor ’wv’, cloud liquid ’cl’,
cloud ice ’ci’, rain ’rn’ and snow ’sw’)

m

(`) ⌘ ⇢
(`)

⇢(d) , where ` = ‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘, (1)

where ⇢(d) is the mass of dry air per unit volume of moist air and ⇢(`) is the mass of the
water substance of type ` per unit volume of moist air. Note that the mixing ratio for dry
air is unity: m

(d) ⌘ ⇢ (d)

⇢ (d) = 1. Moist air refers to air containing dry air, water vapor, cloud
liquid, cloud ice, rain amount and snow amount. For notational purposes define the set of
all components of air

L
all

= {‘d‘, ‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} , (2)
a set only referring to all water variables,

L
water

= {‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} , (3)

and a set referring to all condensates (non-gas components of water)

L
cond

= {‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} . (4)

The density of a unit volume of moist air is related to the dry air density through

⇢ = ⇢(d) *.,
X

`2L
all

m

(`)+/- . (5)

Mixing ratios can also be specified in terms of density per density of moist air, in other
words, specific/moist mixing ratios

q

(`) ⌘ ⇢
(`)

⇢
, (6)

1 the CAM6 physics tag is cam5_4_128 which is a near final pre-release version of the CESM2.0-CAM6 physics pack-
age; this paper focuses on the dynamical core and the details of the physics package are less important
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The hydrostatic (moist) pressure at given height z can be computed from the hydro-
static balance

p(z) = �g
Z

z

0=1

z

0=z
⇢ dz

0, (41)

= �g
Z

z

0=1

z

0=z
⇢(d) *.,

X

`2L
all

m

(`)+/- dz

0, (42)

= g
X

`2L
all

M

(`) (z), (43)

where the right-hand side of (43) is the mass of dry air, water vapor, cloud liquid, cloud
ice, rain and snow per unit area above height z, respectively:

M

(`) (z) = �
Z

z

0=1

z

0=z
⇢(d)

m

(`)
dz

0. (44)

Using Dalton’s law of partial pressures on the left-hand side of (43), one obtains the par-
tial pressure at a certain height z is

p

(d) (z) + p

(wv) (z) = g
X

`2L
all

M

(`) (z). (45)

From (45) it is clear that in the presence of condensate one can not equate p

(d) (z) with
gM

(d) (z), nor p

(wv) (z) with gM

(wv) (z). The partial pressures of dry air and water vapor
are both a�ected by the mass of the condensates even though the condensates do not exert
a gas pressure. Hence the partial pressure of dry air p

(d) (z) at height z is di�erent from
force exerted by the mass of dry air in Earth’s gravitational field gM

(d) (z); and similar
for moisture. The hydrostatic balance for dry air mass, written in terms of di�erentials, is
given by

dM

(d) (z) = �g ⇢(d)
dz, (46)

whereas, in a moist atmosphere (with condensates), a dry air partial pressure hydrostatic
equation does not hold

dp

(d) (z) , �g ⇢(d)
dz. (47)

The partial pressure of dry air p

(d) (z) at height z will increase in the presence of conden-
sates whereas the mass of dry air does not. The di�erential of the (moist) pressure can be
written in terms of the dry air mass (under the hydrostatic assumption) though:

dp(z) = �g ⇢ dz = �g⇢(d) *.,
X

`2L
all

m

(`)+/- dz = g dM

(d) (z) *.,
X

`2L
all

m

(`)+/- . (48)

In all, g M

(d) (z) is equal to p

(d) (z) at height z only if there are no condensates present
(i.e. air is a gas only) and similarly for water vapor. Henceforth we drop the notation of
the vertical dependence (in this section we used z) on M

(`) (z) = M

(`) . Since ⌘ (d) is the
vertical coordinate, M

(`) will henceforth refer to the mass per unit area of water form `
above ⌘ (d) . The weight of dry air per unit area gM

(d) is not a directly measurable quan-
tity but a theoretical construction for the dry-mass vertical coordinate. Only moist pressure
(or simply pressure) is directly measurable.

2.5 Equations of motion

The ⌘ (d)-coordinate adiabatic and frictionless atmospheric primitive equations as-
suming floating Lagrangian vertical coordinates [Starr, 1945; Lin, 2004] can be written in
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(where r is the mean radius of Earth, ⌦ angular velocity and ' latitude), integrated over
the entire domain is derived in Appendix B: and the final equation is

@

@t

Z ⌘=1

⌘=0

"

S

2666664g
*.,

X

`2L
all

m

(`)+/-
 
@M

(d)

@⌘ (d)

!
M

3777775 dA d⌘ (d) = �
"

S

"
p

s

@z

s

@�

#
dA, (61)

where S is the global domain and dA = r

2 cos 'd�d' is an infinitesimal surface area
element on the sphere. The equation clearly separates the AAM of each component of
moist air. The term in the square brackets on the right-hand side of (61) is referred to as
the mountain torque. In the absence of topography, z

s

= 0m, (61) states that the angular
momentum integrated over the entire domain is constant for the continuous equations of
motion. Note that the AAM can be separated into a part (M

r

) associated with the mo-
tion of the atmosphere relative to Earth’s surface (also known as wind AAM) and another
part (M⌦) associated with the angular velocity ⌦ of Earth’s surface (referred to as mass
AAM)

M =M
r

+M⌦ = (ur cos ') +
⇣
⌦r

2 cos2 '
⌘
. (62)

The total energy equation integrated over the global domain is also derived in Appendix
B: . The final equation is

@

@t

Z ⌘=1

⌘=0

"

S

 
@M

(d)

@⌘ (d)

! X

`2L
all

f
m

(`)
⇣
K + c

(`)
p

T + �
s

⌘g
dAd⌘ (d) = 0, (63)

where K = 1
2v · v. Note that the energy terms (inside square brackets) in (63) separate into

contributions from each component of moist air. The total energy equation (63) shows
that the equations of motion used in this paper conserve a moist total energy that includes
condensates. That said, the CAM physics package energy fixer assumes that the ‘perfect’
adiabatic dynamical core conserves an energy where c

(wv)
p

= c

(d)
p

, c

(`)
p

= 0 for ` 2 L
cond

and m

(`) = 0 for ` 2 L
cond

in (63) [Williamson et al., 2015] in which case the integrand
in (63) becomes  

@M

(d)

@⌘ (d)

! ⇣
1 + m

(wv)
⌘ f⇣

K + c

(d)
p

T + �
s

⌘g
. (64)

The discrepancy between the more comprehensive energy formula (63) and the CAM
physics formula for total energy is about 0.5 W/m2 [Taylor, 2011]. By only including
dry air and water vapor in ⇢ and setting c

(wv)
p

= c

(d)
p

in the equations of motion, the dy-
namical core (in the absence of truncation errors) will conserve the energy used in CAM
physics. In the model code this is controlled with the logical parameter lcp_moist which
is set to .true. in the code.

3 Discretized equations of motion

3.1 Vertical discretization

In the vertical the atmosphere is discretized into nlev floating Lagrangian layers.
The vertical index is 1 for the upper most level and nlev in the lower most level. The
level interfaces are referred to as half-levels so that layer k is bounded by interface level
k + 1/2 and k � 1/2. Since we are using a dry-mass vertical reference coordinate, the dry
air mass per unit area at the layer interfaces is defined in terms of the hybrid coe�cients
A and B that are only a function of level index

M

(d)
k+1/2 = A

k+1/2M

(d)
t

+ B

k+1/2M

(d)
s

, (65)

and similarly for full levels k. Note that if the ‘d‘ is removed from the above equation and
multiplied by gravity then the levels would be based on (moist) pressure, i.e. the vertical
coordinate becomes the usual hybrid vertical coordinate used in many global hydrostatic
models (assuming no condensates). Every se_rsplit dynamics time-steps the prognostic
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2.3 Thermodynamic equation

The second law of of thermodynamics states

�Q = T�s, (18)

where �Q is the amount of heat per unit mass that is supplied reversibly to the moist air,
and s is specific entropy of moist air. Introducing specific internal energy e and specific
enthalphy

h = e + p↵, (19)

where ↵ is specific volume of moist air, the right-hand side of (18) can be written as

T�s = �e + p�↵, (20)
= �h � ↵�p, (21)

provided no phase change occurs. For each component

e

(`) = c

(`)
v

T, (22)
h

(`) = c

(`)
p

T + ↵(`)
0 p, (23)

where the specific heats c

(`)
v

and c

(`)
p

are assumed constant. For the gas phases, c

(`)
p

�
c

(`)
v

= R

(`) and ↵(`)
0 =0, while for the condensates, which are assumed incompressible,

c

(`)
p

= c

(`)
v

(hence R

(`) = 0) and ↵(`)
0 is the constant specific volume of condensate phase

`. Assuming that specific energy and enthalphy are mass-weighted sums of specific energy
and enthalphy of the constituents of moist air,

e = c

v

T, (24)

h = c

p

T +

 
V

(cond)
P

`2L
all

m

(`)

!
p, (25)

where V

(cond) =
P

`2L
cond

V

(`) = V � V

(gas) =
P

`2L
cond

m

(`)↵(`)
0 is the constant volume

occupied by the condensates and

c

v

=

P
`2L

all

c

(`)
v

m

(`)

P
`2L

all

m

(`) , (26)

c

p

=

P
`2L

all

c

(`)
p

m

(`)

P
`2L

all

m

(`) . (27)

Our definitions of h and e should be consistent with the ideal gas law (13). From (24) and
(25) we get specific volume ↵ using (19)

↵ ⌘ V

P
`2L

all

m

(`) =
h � e

p

, (28)

=
RT

p

+
V

(cond)
P

`2L
all

m

(`) , (29)

where

R =

P
`2L

all

R

(`)
m

(`)

P
`2L

all

m

(`) . (30)

Note that c

p

= R + c

v

. Using that V � V

(cond) = V

(gas) we get

RT

p

=
V

(gas)
P

`2L
all

m

(`) (31)
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vector invariant form as

@v
@t
+ (⇣ + f ) ~̂k ⇥ v + r⌘ (d)

 
1
2

v2 + �

!
+

1
⇢
r⌘ (d) p = 0, (49)

@T

@t
+ v · r⌘ (d)T � 1

c

p

⇢
! = 0, (50)

@

@t

 
@M

(d)

@⌘ (d) m

(`)
!
+ r⌘ (d) ·

 
@M

(d)

@⌘ (d) m

(`)v
!
= 0, ` 2 L

all

, (51)

where � is the geopotential height (� = g z), ~̂k is the unit vector normal to the surface of
the sphere, v = (u, v) is the velocity vector with u being the zonal velocity component and
v the meridional velocity component, ⇣ = ~̂

k · r⇥v is vorticity, f Coriolis parameter, and
! = dp/dt is the (moist) pressure vertical velocity with d/dt = @

@t + v · r⌘
d

being the
material/total derivative along ⌘ (d) .

The prognostic equations for v, the temperature T , dry air mass @M (d)

@⌘ (d) , and tracer
mass @M (d)

@⌘ (d) m

(`) are solved with the diagnostic equation for geopotential height (hydro-
static balance)

@�

@⌘ (d) = �
R

(d)
T

v

p

@p

@⌘ (d) , (52)

where
@p

@⌘ (d) = g
@M

(d)

@⌘ (d)
*.,

X

`2L
all

m

(`)+/- . (53)

For diagnosing vertical pressure velocity ! we note that

!(⌘ (d) ) =
dp

dt

(⌘ (d) ), (54)

=

Z ⌘ (d)=0

⌘ (d)

d

dt

 
@p

@⌘ (d)

!
d⌘ (d), (55)

=

Z ⌘ (d)=0

⌘ (d)

@

@t

 
@p

@⌘ (d)

!
d⌘ (d) +

Z ⌘ (d)=0

⌘ (d)
v · r⌘ (d)

 
@p

@⌘ (d)

!
d⌘ (d) . (56)

2.6 Hyperviscosity and frictional heating

The spectral-element method does not have implicit di�usion. Hyperviscosity opera-
tors are applied to the prognostic variables to dissipate energy near the grid scale [Dennis
et al., 2012]. Hyperviscosity also damps the propagation of spurious grid-scale modes
[Ainsworth and Wajid, 2009] and, in particular, smoothes the solution at element bound-
aries where the basis-functions are least smooth (C0-continuous). For the uniform reso-
lution configuration constant hyperviscosity coe�cients are used on all elements whereas
the variable resolution configuration uses either a scaling of the coe�cients according to
individual element length scale [Zarzycki et al., 2014] or a tensor-based hyperviscosity op-
erator approach [Guba et al., 2014a].

2.6.1 Viscosity operator

On the right-hand side of the equations of motion hyperviscosity terms are added.
For the momentum equations (49) the viscous terms are as follows. By using the vector
identity r2v = r(r · v) � r ⇥ (r ⇥ v), the viscosity term splits into two terms. The first
term damps divergent modes and the latter term damps rotational modes. Thereby one can
damp divergent modes more (or less) than rotational modes by having di�erent coe�cients
(⌫

div

and ⌫
vor

, respectively) in front of the respective terms

⌫
div

r(r · v) � ⌫
vor

r ⇥ (r ⇥ v), (57)
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some results, validating the new dynamical core in idealized configurations. First, a moist
baroclinic wave with simple warm-rain micro-physics and secondly in a CAM61 aqua-
planet configuration. The computational performance of CAM-SE is presented in section
4. The paper ends with summary and conclusions in section 5.

2 Continuous equations

Before writing the continuous equations of motion using a dry-mass vertical coor-
dinate (section 2.5), we first need to discuss the representation of water variables (section
2.1), discuss the ideal gas law (section 2.2) and derive the thermodynamic equation for
a mixture containing all water species (section 2.3). The discussion of the equations of
motion in the presence of water vapor, cloud liquid, ice, rain and snow closely follows
Staniforth et al. [2006]. As noted in Cotton et al. [2010] ’ ... the fundamental equations
governing dry air are generally accepted in fluid dynamics communities. By contrast, the
governing equations for moist atmosphere flows remain a source of some controversy and
active research’. Therefore the derivation of the equations of motion including non-gas
components is discussed in detail.

Thereafter the dry mass vertical coordinate is defined in section 2.4. Details on vis-
cosity and frictional heating are presented in section 2.6 and global conservation proper-
ties derived in section 2.7.

2.1 Representation of water phases in terms of dry and wet (specific) mixing ra-
tios

Define the dry mixing ratios for the water variables (vapor ’wv’, cloud liquid ’cl’,
cloud ice ’ci’, rain ’rn’ and snow ’sw’)

m

(`) ⌘ ⇢
(`)

⇢(d) , where ` = ‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘, (1)

where ⇢(d) is the mass of dry air per unit volume of moist air and ⇢(`) is the mass of the
water substance of type ` per unit volume of moist air. Note that the mixing ratio for dry
air is unity: m

(d) ⌘ ⇢ (d)

⇢ (d) = 1. Moist air refers to air containing dry air, water vapor, cloud
liquid, cloud ice, rain amount and snow amount. For notational purposes define the set of
all components of air

L
all

= {‘d‘, ‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} , (2)
a set only referring to all water variables,

L
water

= {‘wv‘, ‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} , (3)

and a set referring to all condensates (non-gas components of water)

L
cond

= {‘cl‘, ‘ci‘, ‘rn‘, ‘sw‘} . (4)

The density of a unit volume of moist air is related to the dry air density through

⇢ = ⇢(d) *.,
X

`2L
all

m

(`)+/- . (5)

Mixing ratios can also be specified in terms of density per density of moist air, in other
words, specific/moist mixing ratios

q

(`) ⌘ ⇢
(`)

⇢
, (6)

1 the CAM6 physics tag is cam5_4_128 which is a near final pre-release version of the CESM2.0-CAM6 physics pack-
age; this paper focuses on the dynamical core and the details of the physics package are less important
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Figure 7. (A) The zonally averaged total precipitation rates in the aqua-planet simulations, averaged over
the final 4 years of a 4.5 years simulation. Labels are defined in the text (B) The change in the total precip-
itation rate between two simulations denoted by the label. The shading indicates where the di�erences are
significant at the 95% confidence level.
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The 4th-order hyperviscosity operator is computed by iteratively applying the Laplacian
operator (57) [for a detailed derivation with metric terms see, e.g., Ullrich, 2014].

The dry air mass layer thickness is damped with ⌫
p

r4
⇢
@M (d)

@⌘ (d)

�
and temperature

with ⌫
T

r4
T . The specific damping coe�cients for divergence (⌫

div

), vorticity (⌫
vor

),
level-thickness (⌫

p

) and temperature (⌫
T

) are resolution specific and provided in Appendix
A.3.

The horizontal hyperviscosity operator can be applied on ⌘
d

-surfaces, r4 = r4
⌘
d

,
but it may be advantageous to apply the hyperviscosity operator on approximate dry-mass
surfaces

⌫r4⌅ = ⌫r4
⌘
d

� ⌫ @⌅
@M

(d)r
4
⌘
d

M

(d), ⌅ = v,T, (58)

[p.58 in Neale et al., 2012] to reduce spurious di�usion over steep topography. In theory
the damping of dry-mass layer thickness should be zero if hyperviscosity is applied on
dry-mass surfaces. However, for stability it is necessary to damp dry-mass layer thickness,
but instead of applying r4 to @M (d)

@⌘ (d) it is applied to the di�erence between @M (d)

@⌘ (d) and a

smoothed version of @M (d)

@⌘ (d) referred to as
✓
@M (d)

@⌘ (d)

◆ (re f )
. The reference/smoothed dry-mass

layer thickness is defined in Appendix A.2.

In the top three layers second-order di�usion (Laplacian operator) is applied to the
prognostic variables to provide a sponge layer. The sponge layer plays an important role in
controlling the polar night jet in low-top models [see, e.g., Lauritzen et al., 2011].

2.6.2 Frictional heating

Let �v be the change in the velocity vector due to di�usion of momentum. Then the
change in kinetic energy due to hyperviscosity applied to v is 1

2 ⇢v ·�v. This kinetic energy
is converted to a heating rate by adding a heating term �T in the thermodynamic equation
corresponding to the kinetic energy change

⇢c
p

�T = �1
2
⇢v · �v) �T = � 1

c

p

(v · �v) , (59)

[p.71 in Neale et al., 2012]. As shown in the results section 4.2 this term is rather large
and therefore important for good energy conservation characteristics of the dynamical
core.

Before discretizing the equations of motion some important conservation properties
of the equations are discussed. For models intended for long simulations, it is beneficial to
have good energy conservation properties to minimize non-local restoration of global en-
ergy via global energy fixers [e.g. Thuburn, 2008]. As an aside, it is noted that the global
energy fixers take up a significant fraction of runtime at ultra-high resolution as the oper-
ations require global communications. Good AAM conservation may be important for the
simulation of the Quasi-Biennial Oscillation (QBO) although the accurate simulation of
the QBO also depends on vertical resolution, location of model top, and parameterizations
[such as nonorographic gravity wave drag; Richter et al., 2014]. For the simulation of su-
perrotating atmospheres (e.g., Venus), however, the conservation of angular momentum is
crucial [Lebonnois et al., 2012]. Below we discuss the conservation properties of the moist
equations of motion used in this paper.

2.7 Global conservation: AAM and energy

The conservation law for AAM

M = (u +⌦r cos ') r cos ', (60)
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which is precisely (13) since

p =
V

V

(gas)

⇣
⇢(d)

R

(d)
T + ⇢(wv)

R

(wv)
T

⌘
, (32)

=
1

V

(gas)

X

`2L
all

m

(`)
R

(`)
T, (33)

=

⇣P
`2L

all

m

(`)
⌘

V

(gas) RT . (34)

Furthermore, substituting (25) into �Q = �h � ↵�p, the thermodynamic equation can be
written as

�Q = c

p

�T +
V

(cond)
P

`2L
all

m

(`) �p � ↵�p, (35)

= c

p

�T +
V

(cond)
P

`2L
all

m

(`) �p �
V

P
`2L

all

m

(`) �p, (36)

= c

p

�T � V

(gas)
P

`2L
all

m

(`) �p, (37)

and when using (34) we finally get

�T � RT

c

p

p

�p =
�Q

c

p

, (38)

If we assume that the condensates do not occupy any volume then (38) can be written as

�T � 1
c

p

⇢
�p =

�Q

c

p

, if V

(cond) = 0. (39)

Henceforth we will assume that V

(cond) = 0.

2.4 Vertical coordinate

2.4.1 Definition

Let M

(d)
s

be the mass of a column of dry air per unit area at the surface (i.e. the
weight of dry air at the surface per unit area is g M

(d)
s

, where g is the gravitational accel-
eration; assumed constant) and M

(d)
t

is the mass of air per unit area in the column above
the model top. Note that weight di�ers from mass in that weight constitutes the force ex-
erted by the matter when it is in a gravitational field whereas mass is the amount of mat-
ter (which is invariant and does not depend on g). The SI unit for M

(d)
s

is kg/m2 and the
weight g M

(d)
s

is 1
s

2
kg

m

⌘ Pa (pressure). We assume that there is no moisture or conden-
sate above the model top so p

t

= g M

(d)
t

. Consider a general, terrain-following, vertical
coordinate ⌘ (d) that is a function of the dry air mass M

(d)

⌘ (d) = h(M

(d),M (d)
s

), (40)

where h(M

(d)
s

,M (d)
s

) = 1 and h(M

(d)
t

,M (d)
s

) = 0. Note that by removing the super-
script (d) from the equations above (so that the dry variables represent moist variables)
and assume that there are no condensates, then the vertical coordinate is the usual hybrid-
pressure coordinate widely used in hydrostatic global modeling [Simmons and Burridge,
1981]. The top and bottom boundary conditions are that ⌘̇

⇣
M

(d)
s

,M (d)
s

⌘
= 0 and ⌘̇

⇣
M

(d)
t

,M (d)
s

⌘
=

0. Note that using a dry-mass vertical coordinate simplifies the coupling to physics since
the dry mass coordinate remains constant even if water leaves the column.

2.4.2 Partial pressure of dry air and mass of dry air

The observant reader will have noticed that we denote the mass of dry air per unit
surface M

(d) , which exerts pressure gM

(d) , and not the dry air partial pressure p

(d) . As
explained below this is because gM

(d) , p

(d) in the presence of condensates.
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(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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