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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Setting the stage: NCAR’s CESM
(Community Earth System Model)
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Climate model setup: dynamics, physics, 
physics-dynamics coupling

Dynamical core module

Approximates the solution to the
adiabatic equations of motion (“resolved” 
scales):

• Momentum (u,v)

• Thermodynamic equation (T)
• Continuity equation for air (p)
• Continuity equation for

- forms of water (water vapor, 
cloud liquid, cloud ice, rain, …)

- quantities needed to represent aerosols
- chemical species

Physics (parameterization) module

Roughly speaking, processes that can 

not be resolved on model grid
(hence physics is also referred to as
sub-grid-scale processes):

Radiation

Boundary layer turbulence
Sub-grid-scale orographic drag
Shallow and deep convection

Microphysics
Aerosol processes

Vertical mixing
…

Physics-dynamics 
coupling layer

Climate/weather models

usually use low-order
coupling (Euler forward

time-stepping)



Climate model setup: dynamics, physics, 
physics-dynamics coupling

Physics-dynamics 
coupling layer

Dynamical core module

Approximates the solution to the
adiabatic equations of motion (“resolved” 
scales):

• Momentum (u,v)

• Thermodynamic equation (T)
• Continuity equation for air (p)
• Continuity equation for

- forms of water (water vapor, 
cloud liquid, cloud ice, rain, …)

- quantities needed to represent aerosols
- chemical species

Physics (parameterization) module

Roughly speaking, processes that can 

not be resolved on model grid
(hence physics is also referred to as
sub-grid-scale processes):

Radiation

Boundary layer turbulence
Sub-grid-scale orographic drag
Shallow and deep convection

Microphysics
Aerosol processes

Vertical mixing
…

Topic of this talk: 

Rethinking physics-
dynamics coupling with 
high-order element-based 
Galerkin method

Part I: why?
Part II: a solution



The spectral-element method: 
discretization grid
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The spectral-element method:
advancing solution
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The spectral-element method:
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GLL=Gauss-Lobatto-Legendre

ElementPanel

Advantages of the spectral-element method:

• Halo is small (MPI message sizes are small)
• Easily adaptable for variable-resolution meshes
• Discretization is mimetic 

(conserves mass and energy)
• High-order accuracy for smooth problems

“Disadvantages”:

• Need to rethink physics-dynamics coupling



The physics dynamics coupling paradigm

Assumptions inherent to the physical parameterizations require the state 
passed by the dynamical core represent a ‘large-scale state’, for example, 
in quasi-equilibrium-type convection schemes (Arakawa and Schubert 1974)12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Finite-volume methods : dynamical core state = average state over a control volume

Finite-difference methods : point value representative for dynamical core state - in the vicinity of point value
one can usually associate a volume with the grid-point that is representative of state. 

For the regular latitude-longitude, cubed-sphere and icosahedral grids the distance between the grid-points is 
gradually varying for finite-volume/finite-difference discretizations!
12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

The physics dynamics coupling paradigm



2
M

O
N

T
H

L
Y

W
E

A
T

H
E

R
R

E
V

I
E

W

(a)

(c)
(d

)

(b
)

F
IG

.1.
Exam

ple
of

C
A

M
-SE

G
LL

quadrature
grids,m

arked
w

ith
red

filled
circles,(a

&
c)on

the
cubed-sphere

and
(b

&
d)in

an
elem

ent.
(a)-(b)and

(c)-(d)use
4⇥

4
(np

=
4)and

8⇥
8

(np
=

8)G
LL

quadra-
ture

points
in

each
elem

ent,
respectively.

(a)
and

(c)
have

the
sam

e
average

grid-spacing
atthe

Equator
(7.5 �)

w
hich

is
obtained

by
using

(a)4⇥
4

(ne
=

4)and
(b)2⇥

2
(ne

=
2)elem

ents
on

each
cubed-sphere

face/panel,respectively.The
elem

entboundaries
are

m
arked

w
ith

thick
lightblue

lines.
The

grid
configurations

show
n

on
(a)

and
(c)

are
re-

ferred
to

as
ne4np4

and
ne2np8,respectively.

the
num

berofdegrees
offreedom

on
both

grids
is

exactly
the

sam
e.

H
ow

ever,
for

high-order
quadrature

rules
the

quadrature
points

are
notglobally

or
locally

equi-spaced.
For

exam
ple,

Figure
1

show
s

G
LL

points
on

the
cubed-

sphere
and

in
an

elem
entfordegree

3
(np

=
4

quadrature
points)and

degree
7

(np
=

8
quadrature

points)Lagrange
polynom

ialbasis
in

C
A

M
-SE.B

oth
grids

have
the

sam
e

average
resolution

on
the

sphere
(due

to
differentnum

ber
ofelem

ents),how
ever,the

higherthe
orderofthe

quadra-
ture

rule
the

less
equi-distant

are
the

quadrature
points.

G
LL

quadrature
points

clusternearthe
edges

and,in
par-

ticular,the
corners

ofthe
elem

ents.
Param

eterizations
use

the
state

ofthe
atm

osphere
from

the
dynam

icalcore
as

the
large-scale

state
for

com
puting

sub-grid-scale
processes.Forexam

ple,the
dynam

icalcore
state

defines
the

large-scale
environm

ent
in

a
m

ass-flux
based

convection
schem

e.
O

ne
m

ay
think

ofthe
dynam

i-
calcore

state
as

the
average

state
of

the
atm

osphere
over

a
controlvolum

e
as

is
inherentin

finite-volum
e

m
ethods.

Forfinite-difference
m

ethods
the

pointvalue
is

thoughtof
as

representative
for

the
atm

ospheric
state

in
the

vicin-
ity

of
the

point
value

and
one

can
usually

associate
a

F
IG

.
2.

A
n

exam
ple

of
control

volum
es

constructed
around

G
LL

quadrature
points

(N
E4N

P4)
so

that
the

spherical
area

of
the

control
volum

es
exactly

m
atch

the
quadrature

w
eightm

ultiplied
by

the
m

etric
factor.

Instantaneous)O
m
ega)

near)500)hPa)1/day)for)a)m
onth)

Rela9ve)frequency)

O
m
ega)Pa/s)

Large)SE)volum
es)

M
edium

)SE)volum
es)

Sm
allest)SE)volum

es)

F
IG

.
3.

PD
F

of
instantaneous

w
(1

m
onth)

classifying
the

points
into

sm
all,m

edium
,and

large
volum

es/G
LL

w
eights.

N
ote

the
consis-

tent
higher

om
ega

values
for

sm
aller

areas
com

pared
to

w
associated

w
ith

largervolum
es

(w
hich

m
akes

sense).
The

question
is

how
param

-
eterizations

respond
to

that.

volum
e

w
ith

the
grid-point.

H
ence

the
physics

grid
(the

grid
on

w
hich

the
state

ofthe
atm

osphere
is

evaluated
and

passed
to

physics)and
the

dynam
ics

grid
(the

grid
the

dy-

~3o

~0.83o

~92km
~1.34o

~150km

(a)

(c) (d)

(b)

The physics dynamics coupling paradigm
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• Resolved scales of motion are NOT determined by the distance between GLL nodes, 
but rather the degree of the polynomial basis in each element. 

• The nodes may be viewed as irregularly spaced samples of an underlying spectrally 
truncated state.
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The physics forms a cloud on a boundary node

(a)

(c) (d)

(b)

If we apply convention the conventional  physics-
dynamics coupling paradigm to higher-order Galerkin
methods …
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Note … non-local effect by changing one node value

If we apply convention the conventional  physics-
dynamics coupling paradigm to higher-order Galerkin
methods …



Lets say the cloud instead forms at an interior node…

(a)

(c) (d)

(b)

Note … non-local effect by changing one node value

If we apply convention the conventional  physics-
dynamics coupling paradigm to higher-order Galerkin
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Note … non-local effect by changing one node value
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Lets say the cloud instead forms at an interior node…

If we apply convention the conventional  physics-
dynamics coupling paradigm to higher-order Galerkin
methods …



The irregular physical distance between nodes seems to have less 
bearing on the solution, compared with whether one is, or is not, on an 
element boundary

If we apply convention the conventional  physics-
dynamics coupling paradigm to higher-order Galerkin
methods …



For an Aqua-planet simulation the climatology 
(of any variable) should be zonal:

… so the climatology at any quadrature node should be the same!

Multi-year average of precipitation rate
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Figure: (left) Mean and (right) variance of low level temperature tendency (using CAM4 physics)

For an Aqua-planet simulation the climatology 
(of any variable) should be zonal:

… so the climatology at any quadrature node should be the same!



That said, the zonal means look very similar …

CAM4 physics



Figure: Mean OMEGA for CAM-SE at two model levels in the middle troposphere, in a Held-Suarez configuration outfitted 
with real world topography. The data are contoured according to a ‘cell fill’ approach.

Held-Suarez simulation with real-world topography



-> using the conventional physics-dynamics 
coupling paradigm leads to spurious 

dependencies on location within element

Solution: Quasi-equal area physics grid



pg = 3np = 4

Introducing an ~equal area physics grid

Herrington et al. (MWR, revised)



1. conservation of scalar quantities such as mass (and dry thermal 
energy),
2. for tracers; shape-preservation (monotonicity), i.e. the mapping 
method must not introduce new extrema in the interpolated field, 
in particular, negatives,
3. consistency, i.e. the mapping preserves a constant,

4. linear correlation preservation.

Other properties that may be important, but not pursued here, includes total 
energy conservation and axial angular momentum.

Mapping u,v, T, and omega from dynamics grid (GLL) to 
finite-volume grid: 

Important properties for mapping operators

Herrington et al. (MWR, revised)



1. for tracers; mass tendency is conserved,

2. for tracers; in each tracer grid cell the mass tendency from physics must not 
exceed tracer mass available in tracer grid cell (i.e. physics tendency will not 
drive tracer mixing ratio negative on the GLL grid),

3. linear correlation preservation (at least for tracers),

4. consistency, i.e. the mapping preserves a constant tendency.

Other properties that may be important, but not pursued here, includes total 
energy conservation (incl. components of total energy) and axial angular 
momentum conservation.

Mapping u,v, T and tracer tendencies from finite-volume grid 
to dynamics grid (GLL) 

Important properties for mapping operators

Herrington et al. (MWR, revised)



To my knowledge there is no reversible map using the SE 
Lagrange basis

(let alone shape-preserving and mass conservative) 

Herrington et al. (MWR, revising)
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Integrate SE basis functions
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- conserves scalar mass
- not shape-preserving 
(see left plot)



To my knowledge there is no reversible map using the SE 
Lagrange basis

(let alone shape-preserving and mass conservative) 

Cubic tensor-product interpolation in 
central angle coordinates
(high-order interpolation was found to be 
important!) 

• Preserves a constant
• Not scalar mass conserving

Herrington et al. (MWR, revised)
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To achieve scalar mass-conservation in physics-
dynamics coupling use CSLAM for transport: 

conservation, consistency & shape-preservation 
in tracer physics-dynamics coupling

12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Results – CAM4 Aqua-planets

State the physics ‘see’ is now independent of location within element!

H
errington et al. (M
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, revised)
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Figure: (left column) Mean and (right column) variance of low level temperature tendency
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Held-Suarez simulation with real-world topography

Figure: Mean OMEGA for CAM-SE (left), CAM-SE-CSLAM but on GLL grid and CAM-SE-CSLAM grid. 
The data are contoured according to a ‘cell fill’ approach.
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Figure: Mean OMEGA for CAM-SE (left), CAM-SE-CSLAM but on GLL grid and CAM-SE-CSLAM grid. 
The data are contoured according to a ‘cell fill’ approach.

Held-Suarez simulation with real-world topography

Herrington et al. (MWR, revising)



Figure: Multi-year mean vertical pressure velocity in `real-world’ (AMIP) simulation.

Results – CAM6 AMIP simulations



Figure: Multi-year mean absolute surface pressure tendency.

Results – CAM6 AMIP simulations
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CAM-SE-CSLAM: varying physics grid resolution
12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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