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This talk: Some Basic Dynamics Relevant to the
Design of Global Atmospheric Models
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Multi-scale nature of atmospheric dynamics ‘\ NCAR
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Multi-scale nature of atmospheric dynamics h NCAR
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Multi-scale nature of atmospheric dynamics h NCAR

Cyclones and anticyclones have length scales of a | - | -
few thousand km and timescales of order 10 days
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Figure from Thuburn (2011)

few hundred m few thousand km
tens of km Earth’sradius

Meridional circulationT
Monsoons
Planetary wavesH
Cyclones — — -
—
L~
.-
~
Fronts ... _|

Aderstorms  .° 7
.- Gravity waves
ulus - -

.....

_- " Internal acoustic waves-

.

1072 10° 107
Horizontal scale (m)

NATIONAL CENTLE FOR ATMOSA-EIC SESEAROH

Seasonal

Monthly

Biweekly

Hourly

Minutes

Seconds

10* 10° 108



Multi-scale nature of atmospheric dynamics h NCAR
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Convection can be organized on a huge range
of different scales, from the tropical
intraseasonal oscillation on scales of
thousands of km and a timescale of months,
through supercell complexes and squall lines

of order 10 km across with lifetimes of several - * -
hours, down to individual small cumulus

clouds on scales of a few hundred meters and

a few minutes.

o . ,o'érovity waves
c - Large“cumulus - _
* — / ‘
= Smell cumulus
1 02 -/ ... - — Minutes
Boundary layer turbulence e
_- " Internal acoustic waves-
0 L’ )
10 . ! . L | . | , Seconds
1072 10° 107 10* 10° 10°

Figure from Thuburn (2011)

Horizontal scale (m)



Multi-scale nature of atmospheric dynamics
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Time scale (s)

Figure from Thuburn (2011)

The boundary layer is the lowest few hundred

Rl meters of the atmosphere, where the dynamics is
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The atmospheric spectrum of horizontal kinetic energy is observed to have a slope very close to k-3 on large
scales and k-5’3 on small scales, where k is the horizontal wavenumber, with a gradual transition between the
two at scales of a few 100 km
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Dashed line in right Fig. is consistent with the observed spectrum, re-expressed in terms of length and time scales.
The dynamically important phenomena (mentioned before) are those that dominate the atmospheric energy spectrum,
and all lie close to this dashed line.
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Note: Important phenomena occur at
all scales — there is no significant
spectral gap.

Moreover, there are strong
interactions between the phenomena
at different scales, and these
interactions need to be represented.

THIS MAKES NUMERICAL
MODELING OF THE ATMOSPHERE
VERY CHALLENG!

Let me elaborate ...

spectrum, re-expressed in terms of length and time scales.
)re) are those that dominate the atmospheric energy spectrum,
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@ Red lines: regular latitude-longitude grid

@ Grid-cell size defines the smallest scale that can be resolved (# effective resolution!)
@ Many important processes taking place sub-grid-scale that must be parameterized
°

Loosely speaking, the parameterizations compute grid-cell average tendencies due to
sub-grid-scale processes in terms of the (resolved scale) atmospheric state

In modeling jargon parameterizations are also referred to as physics
(what is unphysical about resolved scale dynamics?)




Model code \ NCAR

Parameterization suite
@ Moist processes: deep convection, shallow convection, large-scale condensation
@ Radiation and Clouds: cloud microphysics, precipitation processes, radiation

e Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave
drag

2.5 Equations of motion

The n'®-coordinate adiabatic and frictionless atmospheric primitive equations as-
suming floating Lagrangian vertical coordinates [Starr, 1945; Lin, 2004] can be written

as
97 3 ) !
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or +V- VT - Lw =0,
ot Ccpp
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‘Resolved’ dynamics

‘Roughly speaking, the dynamical core solves the governing fluid and thermodynamic equations on
resolved scales, while the parameterizations represent sub-grid-scale processes and other processes
not included in the dynamical core such as radiative transfer.' - Thuburn (2008)
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Parameterization suite
@ Moist processes: deep convection, shallow convection, large-scale condensation
@ Radiation and Clouds: cloud microphysics, precipitation processes, radiation

e Turbulent mixing: planetary boundary layer parameterization, vertical diffusion, gravity wave
drag

But the transition from resolved to

( unresolved dynamics-processes is a gradual )

transition due to numerical diffusion near
the grid scale ...

‘Resolved’ dynamics

‘Roughly speaking, the dynamical core solves the governing fluid and thermodynamic equations on
resolved scales, while the parameterizations represent sub-grid-scale processes and other processes
not included in the dynamical core such as radiative transfer." - Thuburn (2008)
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: smallest scale ( highest wave-number k = kgs) that

model can accurately represent

@ kesr can be assessed analytically for linearized equations (Von Neumann analysis)

@ In a full model one can assess k.g using total kinetic energy spectra (TKE) of, e.g.,
horizontal wind v (see Figure below)

Effective resolution is typically 4-10 grid-lengths depending on numerical method!

effective resolution

2 Ax wavelength

correct
spectrum

log k g h NCAR

model
spectra

log energy density

Schematic from Skamarock et al. (2011)




. smallest scale ( highest wave-number k = kgsr) that

model can accurately represent

@ kesr can be assessed analytically for linearized equations (Von Neumann analysis)

@ In a full model one can assess k.g using total kinetic energy spectra (TKE) of, e.g.,
horizontal wind v (see Figure below)

Effective resolution is typically 4-10 grid-lengths depending on numericg

Be careful if you
analyze grid-scale
quantities; for
correct
spectrum example,
l precipitation at the
" grid scale

effective resolution

2 Ax wavelength

model
spectra

log energy density

Schematic from Skamarock et al. (2011)
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Divergence damping and extreme precip i‘ NCAR

PRECIPITATION
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Fig. 13.8 Fraction of the time the tropical precipitation is in 1 mm day~! bins ranging from 0 to
120 mm day !, calculated from 6-h averages for all grid points between 4=10°. This frequency
distribution is an annual average. The aqua-planet simulations are (blue, yellow) CAM FV at the
coarse lat X lon resolution 2.7° x 3.3° 126 and (red) CAM EUL at the resolution T31L26 (with
time step At = 1,800s). Yellow FV curve: standard second-order divergence damping (13.70).
Blue curve: FV simulation with a doubled coefficient. The figure is courtesy of Peter H. Lauritzen,
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Shaded area: Horizontal-
temporal resolution of current
global IPPC class climate models
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Shaded area: Horizontal-
temporal resolution of current
global IPPC class climate models

With increases in horizontal and
vertical resolution we start
explicitly resolving more
phenomena.

For example, high resolution
climate modeling at NCAR is
done at approximately 25km

mm scale tens of km Earth’sradius
108 T I I T | I
- Seasonal
Molecular
diffusion Monsoon
10 Planetary wavesTSN
Cyclones — — - Bi
—_—
C
_ Ny i
-
104 B ,(F/Onts TR — Hourly
Thurderstorms ~ .°
: .- Gravgw waves
- Large“cumulus K -
/ 4
Smell cumulus
102/ e - —| Minutes
Boundary layer turbulence e
_- " Internal acoustic waves-
100 s | s | ,'¢. | B | . Seconds
1072 10° 107 10* 10° 10°

Horizontal scale (m)

Figure from Thuburn (2011)




Shaded area: Horizontal-
temporal resolution of current
global IPPC class climate models
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One aspect that improves
drastically with resolution
is representation of
topography in models

Figure courtesy of IPCC, AR4 WG Chapter 1



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016
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Horizontal scale (m)

With increases in horizontal and
vertical resolution we start
explicitly resolving more
phenomena.

For example, high resolution
~limate modeling at NCAR is
at approximately 25km

Some parameterizations are
based on assumptions that break
down at higher horizontal
resolution; .e.g. deep convection



“Consider a horizontal area ... large enough to contain an ensemble of
cumulus clouds, but small enough to cover only a fraction of a large-scale
disturbance. The existence of such an area is one of the basic assumptions of
this paper.”

-- Arakawa and Schubert (1974)

Horizontal resolutions at which assumptions made in the parameterizations
start to break down and until the processes are explicitly resolved (e.g.,
individual updrafts) is called the

Shaded area: Horizontal-
temporal resolution of current
global IPPC class climate models

With increases in horizontal and
vertical resolution we start
explicitly resolving more
phenomena.

For example, high resolution
~limate modeling at NCAR is
at approximately 25km

Some parameterizations are
based on assumptions that break
down at higher horizontal
resolution; .e.g. deep convection
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Done with dynamics introduction

Next:

“Ingredients” of a global atmosphere model



Building a global model - choices
specific to the dynamical core?
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A. Choose equation set and prognostic
variables



A. Choose equation set and prog. vars.

“Exact” Euler equations

Jp

L 4V.(pu)=0

o T (pu) =0,
Do _,
Dt =

Du 1
— 422 xu=——Vp—-—Vo +F.
Dt+ u 0 p +

“However, it is often desirable to work with approximate versions of the governing
equations. These may be conceptually simpler, for example by filtering out certain kinds
of motion; they may be analytically more tractable; or they may be easier to solve
numerically, for example by removing certain terms or types of motion that are difficult
to handle numerically.” =Thuburn (2011)



In large-scale global modeling the following approximations are usually made:

@ spherical geoid: geopotential ® is only a function of radial distance from the center of the
Earth r: ® = ®(r) (for planet Earth the true gravitational acceleration is much stronger thar
the centrifugal force).
= Effective gravity acts only in radial direction

e quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
Involves ignoring the acceleration term in the vertical component of the momentum
equations so that it reads:
op
0z’

where g gravity, p density and p pressure. Good approximation down to horizontal scales

greater than approximately 10km.

(1

pg =

@ shallow atmosphere: a collection of approximations. Coriolis terms involving the horizontal
components of € are neglected (€2 is angular velocity), factors 1/r are replaced with 1/a
where a is the mean radius of the Earth and certain other metric terms are neglected so tha
the system retains conservation laws for energy and angular momentum.



We are slowly removing some of these approximates:

* Global shallow-atmosphere non-hydrostatic models are now more common
(NICAM, MPAS, EV3, ICON, ...)

* Some global models have gotten rid of shallow atmosphere approximation
(NUMA, UK Met Office)

4

e quasi-hydrostatic approximation (also simply referred to as hydrostatic approximation):
Involves ignoring the acceleration term in the vertical component of the momentum
equations so that it reads:
op
0z’

where g gravity, p density and p pressure. Good approximation down to horizontal scales

greater than approximately 10km.

(1

pg =

@ shallow atmosphere: a collection of approximations. Coriolis terms involving the horizontal
components of € are neglected (€2 is angular velocity), factors 1/r are replaced with 1/a
where a is the mean radius of the Earth and certain other metric terms are neglected so tha
the system retains conservation laws for energy and angular momentum.



B. Choose a horizontal global grid
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B. Choose a horizontal global gri

(not a comprehensive list)
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B. Choose a horizontal global grid

(not a comprehensive list)
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B. Choose a horizontal global grid

Part of the horizontal grid is staggering of the prognostic variables which affect damping/dispersion properties near the grid scale
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C. Choose a vertical coordinate

s

B NCAR



C. Choose a vertical grid/coordinate

Height based - z/z, or z
Sigma based - P/Pg
Theta (potential temperature)
Various hybrids:
- Sigma-pressure
- Sigma-theta N




Vertical coordinate: hybrid sigma (o = p/ps)-pressure (p) coordinate

Figure courtesy of David Hall (CU Boulder).

Sigma layers at the bottom (following terrain) with isobaric (pressure) layers aloft.
Pressure at model level interfaces

Pk+1/2 = Akt1/2 Po + Biy1/2 ps,

where ps is surface pressure, pg is the model top pressure, and Ak+1/2(6 [0:1]) and

Bi41/2(€ [1 : 0]) hybrid coefficients (in model code: hyai and hybi). Similarly for model level
mid-points.

Note: vertical index is 1 at model top and klev at surface.



Why do we use terrain-following coordinates?

Figure: Representation of a smoothly varying bottom (dashed line) in (left) a terrain-following coordinate
model, and (right) a height coordinate model with piecewise constant slopes (cut-cells, shaved-cells)

Figure is from Adcroft et al. (1997).

— The main reason is that the lower boundary condition is very simple when using terrain-following
coordinates! J




While terrain-following coordinates simplify the bottom boundary condition, they may introduce
errors:

@ Pressure gradient force (PDF) errors: %sz = %Vnp - %%Vnz, (Kasahara, 1974) where p
is density, p pressure and z height.

@ Errors in modeling flow along constant z-surfaces near the surface

15— e ——————— ey

10 -

z [km]

oL . . .‘x.LL.,;njl\/\A/MKAn.‘..I.“.

0 Ug -75 -50 -25 0 25 50 75
u [m/s] X [km]

FIG. 4. Vertical cross section of the idealized two-dimensional advection test. The topography is located
entirely within a stagnant pool of air, while there is a uniform horizontal velocity aloft. The analytical solution
of the advected anomaly is shown at three instances.

Schar et al. (2002)




While terrain-following coordinates simplify the bottom boundary condition, they may introduce
errors:

@ Pressure gradient force (PDF) errors: %sz = %Vnp—l— %%Vnz, (Kasahara, 1974) where p

is density, p pressure and z height.

@ Errors in modeling flow along constant z-surfaces near the surface
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Schar et al. (2002)




While terrain-following coordinates simplify the bottom boundary condition, they may introduce
errors:

@ Pressure gradient force (PDF) errors: %sz = %Vnp S %%Vnz, (Kasahara, 1974) where p
is density, p pressure and z height.

@ Errors in modeling flow along constant z-surfaces near the surface
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Schar et al. (2002)




D. Choose numerical method
(Pedro Peixoto talk)



Simulation time Example: CAM applications h NCAR
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| m The image part with relationship ID rld2 was not found in the file.




Model top Example: CAM applications h NCAR
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~500km _

~150km
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Number of vertical levels

| m The image part with relationship ID rld2 was not found in the file. |




Compute platforms on which CAM is run i‘ NCAR

A dynamical core must be computationally
efficient (climate applications require ~10 SYPD)

- for Iqwer resolu.tlon appllcatlops — strong scaling “Gigantic” cluster
- for high resolution — weak scaling ~1000000 cores

- efficient on new compute architectures ‘ -
(multi-core nodes)
Large cluster

~100000 cores .
e.g., DOE facilities

Small cluster &

~100-1000 cores

Laptop
~4 cores e.g., NCAR’s Yellowstone

(soon Cheyenne)

e.g., CGD’s Hobart cluster

e.g., NCAR scientist

NCAR [ National Center for Atmospheric Research

UCAR | Climate & Global Dynamics



('sp3) AieN - Jojfey

D{smouojqef - uszjline?

P. H. Lauritzen - C. Jablonowski
M. A. Taylor - R. D. Nair Editors

Numerical Techniques
for Global Atmospheric
Models

This book surveys recent developments in numerical techniques for global
atmospheric models. It is based upon a collection of lectures prepared by leading
experts in the field. The chapters reveal the multitude of steps that determine the
global atmospheric model design. They encompass the choice of the equation set,
computational grids on the sphere, horizontal and vertical discretizations, time
integration methods, filtering and diffusion mechanisms, conservation properties,
tracer transport, and considerations for designing models for massively parallel
computers. A reader interested in applied numerical methods but also the many facets

of atmospheric modeling should find this book of particular relevance.

Editorial Board
T.J.Barth
M. Griebel

D.E. Keyes
R.M.Nieminen
D.Roose

A Springer T.Schlick

ISBN 978-3-642-11639-1

9783642 116391“

) springer.com
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