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Cubed-sphere geometry (originally introduced by Sadourny (1972))

• A quadrilateral “box” is referred to as an element !e

• Each 2D element !e(x
1,x2) is defined in terms of central 

(gnomonic) projection angles (x1,x2)

• The elements are separated by the same central angle
-> equi-angular gnomonic grid
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Cubed-sphere geometry (originally introduced by Sadourny (1972))

Analytical transformation laws for the six cubed sphere faces can 
be found in Appendix A of Nair et al. (2005):
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Mapping a vector from cube to sphere
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The spectral element method: 2D conservation law



The spectral element method: test function



The spectral element method: test functionFor the efficient evaluation of the integrals, the SE method 
employs Gauss-Lobatto-Legendre (GLL) quadrature rule for 
integrals and collocation differentiation for derivative operators.

All the corresponding numerical operations are performed on a
square [−1, 1]2 known as the standard (or reference) element. 
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integrals and collocation differentiation for derivative operators.

All the corresponding numerical operations are performed on a
square [−1, 1]2 known as the standard (or reference) element. Note that there are N+1 GLL point
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The spectral element method: semi-discrete form



The spectral element method: semi-discrete form
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GLL=Gauss-Lobatto-Legendre

ElementPanel

Story so far: solving equations of motion on each element
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Story so far: solving equations of motion on each element
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FIG. 4. A graphical illustration of the physics grid in one dimension. Three elements are shown and the filled red circles are the GLL quadrature
points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

Coupling solutions across elements

Advance solution in each element one Runge Kutta step
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an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

Coupling solutions across elements

Global C0

polynomial



Specification of resolution in CAM:
number of GLL points is always 4x4 in each element
Number of elements determines resolution
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Properties of the SE method

In the floating Lagrangian
layer CAM-SE
conserves total energy to 
time truncation errors 
and conserves mass
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Time-stepping (u,v,T,dM(d))
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Time-stepping (tracers)

Or different time-
stepping or different 
numerical method



Time-stepping (tracers)



Time-steps in CAM-SE
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Physics dynamics coupling methods in CAM-SE: se_ftype=1

Advance dynamics core (30 minutes)

Compute physics 
tendencies based 
on dynamics 
updated state

Update dynamics state with 
physics tendencies

For long physics time-steps and less diffusive
dynamical cores this can create spurious noise!

Noise can be detected by computing



10 year average of             from AMIP run



Advance dynamics core (30 minutes):
add physics tendency “chunks”
during the dynamics time-stepping
- every 15 minutes in this example
(I refer to it as “dribbling”)

Compute physics 
tendencies based 
on dynamics 
updated state

Split physics tendencies into
a number of “chunks”

Physics dynamics coupling methods in CAM-SE: se_ftype=0



10 year average of             from AMIP run

State updated every 30 minutes“Dribbling” physics tendencies

Physics dynamics coupling methods in CAM-SE: se_ftype=1



10 year average of             from AMIP run

State updated every 30 minutes“Dribbling” physics tendencies

Physics dynamics coupling methods in CAM-SE: se_ftype=1

“Dribbling” all tendencies gets rid of spurious 
noise but the tendencies are not allowed to drive 
mixing ratios negative

Tracer mass budget not closed!

Let me explain …



Physics-dynamics coupling: “dribbling” tendencies

mx

longitude
0

1
Black curve is solution without
physics tendencies



Physics-dynamics coupling: “dribbling” tendencies
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Physics-dynamics coupling: “dribbling” tendencies
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Physics-dynamics coupling: “dribbling” tendencies
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Physics-dynamics coupling: “dribbling” tendencies

mx

longitude
0

1
If your model prevents the forcing in
driving the mixing ratio negative in
physics-dynamics coupling then there
will be a spurious source of mass

Note: it is always a source! (biased)



Physics-dynamics coupling: “dribbling” tendencies

Example from fully coupled climate model: water conservation errors

physics-dynamics coupling error (water vapor)



Physics-dynamics coupling: “dribbling” tendencies

Example from fully coupled climate model: water conservation errors

physics-dynamics coupling error (water vapor)

Note: The time-step by time-step 
error is miniscule but in long 
simulations tiny errors can 
accumulate if they are biased



Advance dynamics core (30 minutes):
for (u,v,T) add physics tendency 
“chunks” during the dynamics time-
stepping
- every 15 minutes in this example
(I refer to it as “dribbling”)

Compute physics 
tendencies based 
on dynamics 
updated state

Split physics tendencies into
a number of “chunks” for 
u,v,T
Update tracer state with 
physics tendencies

Physics dynamics coupling methods in CAM-SE: se_ftype=2



Instantaneous PSL for CAM-SE at approximately ¼ degree horizontal resolution

ftype=2 ftype=1
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Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
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Figure 12. Throughput in terms of simulated years per day for CAM6 Aqua-planet including I/O for CAM-
SE and CAM-HOMME as a function of number of nodes. The curved line is a parabolic Least-Squares fit
to the data points. Note that for the right-most data-point there is only one element in the horizontal per
processor (150 nodes is 5400 processors and there are 6 ⇥ N

2
e

= 6 ⇥ 302 = 5400 elements in the horizontal).
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2016 cores

5400 cores

Computation throughput (ne30 ~ 1 degree)

Data produced by John Dennis (CISL)



Data produced by John Dennis (CISL)

Computation throughput (ne30 ~ 1 degree)
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Variable horizontal resolution

• One of the advantages of the spectral-element method is that it 
can relatively easily be adapted to variable resolution meshes
(as long as elements are quadrilateral)







zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Challenges: diffusion

K4 (�x) = K4 (�xref )

✓
�x

�xref

◆y

Let’s say 100 km cell is 
our “reference” and y = 
3.321

Our diffusion coefficient 
(K4) in the 50 km box is 

1/10th that of 100 km box!

100 km 50 km

CAM-SE, Zarzycki et al., 2014, JClim



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

V-R applications: tropical cyclones

NOAA



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

V-R applications: tropical 
cyclones
• Community Atmosphere Model Spectral Element (CAM-

SE)
• Atmospheric Model Intercomparison Project (AMIP) 

protocols
• 1980-2002 (23 years)
• Prescribed SSTs, ozone, aerosols, solar insolation

• Simulate historic, observed climate

1° (~110 km) 

1° (~110 km) 

0.25° (~26 km) 

Zarzycki and 
Jablonowski, (2014 
JAMES)
Zarzycki et al., (2015 
JClim)



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Uniform global simulation

Precipitable water, Sept 1-16



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Variable-resolution global 
circulation

Precipitable water, Sept 1-16



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016 56

Tropical cyclones
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Trajectories Atlantic Origins

Zarzycki and Jablonowski, 2014, JAMES



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Numerical weather prediction
• 8 day forecast = ~1.5 

hours of wall clock time 
on 800 cores (NCAR 
Yellowstone)
• ~6-7x cheaper than a 

globally-uniform 13 km 

forecast Sandy TPW: 
INIT 12Z 
10/25/12

0.125° (~13 km) 

0.5° (~55 km)  
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More information: http://www.cgd.ucar.edu/cms/pel
Email: pel@ucar.edu


