B NCAR

NATIONAL CENTLE FOR ATMOSA-EIC SESEAROH

CAM-SE: Lecture Il

Peter Hjort Lauritzen

Atmospheric Modeling and Predictability Section
Climate and Global Dynamics Laboratory
National Center for Atmospheric Research

2nd WCRP Summer School on Climate Model Development: Scale aware parameterization for representing sub-grid scale processes
January 23, 2018
National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista,
Sao Paulo, Brazil.

NCAR

UCAR | Climate & Global Dynamics



Outline

* Previous talk: derivation of equations of motion ...

* Introduce computational grid and projections
* Introduction to the spectral-element method
* Properties of the spectral-element

* Time-stepping

* Coupling to physics

« Computational performance

* Variable resolution version of CAM-SE



(a)

Cubed-sphere geometry (originally introduced by Sadourny (1972))
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A quadrilateral “box” is referred to as an element @,

Each 2D element Q.(x',x?) is defined in terms of central
(gnomonic) projection angles (x',x?)

The elements are separated by the same central angle
-> equi-angular gnomonic grid



Cubed-sphere geometry (originally introduced by Sadourny (1972))

(a)
2— 0 . o o
X=90° " Analytical transformation laws for the six cubed sphere faces can
LT N be found in Appendix A of Nair et al. (2005):
ls_t%:, * | pure function (cart3D, face_no) result(cart)
implicit
O’-’- B=0 X2=O Lg:ie(Cél:'Lesiarl3[] t).intent(in) :: cart3d
\ ‘ . intent(in) :: face_no
type (cartesian2d_t) :: cart
B =4
\\ (kind=r8) :: x.y
N\ 1 select case (face_no)
case )
: X2='900 X El cart3D2y/cart3D%x
= cart3D%z/cart3D%x

ase (2)
= ~cart3D%x/cart3D%y
= cart3D%z/cart3D%y
ase (3)
= cart3D2y/cart3D%x
= —cart3D%z/cart3D%x
se (4)
= ~cart3DZx/cart3Diy
= ~cart3D%Zz/cart3Diy
case (5)
x = -cart3D%y/cart3D%z
y = —cart3D%x/cart3D%z
case (6)
x = cart3D¥y/cart3D%z
y = —cart3D%x/cart3D%z
end select
cartZx = ATAN(x)
cartZy = ATAN(y)

end function

pure function (sphere) result (cart)
implicit none
type(spherical_polar_t), intent(in) :: sphere
type(cartesian3D_t) :: cart

cartZx=sphereZr*C0S(sphereZlat)*C0S(sphereZlon)
cartZy=sphereZr*C0S(sphereZlat)*SIN(sphereZlon)
cartZz=sphereZr*SIN(sphereZlat)

end function




Mapping a vector from cube to sphere

The mapping from cube to sphere results in a non-orthogonal curvilinear
coordinate system on S, with the metric tensor G;; and analytic Jacobian VG = |G; jll/ 2,
i,j € {1,2}. A physical vector quantity such as the wind vector v = (u,v), defined on S8
in orthogonal lat-lon coordinates, can be uniquely expressed in tensor form using conven-
tional notations as the covariant (uj, #») and contravariant (u!,u?) vectors using the 2 x 2
transformation matrix D associated with the gnomonic mapping such that DD = G; j (see
Nair et al. [2005] for the details):

e n ]



Outline

* Introduction to the spectral-element method



The spectral element method: 2D conservation law

The governing equations defined in familiar vector form can also be expressed in
general tensor form. In order to describe the SE discretization process in simple terms, we
consider the the following conservation law on 8 for an arbitrary scalar ¢:

0
a—‘f+V-F(¢)=S(¢), (76)
where JGF! VR
1 OVGF OVGF
VF@) = |t | (77)

In the special case of the flux-form transport equation the contravariant fluxes (F!, F?) =
(u' ¢, u*¢), and S(¢) is an arbitrary source term.



The spectral element method: test function

The SE solution process involves casting the partial differential equation in Galerkin
form, i.e., by multiplying (76) with a test (weight) function ¢ and integrating over the do-
0¢
— + V- -F(¢) - S(¢)|dS =0. (78)

main S,
L v ot

A computational form of (78) is obtained by applying Green’s theorem, resulting in the
weak Galerkin form, as follows:

f:// dS = th// F(¢)dS+f¢S(¢)dS (79)

where the approximation to the solution ¢ and the test function belong to a polynomial
space VN,



For the efficient evaluation of the integrals, the SE method
employs Gauss-Lobatto-Legendre (GLL) quadrature rule for

All the corresponding numerical operations are performed on a
square [-1, 1] known as the standard (or reference) element.

weak Galerkin form as follows
fcp —dS = fVcﬁ -F(¢) dS+wa(¢)dS (79)

where the approximation to the solution ¢ and the test function belong to a polynomial
space VN,



For the efficient evaluation of the integrals, the SE method
employs Gauss-Lobatto-Legendre (GLL) quadrature rule for

All the corresponding numerical operations are performed on a
square [-1, 1] known as the standard (or reference) element.

Then an arbitrary surface integral on {2, can be expressed in
terms of local coordinates &', &% € [~1, 1] and the Jacobian J,

1 1 N N
w0 = [ L@ O e de g Y Y wow L (6L ) (e €D,

k=0 =0
(80)
where wy, w; are the Gauss quadrature weights.



In the case of GLL quadrature rule, the nodal points &, k = 0,1,..., N, are the
roots of the polynomial (1 — §2)P1'V(g-‘) = 0, ¢ € [-1,1]; and the corresponding GLL
quadrature weights are given by

2
- NN + 1) [Py (&)

where Py (£) is the Legendre polynomial of degree N. Note that there are N+1 GLL point

Wi

Then an arbitrary surface integral on expressed in
terms of local coordinates &', £2 € [~1,1] and the Jacobian J,

1 1 N N
w0 = [ L@ O e de g Y Y wow L (6L ) (e €D,

k=0 =0
(80)
where wy, w; are the Gauss quadrature weights.



For the SE discretization it is customary to use Lagrange polynomials A (&), with
roots at the GLL quadrature points &, as basis functions. This setup provides discrete
orthogonality for the basis function Ay (&), which is formally defined as:

(& -1 P&

Zi\)\/ >< \/\/ )= NN D P &) E—E0)
TN/ N\ /\
N\ \L—)

CxE ——

1 1 N N
. y(x',x%)dQ, = f | f 1 T (€, E)y(g', £ dg" de = )" S wiw T (& €D W (&L €D,
” k=0 1=0 (80)
where wy, w; are the Gauss quadrature weights.



The spectral element method: semi-discrete form

fl// —dS = fV:// F(¢)dS+f¢//S(¢)dS (79)

A semi-discrete form of (79) on an element ), can by obtained by approximating
the solution as a tensor product of 1D Lagrange basis {hy (¢ )},’(V:0 such that

N N

dlo, ~ ¢°(EL 50 = D Y 85,1 (€M) (€D,

k=0 [=0

where ¢7,(1) = ¢° (&1 X é‘l,t) are the nodal grid-point values of the solution, and defining
the test function as ¥ (&1, %) = hi(€') hy (£?).



The spectral element method: semi-discrete form

fw —dS = sz// F(¢) dS+f¢//S(¢)dS (79)

By using (80) and the discrete orthogonality property of A (£), we get a completely
decoupled system of ODEs on €., for each grid-point (k, /)

~ d
My, E¢il(t) = Ay +Sg
1 1
M = f 1 f e i (£Y) by (£%) dE'dE? = T, (k, 1) wi wy
N N
Az, = Y IPGDF; DY wiwi + ) IP (ki) F D wiews
i=0 i=0
Sg = Je(k, 1) wew; S(Usi)

where J, 0 = J, 0£'/0x" is the metric term and D is the derivative matrix h; (5:), along
the x‘-direction and i € {1,2}.



Story so far: solving equations of motion on each element

Element
—nmn P
Physical bomain Computational Domain GLL Quadrature Grid
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Story so far: solving equations of motion on each element

Element

For any arbitrary variable f (e.g., T, u, v, p, ...) one can approximate f as
a function of a tensor product of 1D basis functions on the 2D GLL grid:

f(x,y) = Z fi jhi (xi) hi(y;),
iJ

where f;; is grid point values of f.

- \V d LJQ cl U PDUTd U c JQ cl cl
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Advance solution in each element one Runge Kutta step
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Coupling solutions across elements
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(b)
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Ap*

@ Projection step

where DSS refers to Direct Stiffness Summation (also referred to as

@
[ ]

Ap™! = DSS (Ap*)

assembly or inverse mass matrix step).

@ Choice of GLL quadrature based inner product and nodal basis
functions gives a diagonal mass matrix (Maday and Patera, 1987).
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in CAM:
ch element

number of GLL points is always 4x4 in ea
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Specification of resolution




Specification of resolution in CAM:
number of GLL points is always 4x4 in each element
Number of elements determines resolution

Horizontal res. AXgye

(1,1)
nel6np4 ~208km _:. ?
ne30np4 ~]11km
ne60np4 ~ 56km ' _‘_ @
nel20np4 ~28km :
ne240np4 ~]4km :

|
|

nenp4CONUS30x8 ~111km— ~14km




Properties of the SE method

A numerical method is mimetic (or compatible) if key integral properties of diver-
gence, gradient and curl-operators are mimicked in discretized space. The CAM-SE dis-
cretization satisfies the divergence/gradient adjoint relation

In the floating Lagrangian
layer CAM-SE
conserves total energy to f ¢V -vdS + f v:-VodS =0

time truncation errors
and conserves mass

in discretized space [Taylor and Fournier, 2010]. This property can be used to show the
inherent conservation properties of CAM-SE in terms of mass and energy in the horizon-
tal discretization. This is discussed in detail in 7aylor [2011] and hence not repeated here.
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* Time-stepping



Time-stepping (u,v,T,dM©@)
The Kinnmark-Gray S-stage 3rd-order Runge-Kutta scheme

The thermodynamic equation, momentum equations and dry air-mass continuity
equation in CAM-SE are evolved using the 5-stage 3rd-order Runge-Kutta scheme de-
scribed in Guerra and Ullrich [2016, see their equation (56)]. The stability of this class
of time-stepping schemes is discussed in Duboi et al. [2015, see their section 3.4]. For a
given initial state vector at timestep n, A©®© = A", the updated state vector A®) = A"*! is
computed as follows:

RO = RO 4 ALFRO),

A@D = A0 %T(A(l)),

ABG — AO) %Y’(XQ)),

AW - AO) %T(X(:")),

= 5 _ l—; 0 5 - 1 3A - - 4

A® — _ZA( ) 4+ ZA( ) 4+ Tt‘r(A( )),
where T(A) denotes the discrete right-hand-side terms of the equations of motion. The
resulting method is linearly and non-linearly third-order accurate.



Time-stepping (u,v,T,dM®)

The scheme possesses a stability region which is provably optimal in terms of its ex-
tent along the imaginary axis among all 5-stage 3rd-order Runge-Kutta schemes, [—iV15, iV15].
Since the largest eigenvalue of the 1D 4th-order spectral element spatial discretization
(Np, = 4)is i4/10/3, the resulting scheme satisfies a Courant-Friedrichs-Lewy condition
given by
C—At < i, (1D condition),
Ax 42
where Ax denotes the average distance between degrees of freedom (equal to 3 X Ax,, the
width of a spectral element), ¢ is the gravity wave speed, and At is the timestep size. As
dimension splitting is not employed in CAM-SE, in 2D and on a uniformly spaced grid
this condition is restricted by a further factor of 1/ V2 to

cAt 3

<> ition).
A S o (2D condition)



Time-stepping (tracers)

e Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed

by the fastest waves in the system.

@ The tracer transport equation can be solved in isolation given prescribed winds and air
densities, and is therefore not susceptible to the time-step restrictions imposed by the fastest
waves in the system.

e For efficiency: Use longer time-step for continuity equation for tracers than for air.

Or different time-

stepping or different
numerical method




Time-stepping (tracers)

e Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed

by the fastest waves in the system.

@ The tracer transport equation can be solved in isolation given prescribed winds and air
densities, and is therefore not susceptible to the time-step restrictions imposed by the fastest
waves in the system.

e For efficiency: Use longer time-step for continuity equation for tracers than for air.

The SE tracer advection algorithm uses a three-stage RK strong-stability-preserving
(SSP) time-stepping method, ensuring the time step will preserve any shape-preserving
properties preserved by the underlying spatial discretization [Spiteri and Ruuth, 2002]. The
shape-preserving filter used is described in Guba et al. [2014b]. The shape-preserving SE
tracer advection algorithm is formally second-order accurate.




Time-steps in CAM-SE

Physics -
At phys
Vertical remapping = >
Atremap Atremap
Tracers = — — >
Attrac Attrac Attrac Attrac
Dynamics



Time-steps in CAM-SE

Atremap = Atp—hys-’
se_nsplit
Attracer = Atphys s
se_nsplit *se_gsplit
Atdyn = Atphys s
se_nsplit *se_rsplit *se_qsplit
Athype Atphys

- se_nsplit *se_rsplit * se_hypervis_subcycle * se_qsplit



Outline

* Coupling to physics



Physics dynamics coupling methods in CAM-SE: se_ftype=1

Advance dynamics core (30 minutes)

For long physics time-steps and less diffusive

. . : H | .
dynam|ca| cores this can create SpUrious noise: Compute phys|cs

tendencies based
on dynamics
updated state

Noise can be detected by computing

2 bl
dt pS

Update dynamics state with
physics tendencies

NCAR | National Center for Atmospheric Research
UCAR | Climate & Global Dynamics



d
10 year average of alp,l from AMIP run

Absolute surface pressure tendency Pa/s

90N

60N

30N

30S

60S

90S
0 30E 60E 90E 120E 1{150E 180 150W 120W 90W 60W 30W 0

8e-05 0.00016 0.00024 0.00032 0.0004 0.00048
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Physics dynamics coupling methods in CAM-SE: se_ftype=0

Advance dynamics core (30 minutes):
add physics tendency “chunks”
during the dynamics time-stepping

- every 15 minutes in this example

(I refer to it as “dribbling”)

Compute physics
tendencies based
on dynamics
updated state

Split physics tendencies into
a number of “chunks”

NCAR H;‘T.W nal Center for Atmospheric >v‘p‘:;'u‘:h
UCAR | Climate & Global Dynamics




Physics dynamics coupling methods in CAM-SE: se_ftype=1

d
10 year average of alp,l from AMIP run

“Dribbling” physics tendencies State updated every 30 minutes

Absolute surface pressure tendency Pa/s Absolute surface pressure tendency Pa/s
90N 90N

60N 60N

30N 30N
30S

30S

60S 60S

90S 90S

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0

4e-05 6e-05 8e-05 0.0001 0.00012 0.00014 0.00016 0.00018 8e-05 0.00016 0.00024 0.00032 0.0004 0.00048

NCAR '. | Centel T \eric ——r‘
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Physics dynamics coupling methods in CAM-SE: se_ftype=1

d
10 year average of allh' from AMIP run

“Dribbling” physics tendencies State updated every 30 minutes
Absolute surface pressure tendency
90N
o “Dribbling” all tendencies gets rid of spurious
, noise but the tendencies are not allowed to drive
30N : : 9 mixing ratios negative
0
Tracer mass budget not closed!
30S
Let me explain ...
60S d
90S
0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0
4e-05 6e-05 8e-05 0.0001 0.00012 0.00014 0.00016 0.00018 8e-05 0.00016 0.00024 0.00032 0.0004 0.00048
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Physics-dynamics coupling: “dribbling” tendencies

Black curve is solution without
physics tendencies

longitude

NCAR | National €
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Physics-dynamics coupling: “dribbling” tendencies

m,

longitude
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Physics-dynamics coupling: “dribbling” tendencies

ngitude
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Physics-dynamics coupling: “dribbling” tendencies
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Physics-dynamics coupling: “dribbling” tendencies

If your model prevents the forcing in
driving the mixing ratio negative in
physics-dynamics coupling then there
will be a spurious source of mass

Note: it is always a source! (biased)

NCAR Natlmna\ Center for Atmospheric Hesear_ch
UCAR | Climate & Global Dynamics




Physics-dynamics coupling: “dribbling” tendencies

Example from fully coupled climate model: water conservation errors

30
s 25
i
57 2
©
e 2 15
()
28
O
Og 10
@
T 5
=

0

A) V0 ne3o (1°)

'

ALL: 6.99

—— physics-dynamics coupling error (water vapor)
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Note: The time-step by time-step
error is miniscule but in long
simulations tiny errors can
accumulate if they are biased

ing” tendencies

errors

ALL: 6.99
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—— physics-dynamics coupling error (water vapor)
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Physics dynamics coupling methods in CAM-SE: se_ftype=2

Advance dynamics core (30 minutes):
for (u,v,T) add physics tendency
“chunks” during the dynamics time-
stepping

- every 15 minutes in this example

(I refer to it as “dribbling”)

Compute physics
tendencies based
on dynamics
updated state

Split physics tendencies into
a number of “chunks” for
u,v,T

Update tracer state with
physics tendencies

NCAR ‘ National Center for Atmospheric Research
UCAR | Climate & Global Dynamics




Instantaneous PSL for CAM-SE at approximately Vs degree horizontal resolution

ftype= ftype=1

104000
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« Computational performance



Computation throughput (ne30 ~ 1 degree)

CAM®6 Aqua-Planet (incl. 1/0)
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o
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o
[
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|

SYPD [Simulated Years Per Day]

| | | | | | |

0
0O 20 40 60 80 100120140160
Data produced by John Dennis (CISL) #nodes (36 processors per node)




Computation throughput (ne30 ~ 1 degree)

1.0

0.8

o
o

fraction of CAM
o
S

|l /0

I dynamics

I physics <-> dynamics
Il physics

5 10 15 30 38 75 150
nodes

Data produced by John Dennis (CISL)
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 Variable resolution version of CAM-SE



Variable horizontal resolution

* One of the advantages of the spectral-element method is that it
can relatively easily be adapted to variable resolution meshes
(as long as elements are quadrilateral)

A direct way to address this problem is establishing a transformation 7, : Q. — [-], 113,
where J, may be considered as a composite mapping combining the gnomonic and the
quadrilateral to standard-element mapping. Let the Jacobian associated with the composite
mapping be J. = J.(VG). Then an arbitrary surface integral on ©, can be expressed in
terms of local coordinates &1, &% € [—1, 1] and the Jacobian J,

1 1 N N
f U(x',x%) dQ, = f f J@E (&) de de = ) ) wiwm Je (6. E) (&L ED,
Q. -1 J-1

k=0 1=0
(80)
where wy, w; are the Gauss quadrature weights.
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zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Challenges: diffusion

CAM-SE, Zarzycki et al., 2014, JClim

K4 (ACIZ) — K4 (Axref)

Let’s say 100 km cell is
our “reference” andy =

3.321 l,
ﬂ 3.321—i




zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

V-R ap__lications: tropical cyclones

>




VR applications: tropical

cyclones

. gé))mmunity Atmosphere Model Spectral Element (CAM-
« Atmospheric Model Intercomparison Project (AMIP)
protocols
« 1980-2002 (
* Prescribed SSTs, ozone, aerosols, solar insolation
« Simulate historic, observed climate

1° ( )

0.25°( )

Zarzycki and
Jablonowski, (2014
JAMES)

Zarzycki et al., (2015
JClim)

VW T (7777




zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Uniform global simulation

Precipitable water, Sept 1-16




zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Variable-resolution global
circulation

Precipitable water, Sept 1-16




zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Tropical cyclones

YW 7arzycki and Jablofiowski, 2014, JAMES



zarzycki@ucar.edu - DCMIP-2016, Boulder, CO, June 2016

Numerical weather prediction

« 8 day forecast = ~1.5
hours of wall clock time
on 800 cores (NCAR

Yellowstone) \-

e ~6-7x cheaper than a
globally-uniform 13 km
fO recaSt Sandy TPW:

INIT 122
10/25/12
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* Introduce computational grid and projections
* Introduction to the spectral-element method
* Properties of the spectral-element

* Time-stepping

* Coupling to physics

« Computational performance

* Variable resolution version of CAM-SE
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More information: http://www.cgd.ucar.edu/cms/pel

Email: pel@ucar.edu
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