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Part I: separating transport and 
dynamics grids/methods in CAM-SE

12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html The  terminator 

test

• Consider 2 reactive chemical species, Cl and Cl2 :

• Steady-state solution (no flow):

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times 
(correlation preservation) 
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CAM-SE

CAM-FV (Lin 2004)

The  terminator 
test

The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

CLy

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times (correlation preservation). 

Errors are due to
non-conservation
of linear correlations
in tracer transport
scheme and/or
physics-dynamics
coupling



Problem formulation

Improve the efficiency and accuracy of tracer
transport in CAM-SE

Solution?

Note: It is easy to make an efficient 
model that is inaccurate or an 
accurate model that is inefficient
(at least for smooth problems) …



Tracer transport: Continuity equation

No 
sources/sinks



Requirements for transport schemes intended for 
global climate/climate-chemistry applications: 

Example of unphysical
solution



Requirements for transport schemes intended for 
global climate/climate-chemistry applications: 

Plumb (2007)

Figure: Aircraft observations of 
long-lived species in the 
stratosphere

Tracer transport scheme should 
not unphysically perturb these 
relations between tracers



Requirements for transport schemes intended for 
global climate/climate-chemistry applications: 

In model consistency is non-trivial if:

• Using prescribed wind and mass fields from , e.g., re-analysis.
• (2) is solved with a different numerical method than (1)



A way to accelerate tracer transport: 
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A way to accelerate tracer transport: 
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Apply Gauss’ divergence 
theorem to convert area 

integrals into line-integrals



A way to accelerate tracer transport: 

z-axis

x-axis
y-axis

z-axis



A way to accelerate tracer transport: 
Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)
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(Dukowicz and Baumgardner, 2000).

Scheme allows for large time-steps (flow deformation limited).

Conserves mass, shape, linear correlations (Lauritzen et al., 2014).
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Basic formulation

How does CSLAM fulfill requirements?

2. Shape-preservation

Apply limiter to mixing ratio sub-grid cell distribution:

q(x , y) = �
ı+|<3 c

(ı,|)
x

ı
y

|,

(Barth and Jespersen, 1989) so that extrema of q(x , y) are within range of
neighboring q.

And upstream areas span domain ⌦ without cracks & overlaps

Limiters and filters

In the literature: Many 1D limiters but few fully 2D limiters!

A priori (‘Monotone filtering’): Filter the reconstruction

f� (x,y)
so that extreme values lie within the adjacent

cell-average values (Barth and Jespersen, 1989).

no filter
monotone filter

A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema in

�
n+1

using flux-corrected transport (Zalesak, 1979).

Monotone filters/limiters tend to ‘clip’ physical extrema

0

�0
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a) Unlimited
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b) Monotone filter/limiter

 12  20  28  36

c) Selective filter/limiter 
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Extension to cubed-sphere: 
Figure shows upstream Lagrangian grid12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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A way to accelerate tracer transport: 

Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM
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a

✏
k = ‘flux-area’ (yellow area) = area swept through face ✏

s

✏
k` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent

(Lauritzen et al., 2011).
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Coupling finite-volume semi-
Lagrangian transport with spectral 

element dynamics

We need to couple without violating mass-conservation, 
shape-preservation, and consistency

CSLAM

Spectral elements



The spectral-element method

Spectral-Element Method (SEM) 
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Spectral-Element Method (SEM) 
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FIG. 4. A graphical illustration of the physics grid in one dimension. Three elements are shown and the filled red circles are the GLL quadrature
points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

The spectral-element method
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now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
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an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

The spectral-element method
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an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

The spectral-element method
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over the respective control volumes.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(a) (b) 

(d) 

(c) 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5  4

(e) (f) 

FIG. 5. A 1D schematic illustration on how CAM-SE advances the solution to the equations of motion in time. Consider 3 elements. The red
filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

The spectral-element method
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FIG. 4. A graphical illustration of the physics grid in one dimension. Three elements are shown and the filled red circles are the GLL quadrature
points in each element. The red curve is the basis function representation of the field and the green filled circles are the quadrature point values.
The physics grid divides each element into equal-area control volumes. On the Figure each element is divided into (a) 3, (b) 1 and (c) 6 control
volumes, respectively. The histogram shows the average values over the physics grid control volumes resulting from integrating the basis functions
over the respective control volumes.
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filled circles are the GLL quadrature points in each element (np = 4). Note that the quadrature points on the boundary are shared between elements.
(a) Assume a degree 3 global Lagrange polynomial initial condition (red curve) which can be represented exactly by the degree 3 Lagrange basis
in each element. (b) The solution to the equations of motion are advanced in time (one Runga-Kutta step) independently in each element leading
to the quadrature values marked with filled purple circles. The Lagrange basis is shown with red curves connecting the purple circles. There are
now two solutions, one from left and one from right, for the quadrature points at the element end points. In CAM-SE the values are averaged so
that the solution is C0. Note that the averaging changes the Lagrange polynomials throughout except at the internal quadrature points. (c) shows
the solution after averaging. (d) Assume there is a grid-scale forcing that increases the quadrature value located at x = 3. (e) The solution is now
clearly C0 at the element boundary at x = 3. (f) Histogram shows the average values resulting in integrating the basis functions over the control
volumes.

an updated state is mapped back to the dynamics grid. If
one were to map an updated state the errors in the map-
ping process may adversely affect the simulation, e.g., in
the case of no physics forcing there will be a non-zero
‘physics forcing’ entirely due to the errors in the mapping
algorithm.

In a climate model setting it is important that this pro-
cess does not violate important conservation properties
such as:

• mass-conservation,

• shape-preserving (monotone), i.e. the mapping
method does not introduce new extrema in the inter-
polated field, in particular, negatives,

• consistency, i.e. the mapping preserves a constant.

Other properties that may be important, but not pursued
here, is energy conservation and axial angular momentum
conservation. It may be desirable to preserve the high-
order of the basis functions during the mapping process so
that the mapping is high-order accurate for smooth fields
and less information is lost during the mapping process.

Setting basis function to 1 yields the 
mass change in each element

The spectral-element method



Diagnosing fluxes from spectral-element method



The story so far
Spectral-Element Method: CAM-SE 

Finite-Volume Method: CSLAM 

Lauritzen et al., (2011) 



Spectral-Element Method: CAM-SE 

Finite-Volume Method (FVM) 

The story so far



Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 14 / 20

Lauritzen et al., 2016



Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation �@u@x ��t � 1 (Lipschitz criterion)

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 14 / 20

(a) (b)

Local iteration problem 
generating an upstream grid 
that spans the sphere 
without cracks and overlaps

=> all CSLAM technology   
from Lauritzen et al.
(2010) can be used



Consistent CSLAM algorithm is general

In principle, the consistent CSLAM algorithm can be made consistent 
with any fluxes that obey the Lipschitz criterion …



No sub-grid-scale forcing, dry, balanced initial condition with perturbation 
Jablonowski and Williamson (2006)

Idealized baroclinic wave test 

Surface pressure computed with CSLAM is identical to SE (to round-off)



3 tracers: initial conditions

Gaussian
“ball”

Zonally 
symmetric
(smooth)

Slotted
cylinder
(non-smooth)



Predictability limit for flow is 
approximately 12 days 

=> wind and mass fields 
“driving” transport start to 

diverge

CAM-SE 
1 degree
standard 

configuration 
(spectral element 

advection)

CAM-SE-CSLAM 
1 degree

configuration 
(tracer transport 

with CSLAM 
consistently coupled 

with spectral 
element dynamics)

CAM-SE 
0.25 degree

standard configuration 

USED AS REFERENCE 
SOLUTION (“TRUTH”)



day 15 day 15day 15

day 17 day 17day 17

CAM-SE CAM-SE-CSLAM CAM-SE reference

Lauritzen et al., 2016



CAM-SE CAM-SE-CSLAM CAM-SE reference

day 7.5 day 7.5 day 7.5

day 9 day 9 day 9

Lauritzen et al., 2016



CAM-SE CAM-SE-CSLAM CAM-SE reference

day 10 day 10 day 10

day 5 day 5 day 5

Lauritzen et al., 2016



The terminator ‘toy’-chemistry test: A simple tool to 
assess errors in transport schemes
(Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html The  terminator 

test

• Consider 2 reactive chemical species, Cl and Cl2 :

• Steady-state solution (no flow):

• In any flow-field Cly=Cl+2*Cl2 should be constant at all times 
(correlation preservation) 
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Performance

• All simulations run on NCAR’s Yellowstone computer

• No exploration of threading



MPI communication 

For every 30 minute physics time-step:

- SE performs 6 tracer time-steps (dt=300s) => 42 MPI calls (7 per tracer dt)
- CSLAM performs 2 tracer time-steps (dt=900s) => 2 MPI calls   (1 per tracer dt)

That said, CSLAM needs a much larger halo than SE:
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Part II: Coupling to physics
12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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There are several 
reasons why I do not 
think one should pass 
state on GLL points to 
physics:



Current physics/“coupler” grid

Non-uniform sampling of atmospheric state

(a)

(c) (d)

(b)

Gets worse with 
increasing order! 
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Figure courtesy of A. Herrington



Aside

A couple of comments on topography 
generation and topography smoothing



http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf

https://github.com/NCAR/Topo



http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf

https://github.com/NCAR/Topo
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Elevation power spectra for 1 degree horizontal resolution                 



Topography smoothing in CAM

Lauritzen et al., (2015): NCAR Global Model Topography Generation Software for Unstructured Grids 

10 Lauritzen et al.: topo

Figure 6. Diagnostics for 30 year AMIP simulations with CAM5.2. Upper, middle and lower group of plots are model level 16 vertical
velocity, total precipitation rate and mean sea level pressure differences, respectively, Except for the two right-most plots on the second
row of each group of plots, the diagnostics are for CAM-SE with different amounts of smoothing of �s and different levels of divergence
damping. The amount of smoothing follows the same notation as Fig. 2 (right) and 1.0xdiv, 2.5xdiv, 5.0xdiv refers to increasing divergence
damping by a factor 1,0, 2.5, and 5.0, respectively. The second right-most plot on each group of plots (labeled FV) show results for CAM-FV.
Lower right plot in the second and third group of plots show TRMM observations and NCEP reanalysis data, respectively.
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30 year AMIP simulations

Notation: 2.5xdiv = 2.52 times more divergence damping than vorticity damping
4x, 8x, …, 32x = smoothing of surface geopotential height

WARNING: CAM-HOMME (with Eulerian vertical advection)
i.e. results NOT CAM-SE (with Lagrangian vertical coordinate)



Topography smoothing in CAM

Lauritzen et al., (2015): NCAR Global Model Topography Generation Software for Unstructured Grids 
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Figure 6. Diagnostics for 30 year AMIP simulations with CAM5.2. Upper, middle and lower group of plots are model level 16 vertical
velocity, total precipitation rate and mean sea level pressure differences, respectively, Except for the two right-most plots on the second
row of each group of plots, the diagnostics are for CAM-SE with different amounts of smoothing of �s and different levels of divergence
damping. The amount of smoothing follows the same notation as Fig. 2 (right) and 1.0xdiv, 2.5xdiv, 5.0xdiv refers to increasing divergence
damping by a factor 1,0, 2.5, and 5.0, respectively. The second right-most plot on each group of plots (labeled FV) show results for CAM-FV.
Lower right plot in the second and third group of plots show TRMM observations and NCEP reanalysis data, respectively.
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Mihailović, D. and Janjić, Z.: Comparison of methods for reduc-
ing the error of the pressure gradient force in sigma coordinate
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Nair, R. D., Thomas, S. J., and Loft, R. D.: A Discon-
tinuous Galerkin Transport Scheme on the Cubed Sphere.,
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30 year AMIP simulations Total precipitation rate

WARNING: CAM-HOMME (with Eulerian vertical advection)
i.e. results NOT CAM-SE (with Lagrangian vertical coordinate)
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Held-Suarez with topography
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Note that physics grid averages/moves fields 
away from boundary of element where the 

solution is least smooth
(in element interior the polynomials are C∞) 



CAM-SE-CSLAM with moisture
“This is where the fun begins!” – Staniforth et al. (2006)

12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Temperature: Integrate basis function representation of dp*T over physics grid 
control volumes (high-order remapping; conserves dry internal energy)

(u,v): Evaluate basis  function representation of 
contra-variant velocity components at physics 
control volume centers (high-order interpolation) 



CAM-SE-CSLAM configuration
12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.
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example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

u,v,T,p

ph
ys

ics
Coarser physics grid Finer physics grid

Lander and Hoskins 
(1997): only pass 

“believable” scales to 
physics!

• Capability to run physics 
on 2x2,3x3,4x4,… grids 



Summary
• Presented algorithm to consistently couple spectral-element 

dynamics with remap finite-volume transport

• Accuracy is improved for “non-smooth” tracer distributions 
when using CAM-SE-CSLAM compared to CAM-SE.

• Note that our modeling framework is quite unique in the sense 
that we support finite-volume and high-order Galerkin methods 
in the same framework

• Capability to run physics on different grid than dynamics

• CAM-SE physgrid and CAM-SE-CSLAM (uses physgrid) are 
scheduled to be released with CESM2 later this year
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More information: http://www.cgd.ucar.edu/cms/pel
Email: pel@ucar.edu


