Two talks on transport:

1. Desirable properties of transport schemes

What physical properties of the continuous equation of motion are important to respect in discretization schemes?

2. Discretization strategies

Eulerian and semi-Lagrangian finite-volume schemes
Galerkin schemes (focus on spectral-elements)
Practical considerations

Until fairly recently the most widely used idealized test case to assess transport accuracy in global models was:

A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry

David L. Williamson
The National Center for Atmospheric Research, Boulder, Colorado 80307
John B. Drake
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
AND

Test 1: Solid-body

 advectionJames J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber
The National Center for Atmospheric Research, Boulder, Colorado 80307

Received June 17, 1991

NCAR

NCAR	National Center for Almospnenc Research
UCAR	Olimate \& Global Dynamics

Until fairly recently the most widely used idealized test case to assess transport accuracy in global models was:

Test 1: Solid-body advection

Desirable properties of transport schemes

Peter Hjort Lauritzen

Atmospheric Modeling and Predictability Section
Climate and Global Dynamics Laboratory National Center for Atmospheric Research

Fundamentals of Atmospheric Chemistry and Aerosol Modeling
August 13-15, 2018
NCAR, Boulder, Colorado

GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007) In general, dust appears in shades of orange, sea salt blue, sulfates white, and carbon green

GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)
In general, dust appears in shades of orange, sea salt blue, sulfates white, and carbon green

GEOS-5 simulation: winds transporting aerosols (5/2005-5/2007)
In general, dust appears in shades of orange, sea salt blue, sulfates white, and carbon green

Turbulent diffusion

Given vertical profile of eddy diffusion coefficient $K(p)$:

$$
\frac{\partial \bar{\varphi}}{\partial t}=\frac{\partial}{\partial p}\left[K(p) \frac{\partial \bar{\varphi}}{\partial p}\right]
$$

Contrary to convective tracer transport turbulent diffusion is a local process!

Cortive way of mixing tracers in the vertical (e.g. Mahowald et al., 1995; Collins et al., 1999), e.g., convective updrafts can transport a tracer from the surface to the upper troposphere on time scales of $\mathcal{O}(1 h)$.

Vertical transport by deep convection

sphere on time scales of $\mathcal{O}(1 h)$.

The most important continuity equation in modeling

Consider the continuity equation for dry air

$$
\begin{equation*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right)=0 \tag{1}
\end{equation*}
$$

where ρ_{d} is the density of dry air (mass per unit volume of Earth's atmosphere) and \mathbf{v} is a 3D velocity vector.

Dry air makes up 99.75% of the mass of the atmosphere:
mean mass of dry air $=5.1352 \pm 0.0003 \times 10^{18} \mathbf{~ k g}$
mean mass of atmosphere $=5.1480 \times 10^{18} \mathrm{~kg}$
Trenberth and Smith (2005)

The most important continuity equation in modeling

Consider the continuity equation for dry air

$$
\begin{equation*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right)=0 \tag{1}
\end{equation*}
$$

where ρ_{d} is the density of dry air (mass per unit volume of Earth's atmosphere) and \mathbf{v} is a 3D velocity vector.

Note that the continuity equation for air is "tightly" coupled with momentum and thermodynamic equations

To solve (1) we need to know the velocity field!

Water substance X, where $X=v, c l, c i$ (water vapor, cloud liquid and cloud ice), is represented with mixing ratio variable:

$$
m_{X} \equiv \frac{\rho_{X}}{\rho_{d}}
$$

where ρ_{d} is the mass of dry air per volume of moist air.

- m_{X} is mixing ratio of water substance of type X with respect to dry air (not moist air!)
- The mass of moist air in a unit volume, including all water substances, is simply the sum of the individual components

$$
\rho=\rho_{d}+\rho_{v}+\rho_{c l}+\rho_{c i}=\rho_{d}\left(1+m_{v}+m_{c l}+m_{c i}\right)
$$

- Some models (and/or parameterizations) use specific humidities

$$
q_{X}=\frac{\rho_{X}}{\rho}
$$

The budget equation for water substance X is

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right)=\rho_{d} S^{m_{X}} \tag{2}
\end{equation*}
$$

where $S^{m_{X}}$ is source of water substance X.

Water variable sources/sinks:

- Changes of state
- Precipitation formation (and
- evaporation)
- Unresolved transports by turbulence and convection
- Surface fluxes

Conservation of mass

Consider the continuity equation for X (e.g., water vapor, cloud ice, cloud liquid, chemical species, ...)

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right)=\rho_{d} S^{m_{X}}, \tag{1}
\end{equation*}
$$

where $S^{m_{X}}$ is the source of X and/or sub-grid-scale transport term.
Integrate (1) over entire atmosphere $\Omega_{\text {tot }}$

$$
\frac{\partial}{\partial t} \iiint_{\Omega_{\text {tot }}}\left(m_{x} \rho_{d}\right) d V=\iiint_{\Omega_{\text {tot }}} \rho_{d} S^{m_{x}} d V
$$

Note: sub-grid-scale transport integrates to zero! Global mass only changes due to sources/sinks $S^{m x}$.

Global conservation of mass

Globally the change in mass is exactly balanced by the source/sink terms!
The resolved-scale tracer transport must not be a spurious source or sink of mass

Why is that a problem?

Integrate (1) over entire atmosphere $\Omega_{\text {tot }}$

$$
\frac{\partial}{\partial t} \iiint_{\Omega_{\text {tot }}}\left(m_{x} \rho_{d}\right) d V=\iiint_{\Omega_{\text {tot }}} \rho_{d} S^{m_{x}} d V
$$

Note: sub-grid-scale transport integrates to zero! Global mass only changes due to sources/sinks $S^{m x}$.

Accumulation of error

Relative dry mass change: $[\mathrm{M}(\mathrm{t})-\mathrm{M}(\mathrm{t}=0)] / \mathrm{M}(\mathrm{t}=0)$

1000 year simulation $\approx \mathbf{O}\left(\mathbf{1 0}^{7}\right) 30$ minute time-steps

Ad hoc mass fixers are inherently problematic

Ad hoc mass fixers are inherently problematic

Ad hoc mass fixers are inherently problematic

Inherent local mass-conservation is desirable

Eulerian version:

Ω stays fixed in local coordinate system

- The continuity equation is a conservation law for mass:

$$
\begin{aligned}
\frac{\partial}{\partial t} \iiint_{\Omega} \rho_{d} d V & =-\iiint_{\Omega} \nabla \cdot\left(\rho_{d} \mathbf{v}\right) d V \\
& =-\not \oiiint_{\partial \Omega}\left(\rho_{d} \mathbf{v}\right) \cdot \mathbf{n} d S
\end{aligned}
$$

where Ω is a fixed volume, $\partial \Omega$ the surface of Ω and \mathbf{n} is outward pointing unit vector normal to the local surface. \Rightarrow The flux of mass through the area $d a$ is $d a$ times $\rho_{d} \mathbf{v} \cdot \mathbf{n}$.

Inherent local mass-conservation is desirable

Lagrangian version:
Ω moves with the flow

- The continuity equation is a conservation law for mass:

$$
\begin{aligned}
\frac{\partial}{\partial t} \iiint_{\Omega} \rho_{d} d V & =-\iiint_{\Omega} \cdot(\rho d V \\
& =-\oiiint
\end{aligned}
$$

where Ω is a fixed volume, $\partial \Omega$ the surface of Ω and \mathbf{n} is outward pointing unit vector normal to the local surface. \Rightarrow The flux of mass through the area $d a$ is $d a$ times $\rho_{d} \mathbf{v} \cdot \mathbf{n}$.

Conservation of $\mathbf{m}_{\mathbf{x}}$ along parcel trajectories

Consider the continuity equation for dry air and X

$$
\begin{align*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right) & =0, \tag{2}\\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right) & =\rho_{d} S^{m_{X}}, \tag{3}
\end{align*}
$$

respectively. Applying the chain rule to (3), re-arranging and substituting (2) implies

$$
\frac{D m_{X}}{D t}=S^{m_{X}}
$$

where $D / D t=\frac{\partial}{\partial t}+\vec{v} \nabla$ is the total (material) derivative.

Conservation of $\mathbf{m}_{\mathbf{x}}$ along parcel trajectories

Consider the continuity equation for dry air and X

$$
\begin{array}{r}
\frac{\partial \rho_{d}}{\partial t}+广 \\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot(
\end{array}
$$

respectively. Applying the chai substituting (2) implies

If the discretization scheme is based on the advective form of the continuity equation (.e.g, grid-point semi-Lagrangian schemes) then inherent massconservation is not guaranteed

$$
\frac{D m_{X}}{D t}=S^{m_{X}}
$$

where $D / D t=\frac{\partial}{\partial t}+\vec{v} \nabla$ is the total (material) derivative.

Conservation of $\mathbf{m}_{\mathbf{x}}$ along parcel trajectories (if no sources/sinks of $\mathbf{m}_{\mathbf{x}}$)

- if $m_{x}(x, y, t=0)=$ constant then $m_{x}(x, y, t)=$ constant
- MIN $\left[m_{x}(x, y, t=0)\right] \leq m_{x}(x, y, t) \leq \operatorname{MAX}\left[m_{x}(x, y, t=0)\right]$

Source: https://www.youtube.com/watch?v=tEHQH7Uly-8

Conservation of $\mathbf{m}_{\mathbf{x}}$ along parcel trajectories (if no sources/sinks of $\mathbf{m}_{\mathbf{x}}$)

Nair et al., (2011)

Conservation of $\mathbf{m}_{\mathbf{x}}$ along parcel trajectories

Atmospheric modelers tend to be a bit loose with the term 'monotone'!

When modelers refer to "non-oscillatory", "shape-preserving", "physical realizable" or "monotone" they usually refer to the monotonicity property as defined by Harten (1983):

1. No new local extrema in m_{x} may be created
2. The value of a local minima/(maxima) is nondecreasing/(nonincreasing)

There are "stricter" characterizations such as total variation diminishing (TVD), however, they are probably too strong for our applications

Less strict: positive-definite (scheme does not produce negatives)

=> the monotonicity property applies to mixing ratio m_{x} and not tracer mass!

Why is the monotonicity property so important

Nair et al., (2011)

Why is the monotonicity property so important

Nair et al., (2011)

Conservation of mass along parcel trajectories

Note that

$$
\frac{D \rho_{d}}{D t} \neq 0
$$

but

$$
\frac{D \rho_{d}}{D t}=-\rho_{d} \nabla \cdot \vec{v}
$$

If we integrate ρ_{d} over a Lagrangian volume Ω_{L} then

$$
\frac{\partial}{\partial t} \iiint_{\Omega_{L}} \rho_{d} d V=0
$$

Lagrangian volumes are rapidly distorting

Fig. 2: In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean, Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical models within the Lagrangian reference frame an extremely difficult challenge.

Ringler (2011)

Ei Pmemt diagnostic (м. Prather, UCI)

(b) $\phi(t=0)$, cosine bells

(b) ϕ ($\mathrm{t}=\mathrm{T} / 2$), cosine bells

The "filament" preservation diagnostic is formulated as follows. Define $A(\tau, t)$ as the spherical area for which the spatial distribution of the tracer $\phi(\lambda, \theta)$ satisfies
$\phi(\lambda, \theta) \geq \tau$,
at time t, where τ is the threshold value. For a non-divergent flow field and a passive and inert tracer ϕ, the area $A(\tau, t)$ is invariant in time.

The discrete definition of $A(\tau, t)$ is
$A(\tau, t)=\sum_{k \in \mathcal{G}} \Delta A_{k}$,
where ΔA_{k} is the spherical area for which ϕ_{k} is representative, K is the number of grid cells, and \mathcal{G} is the set of indices

$$
\begin{equation*}
\mathcal{G}=\left\{k \in(1, \ldots, K) \mid \phi_{k} \geq \tau\right\} . \tag{29}
\end{equation*}
$$

For Eulerian finite-volume schemes ΔA_{k} is the area of the k-th control volume. For Eulerian grid-point schemes a control volume for which the grid-point value is representative must be defined. Similarly for fully Lagrangian schemes based on point values (parcels) control volumes for which the point values are representative must be defined. Note that the "control volumes" should span the entire domain without overlaps or "cracks" between them.
Define the filament preservation diagnostic
$e_{\mathrm{f}}(\tau, t)= \begin{cases}100.0 \times \frac{A(\tau, t)}{A(\tau, t=0)} & \text { if } A(\tau, t=0) \neq 0, \\ 0.0, & \text { otherwise } .\end{cases}$
For infinite resolution (continuous case) and a non-divergent flow, $e_{\mathrm{f}}(\tau, t)$ is invariant in time: $\ell_{\mathrm{f}}(\tau, t=0)=\ell_{\mathrm{f}}(\tau, t)=100$ for all τ. At finite resolution, however, the filament

This diagnostic does not rely on an analytical solution!
Lauritzen et al. (2012)

Filament diagnostic

Fig. 6. Filament diagnostics $\ell_{f}(t=T / 2)$ as a function of threshold value τ for different configurations of the CSLAM scheme with Courant number 5.5. (a) $1^{s t}$-order version of CSLAM at $\Delta \lambda=1.5^{\circ}$ and $\Delta \lambda=0.75^{\circ}$, and (b) $3^{r d}$-order version of CSLAM with and without monotone/shape-preserving filter at resolutions $\Delta \lambda=1.5^{\circ}$ and $\Delta \lambda=0.75^{\circ}$.

Tracer mass and air mass consistency

Consider the continuity equation for dry air and X (no sources/sinks)

$$
\begin{align*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right) & =0, \tag{4}\\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right) & =0, \tag{5}
\end{align*}
$$

respectively.
Note that if m_{x} is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as "free-stream preserving"

Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no
S Prescribed wind and mass fields from , e.g., reanalysis.

$$
\begin{align*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right) & =0, \tag{4}\\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right) & =0, \tag{5}
\end{align*}
$$

respectively.
Note that if m_{x} is 1 then (5) reduces to (4).

Solve (4) and (5) with different numerical methods, on different grids and/or different time-steps

A scheme satisfying this is referred to as "free-stream preserving"

Examples of tracer mass and air mass consistency violation

Consider the continuity equation for dry air and X (no sources/sinks)

$$
\begin{align*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right) & =0 \tag{4}\\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right) & =0, \tag{5}
\end{align*}
$$

If consistency is violated:

- monotonicity preservation may be violated - tracer mass-conservation may be violated
- (5) may start evolving independently of (4)

```
NCAR
UCAR
UCAR \(\mid\) Climate \& Global Dynamics
```


Examples of tracer mass and air mass consistency violation

Assume we are solving (4) and (5) with the same finite-volume method:
(5) can be solved with a longer time-step than (4) - "free-stream preservation" can relatively easily be enforced.

$$
\begin{align*}
\frac{\partial \rho_{d}}{\partial t}+\nabla \cdot\left(\rho_{d} \mathbf{v}\right) & =0 \tag{4}\\
\frac{\partial}{\partial t}\left(m_{x} \rho_{d}\right)+\nabla \cdot\left(m_{X} \rho_{d} \mathbf{v}\right) & =0 \tag{5}
\end{align*}
$$

respectively.

Note that if m_{x} is 1 then (5) reduces to (4).

A scheme satisfying this is referred to as "free-stream preserving"

Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing ratio of one is plotted against another, when the data collapse onto remarkably compact curves. Plumb (2007)
E.g., nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) against 'total odd nitrogen' (NO_{y}) or chlorofluorocarbon (CFC's)

Figures from Plumb (2007).

[^0]
Correlations between long-lived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing ratio of one is plotted against another, when the data collapse onto remarkably compact curves. Plumb (2007)
E.g., nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) against 'total odd nitrogen' (NO_{y}) or chlorofluorocarbon (CFC's)

Similarly:

- The total of chemical species within some chemical family may be preserved following an air parcel although the individual species have a complicated relation to each other and may be transformed into each other through chemical reactions (e.g., total chlorine)
- Aerosol-cloud interactions (Ovtchinnikov and Easter, 2009)

The transport operator should ideally not perturb pre-existing functional relationships

Figures from Plumb (2007).

[^1]
Analyzing scatter plots

Analytical pre-existing functional relationship curve ψ (linear)

$$
\xi=\psi(\chi)=a \cdot \chi+b, \quad \chi \in\left[\chi^{(\min)}, \chi^{(\max)}\right]
$$

where a and b are constants, and χ and ξ are the mixing ratios of the two tracers

Analyzing scatter plots

Analytical pre-existing functional relationship curve ψ (linear) χ and ξ are transported separately by the transport scheme

$$
\begin{aligned}
\chi_{k}^{n+1} & =\mathcal{T}\left(\chi_{j}^{n}\right), & & j \in \mathcal{H}, \\
\xi_{k}^{n+1} & =\mathcal{T}\left(\xi_{j}^{n}\right), & & j \in \mathcal{H},
\end{aligned}
$$

where \mathcal{T} is the transport operator and \mathcal{H} the set of indices defining the 'halo' for \mathcal{T}.

Analyzing scatter plots

Analytical pre-existing functional relationship curve ψ (linear)
If \mathcal{T} is 'semi-linear' then linear pre-existing functional relations are preserved:

$$
\xi_{k}^{n+1}=\mathcal{T}\left(\xi_{j}^{n}\right)=\mathcal{T}\left(a \chi_{j}^{n}+b\right)=a \mathcal{T}\left(\chi_{j}^{n}\right)+b \mathcal{T}(1)=a \mathcal{T}\left(\chi_{j}^{n}\right)+b=a \chi_{k}^{n+1}+b .
$$

\rightarrow If transport operator is non-linear the relationship might be violated.

Analyzing scatter plots

Figures from R.Rood's talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve ψ (linear)
\rightarrow carefully designed finite-volume schemes are 'semi-linear' even with limiters/filters! (Thuburn and McIntyre, 1997; Lin and Rood, 1996)

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

Terminator reaction coefficient: $\mathrm{k}_{1}(\lambda, \theta)$

- Consider 2 reactive chemical species, Cl and Cl_{2} :

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}: k_{1} \\
& \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl} l_{2}: k_{2}
\end{aligned}
$$

- Steady-state solution (no flow):

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation)

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html

- Consider 2 reactive chemical species, Cl and Cl_{2} :

$$
\begin{aligned}
& \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}: k_{1} \\
& \mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl} l_{2}: k_{2}
\end{aligned}
$$

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (linear correlation preservation).

The terminator 'toy'-chemistry test: A simple tool to assess errors in transport schemes (Lauritzen et al., 2015)

See: http://www.cgd.ucar.edu/cms/pel/terminator.html

CAM-SE

CAM-FV (Lin 2004)

- In any flow-field $\mathrm{Cl}_{y}=\mathrm{Cl}+2 * \mathrm{Cl}_{2}$ should be constant at all times (correlation preservation).

Conserving sum of "families" of species

Chlorine (in CAM-chemistry)

Total Organic Chlorine (set at the surface)

$$
\mathrm{T}_{\mathrm{Cl}}^{\mathrm{ORG}}=\mathrm{CH}_{3} \mathrm{Cl}+3 \mathrm{CFCl}_{3}+2 \mathrm{CF}_{2} \mathrm{Cl}_{2}+3 \mathrm{ClCl}_{2} \mathrm{FCCl} \mathrm{~F}_{2}+\mathrm{HCF}_{2} \mathrm{Cl}+4 \mathrm{CCl}_{4}+3 \mathrm{CH}_{3} \mathrm{CCl}_{3} .
$$

Total Inorganic Chlorine (created from break down of $\mathrm{T}_{\mathrm{Cl}}^{\mathrm{ORG}}$)

$$
\mathrm{T}_{\mathrm{Cl}}^{\mathrm{INORG}}=\mathrm{Cl}+\mathrm{ClO}+\mathrm{OClO}+2 \mathrm{Cl}_{2}+2 \mathrm{Cl}_{2} \mathrm{O}_{2}+\mathrm{HOCl}+\mathrm{ClONO} 2+\mathrm{HCl}
$$

Total Chlorine

$$
\mathrm{TCLY}=\mathrm{T}_{\mathrm{Cl}}^{\mathrm{ORG}}+\mathrm{T}_{\mathrm{C} \ell}^{\mathrm{INORG}}
$$

Total chlorine TCLY should be conserved in the upper troposphere and stratosphere (despite complex chemical reactions between the different chlorine species)!

Reactants		Products	Rate
$\mathrm{PAN}+\mathrm{M}$	\rightarrow	$\mathrm{CH} 3 \mathrm{CO} 3+\mathrm{NO} 2+\mathrm{M}$	$\mathrm{k}(\mathrm{CH} 3 \mathrm{CO} 3+\mathrm{NO} 2+\mathrm{M}) \cdot 1.111 \mathrm{E} 28$
			$\cdot \exp (-14000 / \mathrm{T})$
$\mathrm{CH} 3 \mathrm{CO} 3+\mathrm{CH} 3 \mathrm{CO} 3$	\rightarrow	$2 \cdot \mathrm{CH} 3 \mathrm{O} 2+2 \cdot\{\mathrm{CO} 2\}$	$2.50 \mathrm{E}-12 \cdot \exp (500 / \mathrm{T})$
$\mathrm{GLYALD}+\mathrm{OH}$	\rightarrow	$\mathrm{HO} 2+.2 \cdot \mathrm{GLYOXAL}+.8 \cdot \mathrm{CH} 2 \mathrm{O}+.8 \cdot\{\mathrm{CO} 2\}$	$1.00 \mathrm{E}-11$
$\mathrm{GLYOXAL}+\mathrm{OH}$	\rightarrow	$\mathrm{HO} 2+\mathrm{CO}+\{\mathrm{CO} 2\}$	$1.10 \mathrm{E}-11$
$\mathrm{CH} 3 \mathrm{COOH}+\mathrm{OH}$	\rightarrow	$\mathrm{CH} 3 \mathrm{O} 2+\{\mathrm{CO} 2\}+\mathrm{H} 2 \mathrm{O}$	$7.00 \mathrm{E}-13$
$\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}+\mathrm{OH}$	\rightarrow	$\mathrm{HO} 2+\mathrm{CH} 3 \mathrm{CHO}$	$6.90 \mathrm{E}-12 \cdot \exp (-230 / \mathrm{T})$
$\mathrm{C} 3 \mathrm{H} 6+\mathrm{OH}+\mathrm{M}$	\rightarrow	$\mathrm{PO} 2+\mathrm{M}$	$\mathrm{ko}=8.00 \mathrm{E}-27 \cdot(300 / \mathrm{T})^{3.50} ;$
			$\mathrm{ki}=3.00 \mathrm{E}-11 ; \mathrm{f}=0.50$

Conserving sum of "families" of species

(left) longitude-averaged surface TCLY as a function of time and latitude: Constant! (right) same as (left) but near tropopause: Spurious 7\% deviations (near sharp gradients)!

Problem?

Transport scheme can not maintain the sum when transporting the species individually:

$$
\sum_{i=1}^{N_{x}} \tau\left(x_{i}\right) \neq \mathcal{T}\left(\sum_{i=1}^{N_{x}} x_{i}\right)
$$

where N_{x} is the number of species χ_{i}.
"Semi-linear" property is a necessary but not sufficient condition for conserving a sum of more than 2 tracers

Conserving sum of "families" of species

TCLY [mol/mol], ca. 35.923249 hPa , lon overage

(left) same as previous slide:

- large unphysical deviations from constancy in TCLY near the edge of the polar stratospheric vortex \Rightarrow less TCLY over South pole \Rightarrow less ozone loss (error on the order of 10%).
(right) same as (left) but using a fixer:
- (i) transport the individual species
- (ii) transport the total
- in each grid cell scale the individual species by the difference between (i) and (ii)

Simple idealized "family of species" test

(d) $\chi(\mathrm{t}=\mathrm{T} / 2)$, CSLAM with filter

This test does not rely on an analytical solution!

Lauritzen and Thuburn (2010)

Analyzing scatter plots

Analytical pre-existing functional relationship curve ψ

$$
\xi=\psi(\chi)=a \cdot \chi^{2}+b
$$

where a and b are constants so that ψ is concave or convex in $\left[\chi^{(\min)}, \chi^{(\max)}\right]$

Analyzing scatter plots

Discrete pre-existing functional relation (initial condition)

$$
\xi_{k}=\psi\left(\chi_{k}\right)=a \cdot\left(\chi_{k}\right)^{2}+b, \quad k=1, . ., K,
$$

where a and b are constants so that ψ is concave or convex in $\left[\chi^{(\min)}, \chi^{(\max)}\right]$

Analyzing scatter plots

Discrete pre-existing functional relation (initial condition)

$$
\xi_{k}=\psi\left(\chi_{k}\right)=a \cdot\left(\chi_{k}\right)^{2}+b, \quad k=1, . ., K,
$$

where a and b are constants so that ψ is concave or convex in $\left[\chi^{(\min)}, \chi^{(\max)}\right]$

Analyzing scatter plots

A fully Lagrangian model will maintain pre-existing functional relation

$$
\chi_{k}^{n+1}=\chi_{k}^{n}, \quad \xi_{k}^{n+1}=\xi_{k}^{n}
$$

following parcel trajectories (without 'contour-surgery' or other mixing mechanisms)

Analyzing scatter plots

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

$$
\xi_{k}^{n+1}=\mathcal{T}\left(\xi_{j}^{n}\right) \neq a \cdot \mathcal{T}\left(\chi_{j}^{n}\right)^{2}+b, \quad j \in \mathcal{H}
$$

where \mathcal{T} is the transport operator and \mathcal{H} the set of indices defining the 'halo' for \mathcal{T}.

'Real' mixing, e.g., observed during polar vortex breakup (Waugh et al., 1997)

'Real mixing' (when occurring) will tend to replace the functional relation by a scatter by linearly interpolating along mixing lines between pairs of points

'Real' mixing, e.g., observed during polar vortex breakup

'Real mixing' (when occurring) will tend to replace the functional relation by a scatter by linearly interpolating along mixing lines between pairs of points
\rightarrow Ideally numerical mixing should $=$ 'real mixing'!
However, it may be shown mathematically that schemes that exclusively introduce 'real mixing' are $1^{\text {st }}$-order schemes (Thuburn and McIntyre, 1997).

Classification of numerical mixing on scatter plots

Figure from (Lauritzen and Thuburn, 2012)

Preserving pre-existing functional relation between tracers under challenging flow conditions

First-order scheme: only 'real mixing'

Nair and Lauritzen (2010) flow field

Preserving pre-existing functional relation between tracers under challenging flow conditions

Note: 1. Max value decrease, 2. Unmixing even if scheme is shape-preserving, 3. No expanding range unmixing

Tracer density simulated with monotone CSLAM

[^2]

Preserving pre-existing functional relation between tracers under challenging flow conditions

Note: 1. Max value decrease, 2 . Unmixing even if scheme is shape-preserving, 3. No expanding range unmixing

Tracer density simulated with monotone CSLAM

[^3]

Preserving pre-existing functional relation between tracers under challenging flow conditions

Note: 1. Max value decrease, 2 . Unmixing even if scheme is shapepreserving, 3 . No expanding range unmixing

Tracer density simulated with monotone CSLAM

[^4]

Summary

What physical properties of the continuous equation of motion are important to respect in discretization schemes?

- Global mass-conservation
- Local mass-conservation (fixers are inherently "bad")
- Mixing ratio conservation along parcel trajectories
- Shape-preservation is important
- Preserving pre-existing relationships between species
- linear correlation preservation between 2 species
- preserving sum of species (>2)
- quadratic correlation preservation between 2 species

Physics dynamics coupling methods

Advance dynamics core (30 minutes)

Compute physics tendencies based on dynamics updated state

Update dynamics state with physics tendencies

Physics dynamics coupling methods

Advance dynamics core (30 minutes)

For long physics time-steps and less diffusive dynamical cores this can create spurious noise!

Noise can be detected by computing

$$
\frac{d}{d t}\left|p_{s}\right|
$$

Update dynamics state with physics tendencies

Compute physics tendencies based on dynamics updated state

Physics dynamics coupling methods

10 year average of $\frac{d}{d t}\left|p_{s}\right|$ from AMIP run

Physics dynamics coupling methods

Advance dynamics core (30 minutes): add physics tendency "chunks" during the dynamics time-stepping - every 15 minutes in this example (I refer to it as "dribbling")

Compute physics tendencies based on dynamics updated state

Split physics tendencies into a number of "chunks"

Physics dynamics coupling methods

10 year average of $\frac{d}{d t}\left|p_{s}\right|$ from AMIP run

"Dribbling" physics tendencies

Physics-dynamics coupling: state update

Physics-dynamics coupling: state update

Physics-dynamics coupling: "dribbling" tendencies

Physics-dynamics coupling: "dribbling" tendencies

Physics-dynamics coupling: "dribbling" tendencies

Physics-dynamics coupling: "dribbling" tendencies

Physics-dynamics coupling: "dribbling" tendencies

[^0]: NCAR
 UCAR Climate \& Global Dynamics

[^1]: NCAR
 UCAR

[^2]:

[^3]:

[^4]: $\begin{array}{llllllllllllllll}0.1 & 0.15 & 0.2 & 0.25 & 0.3 & 0.35 & 0.4 & 0.45 & 0.5 & 0.55 & 0.6 & 0.65 & 0.7 & 0.75 & 0.8 & 0.85 \\ 0\end{array}$

