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Axial angular momentum (AAM) Coupled climate simulation Preliminary performance results

Introduction

perform a basic evaluation of FV3 (initially for standard 1
degree horizontal resolution climate applications).
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We compare CAM-FV3 with existing dynamical cores in
CESM:

* CAM-SE: Spectral-elements dynamical core

* CAM-SE-CSLAM: CAM-SE with Conservative Semi-
LAgrangian Multi-tracer scheme (CSLAM) and separate
physics grid

CAM-FV: Finite-volume dynamical core used for 1
degree CMIP6 simulations.

Scientific validation of
implementation in CAM

We make use of total energy and mass diagnostics developed
by Lauritzen and Williamson (2019) to monitor that the
interface between FV3 and CAM physics operates correctly.
In addition, the diagnostics provide a break-down of the total
energy budget of CAM-FV3 and a scientific understanding
of the total energy errors of FV3 within CAM/CESM.

The TE budget for the dynamical core can be split into 3
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We use the Held-Suarez test case (no topography, simple

u,v,T parameterization) to assess AAM conservation of the

dynamical core:
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Axial Angular Momentum (AAM) diagnostics for CAM-FV
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30-year average precipitation rate for JJA for (a) CAM-FV3,
(b) GPCP observations, (c¢) difference and (d) the same as (c)
but for CAM-FV:
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Time to solution as a function of the number of tracers
(effectively dynamical core timings only since a simple warm
rain microphysics physics package is used).
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