



### **Dynamical core development opportunities**



#### **Peter H. Lauritzen on behalf of CESM/CAM**

Climate and Global Dynamics Laboratory, National Center for Atmospheric Research

**CESM Atmosphere Model Working Group Meeting, 19 – 21 February 2019** 

#### What applications are dynamical cores used for in CESM?

- "IPCC class" simulations: 1°, 32 levels, 33 tracers - throughput important (~20 SYPD): CAM-FV (needs to be replaced!)
- WACCM(-x): well-resolved stratosphere, 1°, 70 levels, 200 tracers - throughput important (~4 SYPD): CAM-FV (needs to be replaced!)
- New(er) frontiers:
  - data-assimilation (Pause-Resume project + SIMA)
  - variable resolution climate modeling (~100km to ~25km or ~10km); Artic configuration!
  - SIMA: coupled and uncoupled "weather"-scale modeling (~3-10km)
    - -> at ~3km need non-hydrostatic equation set
  - applications: regional air quality, tropical cyclones, hydrological extremes
  - SIMA: geospace modeling (to ionosphere)
    - -> should use "deep" equation set

SIMA = System for Integrated Modeling of the Atmosphere (used to be called SingleTrack) SIMA is composed of common atmospheric model components & infrastructure



# **Current status of dynamical cores in CESM/CAM**

• CAM-FV: only fixing bugs, no new development

#### CAM-SE and CAM-SE-CSLAM developments:

- dry mass vertical coordinate (Lauritzen et al., 2018)
- separate physics grid option (Herrington et al., 2018)
- more accurate and faster transport option (Lauritzen et al., 2017)
- ~20 SYPD with CAM6 on ~1800 cores ~4 SYPD WACCM6 with ~5400 cores diffusive dycores ...
- support for variable resolution (Zarzycki et al., 2017, ...)
- promising CAM-SE-CSLAM AMIP results thus far
- still needs to be setup and evaluated in coupled configuration and scientifically evaluated in WACCM and CAM-Chem







## **Current status of dynamical cores in CESM/CAM**

- **CAM-FV3:** NOAA funded effort to integrate the official EMC version of FV3 dynamical core into CAM
  - hydrostatic version integrated (non-hydrostatic is a "switch")
    - (scientifically verified that it is coupled to physics correctly using energy diagnostics Lauritzen et al., 2019)
  - Simpler models configurations tested
  - AMIP configuration is being scientifically evaluated
  - working towards a CAM trunk supported version
  - setting up coupled & WACCM configurations
  - our deliverable to NOAA is functional support for various configurations (includes making sure it is integrated scientifically correctly) and making it accessible to the community







### **Current status of dynamical cores in CESM/CAM**

#### CAM-MPAS developments (SIMA effort):

- Non-hydrostatic dynamical core with mesh-refinement capability
- Being integrated into CAM in a way that it can be supported (both scientifically and from a software engineering perspective)
- Collaboration between MMM, CISL and CGD.
- Status: MPAS build inside of CESM/CAM complete; next step is setting up grids in CAM and coupling to CAM physics









#### **Summary**

- CAM-SE and CAM-SE-CSLAM nearly ready to attempt to replace FV for CAM, CAM-Chem, and WACCM applications; CGD is working with HAO on CAM-SE-CSLAM version for WACCM-x.
- Several CESM/CAM dycore integration efforts ongoing (FV3 and MPAS)

-> Once they are integrated we can start evaluating them for various applications:

#### Last year we discussed idealized testing for CAM applications

http://www.cesm.ucar.edu/events/wg-meetings/2018/presentations/amwg/lauritzen.pdf

- Note: None of the new (or old) dynamical cores currently have non-hydrostatic deep atmosphere capability!
- Please contact me if you want to be involved in dynamical core testing and evaluation