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ABSTRACT

As observations and atmospheric reanalyses have improved, the diagnostics that can be computed with
confidence also increase. Accordingly, a new formulation of the energetics of the atmosphere is laid out, with a
view to advancing diagnostic studies of Earth’s energy budget and flows. It is utilized to produce assessments
of the vertically integrated divergences in both the atmosphere and ocean. Careful conservation of mass is
required, with special attention given to the hydrological cycle and redistribution of mass associated with
precipitation and evaporation, and a new method for ensuring this is developed. It guarantees that the at-
mospheric divergence is associated with moisture and precipitation, unlike previous methods. A new term,
identified as associated with the enthalpy of precipitation, is included in a preliminary way. It is sensitive to the
formulation, and the use of temperature in degrees Celsius instead of Kelvin greatly reduces errors and
produces the extra term with values up to about +5 W m™2. New results for 2000 to 2016 are presented for the
vertical-mean and annual-mean diabatic atmospheric heating, atmospheric moistening, and total atmospheric
energy divergence. Results for the atmospheric divergence are combined with top-of-atmosphere radiation
observations to deduce total surface energy fluxes. Along with estimates of changes in ocean heat content, the
Atlantic Ocean meridional heat transports are recomputed for March 2000 through 2013. The new results are
compared with previous estimates and an assessment is made of the effects of the new mass balance, change in
temperature scale, and the extra precipitation enthalpy term.
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Assume:

- Primitive equations (hydrostatic, shallow atmosphere, ideal gas)

- Assume model top pressure is constant

- All components of moist air have the same temperature and move with the same horizontal velocity

- Assume that water entering the atmosphere (evaporation, snow drift, sea spray) has same temperature as water
leaving the atmosphere (dew, liquid and frozen precipitation) DEFINITELY NOT ALWAYS ACCURATE!

Then it can be shown that the following globally integrated total energy equation holds:

8 ice
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Now also assume that the energy equation is valid for grid mean values in the model (QUESTIONABLE
ASSUMPTION!)
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Modified CAM total energy equation incl. missing flux terms
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Modified (consistent) total energy equation assuming variable latent heats
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; Concluding remarks B NCAR

Most global models do NOT rigorously account for processes associated
with falling precipitation and evaporation in terms of kinetic, potential and

internal energy

-> incl. boundary fluxes (in particular, enthalpy flux) improves energy budget massively!
(other processes: frictional heating of falling precipitation, horizontal drag of precipitation, ...)

Being rigorous in terms of monitoring energy conservation forces modelers
to consider thermodynamic consistency between different

parameterizations as well as dynamical core!
(inconsistency between CAM and CLUBB discussed in Lauritzen et al. (2022, in prep))

For the enthalpy fluxes to be consistent with modern ocean models (e.g.
MOMS6), atmosphere models must use variable latent heats
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