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Outline (of manuscript)

Theoretical energetics/budgets (section 2)

Start with the dry hydrostatic primitive equations (HPE) and gradually increase the thermodynamic complexity by first adding water
vapor and then condensates to the HPE. Special attention is given to the derivation of enthalpy terms (and associated reference
states), latent heat terms and surface flux terms. For these models, a detailed explanation of the approximations made in
large-scale models can be included rigorously. An in-depth discussion is included of surface fluxes and the complications arising
due to falling precipitation and/or water entering the atmosphere using a single-component fluid approach.

Energy (existing & missing) budget terms of a climate model ......
- See also Oksana Guba’s talk (for the purpose of this discussion E3SM and CAM are the same!)

Energy budget errors (section 4)

Numerical truncation energy errors in dynamical cores (adiabatic). (see Lauritzen and Williamson, 2019)

- Physics—dynamics coupling errors due to spatial and temporal discretization errors. (see Donahue & Caldwell,
2020, Lauritzen and Williamson, 2019)

- Thermodynamic inconsistency energy errors in physics:
°As an illustration we discuss a specific example in some detail: coupling the CLUBB cloud parameterization

package with the CAM climate model.

- Thermodynamic and vertical coordinate inconsistencies between dynamical core and parameterizations:

* different vertical coordinates (see Lauritzen et al., in prep, for z-based MPAS coupling with p-based CAM)

* different enthalpy definitions (e.g., FV3/SE coupled with CAM)

Mass “clipping” errors and energy
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‘Assume:

Lauritzen et al. (2022, submitted)

- Primitive equations (hydrostatic, shallow atmosphere, ideal gas)

- Assume model top pressure is constant

- All components of moist air have the same temperature and move with the same horizontal velocity

- Assume that water entering the atmosphere (evaporation, snow drift, sea spray) has same temperature as water
leaving the atmosphere (dew, liquid and frozen precipitation) Just for notational simplicity!

Then it can be shown that the following globally integrated total energy equation holds:

0 ice
Fn ///p(d){K + &, + cgd)T + Z m® [K + P + cz(,e) (T — Too) + h(()o )]

Lel Hy0 symbol description unit
. O heat capacity at constant pressure of species £ J/K/k
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IZGC H. 2 o Ly 00- latent heat of vaportization J/K
9 4 D, surface geopotential m?/s?
( ) P dry air density kg/m?
T temperature K

’IN"q common temperature at surface K
~ T horizontal velocity vector m/s
(ice reference enthalpy, Ts = Tatm,s = Tsurf,s)
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- Primitive equations (hydrostatic, shallow atmosphere, ideal gas)

- Assume model top pressure is constant

- All components of moist air have the same temperature and move with the same horizontal velocity

- Assume that water entering the atmosphere (evaporation, snow drift, sea spray) has same temperature as water
leaving the atmosphere (dew, liquid and frozen precipitation) Just for notational simplicity!

Then it can be shown that the following globally integrated total energy equation holds:

a T = 1 7 = T ice
Fn ///p(d){K + &, + céd)T + Z m® [K + P + cz(,e) (T — Too) + h(()o )]
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IZGC H. 2 o Ly 00- latent heat of vaportization J/K
9 4 D, surface geopotential m?/s?
( ) P dry air density kg/m?

T temperature K
T common temperature at surface K
T horizontal velocity vector m/s

(ice reference enthalpy, ?s E}atm,s ="Tourt.s)
Now also assume that the energy equation is valid for grid mean values in the model (QUESTIONABLE ASSUMPTION!
No sub-grid reservoir of energy ...)
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Then it can be shown that the following globally integrated total energy equation holds: Equivalent to

Many models

Primitive equations (hydrostatic, shallow atmosphere, ideal gas)

Assume model top pressure is constant
All components of moist air have the same temperature and move with the same horizontal velocity

Assume that water entering the atmosphere (evaporation, snow drift, sea spray) has same temperature as water
leaving the atmosphere (dew, liquid and frozen precipitation) Just for notational simplicity!

assuming constant
latent heats!

0 > . ® ) ice
= ///p(d){K +@+c0T+ D m® [K +®, + ¢ (T — Too) + his )] /
teLm0 \

make these Lu,o =" wv’ + ML, o0 + mEDL f,oo}dA dz cff) = Céd)l\

assumptions:

use variable latent heats
and CAM physics not ->
(9 leads to 0.5W/m2
imbalance (Lauritzen
and Williamson, 2019)

E.g. FV3 and NCAR-SE
}dA

- [T T wmﬂ F) Lgo+ FS50 Lo+ FLErored
Ze/‘

(ice reference enthalpy, Ts = Tatm.s = Tsurf.s)

Now also assume that the energy equation is valid for grid mean values in the model (QUESTIONABLE ASSUMPTION!
No sub-grid reservoir of energy ...)
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Imbalance of incl. all forms of water in
CAM’s parameterization total energy equation:
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Assume: Lauritzen et al. (2022, submitted)

- Primitive equations (hydrostatic, shallow atmosphere, ideal gas)

- Assume model top pressure is constant
- All components of moist air have the same temperature and move with the same horizontal velocity

- Assume that water entering the atmosphere (evaporation, snow drift, sea spray) has same temperature as water
leaving the atmosphere (dew, liquid and frozen precipitation) Just for notational simplicity!

Then it can be shown that the following globally integrated total energy equation holds:
%///p(d){EJFES +IT+ Y m® [K + &, + ¢ (T — Too) + h(”e)]

Many models teLnyo

make these Li,0 =" wv’ ROV o0 + m(liq)Lf,OO}dA dz ) = cgd)l

assumptions: —
// F o e w) + huce)J T(va)Ls 00+F‘7(L?;1)L £,00 _'_}T‘T(Lilzrb rad)}dA
Ze/‘
99—

(ice reference enthalpy, ?’S = Eatm,s = Esm« #.0)
Now also assume that the energy equation is valid for grid mean values in the model (QUESTIONABLE ASSUMPTION!
No sub-grid reservoir of energy ...)
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Dry-mass adjustment mean: 0.32 W/m»2
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From energy perspective it is problematic to consistently represent rain from the point at

which it becomes falling precipitation: frictional dissipation (Pauluis et al, 2000), T_s, drag h NCAR

exerted by rain. Note: possible to consistently incl. frictional dissipation of rain by using
= -0 barycentric velocity framework (see Appendix F in Lauritzen et al, 2022, submitted)

Modified CAM total energy equation incl. missing flux terms
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Lauritzen et al. (2022, submitted)
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Modified (consistent) total energy equation assuming variable latent heats
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Theoretical energetics/budgets (section 2)

Energy (existing & missing) budget terms of a climate model .....s
- See Oksana Guba’s talk (for the purpose of this discussion E3SM and CAM are the samel)

Energy budget errors (section 4)

Numerical truncation energy errors in dynamical cores (adiabatic). (see Lauritzen and Williamson, 2019)

- Physics—dynamics coupling errors due to spatial and temporal discretization errors. (see Donahue & Caldwell,
2020, Lauritzen and Williamson, 2019)

- Thermodynamic inconsistency energy errors in physics:
°As an illustration we discuss a specific example in some detail: coupling the CLUBB cloud parameterization

package with the CAM climate model.

- Thermodynamic and vertical coordinate inconsistencies between dynamical core and parameterizations:

* different vertical coordinates (see Lauritzen et al., in prep, for z-based MPAS coupling with p-based CAM)

* different enthalpy definitions (e.g., FV3/SE coupled with CAM)

Mass “clipping” errors and energy

Summary and future directions



; [ Thermodynamic conserved variable h NC AR
aal inconsistency leading to total energy errors

An example: Coupling CLUBB with CAM (problem identified by Chris Golaz in 2010)

In detail, CLUBB transports an approximate form of the conserved moist poten-
tial temperature 6; (see Tripoli & Cotton, 1981; Cotton et al., 2011), which is defined
as

L .
6, =TI ! — ‘g—&‘;‘)n-lmﬂzq), (151)
Cp
where II is the Exner function, which is purely a function of pressure. CLUBB then re-
turns to CAM the following tendency of 6;,
00, 0 —_—
PO +m™) =oLuss = [ﬁ(d)(l + () w'eg] , (152)
%z
(152) interms of T

Assuming no 1 - _
surface fluxes / = (DAT — L, goAm"0) 5l (1 + mir™) dz = 0. (155)
and K changes in IT¢n

cLuBB Lauritzen et al. (2022, submitted)



i@ Thermodynamic conserved variable h NC AR
Raal inconsistency leading to total energy errors

An example: Coupling CLUBB with CAM (problem identified by Chris Golaz in 2010)

/ (DAT — Ly, 00AmHD) 582 (1 + mi™) dz = 0. (158)
CAM'’s conserved variable A
/ %tn (P AT — L, 00AmHD) i (1 + mge™) dz = 0. (155)

CLUBB'’s conserved variable
Lauritzen et al. (2022, submitted)



1-year column averaged imbalance using CAM (CESM)

TE irr:balar:ce /V\‘ fricti?nal hleat m('ean: (%.41 V:l/m’\2
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Lauritzen et al. (2022, submitted)



Thermodynamic inconsistency in sensible heat flux in
CAM-CLUBB

Neglect kinetic energy (i.e. assume for the moment that CLUBB does not alter winds).
neglect radiation and assume that there are no phase changes. Then CAM’s energy equa-

tion reduces to: 5
= / {p@ [1 3 m(“’“)] gd)T} dz = Fowrd) (159)
In contrast, CLUBB conserves
a w wv e —\tur
= / {p(d) [1 + Y ti] ee} dz = 59 [1 + ti] wo! ), (160)

That is, CLUBB conserves a potential temperature variable rather than temperature.
In the absence of phase changes, (160) becomes

surface

0 . (w1 T —(turd)
a {pw [1+m( >]ﬁ}d _ Ftur), (161)
Sensible heat flux should (D)
be scaled with Exner - —(turd) _ F_ .
currently not done in CAM F et (d)H :
(Changmg soon though!) Lauritzen et al. (2022, submitted)
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Thermodynamic inconsistency in sensible heat flux in

CAM-CLUBB

CLUBB sensible heat flux consistency experiments
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Lauritzen et al. (2022, submitted)
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