#### Here we value respectful dialogue, please . . .



#### CGD's Vision: A Culture of Respect & Belonging

#### https://www.cgd.ucar.edu/about/diversity

**Revised June 2023** 

| Norm                                           | Meeting Agenda and Action                                                                                        |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Share the Air OR<br>Share Speaking Time        | MEETING AGENDA: specify time for individuals with different and varied perspectives                              |
|                                                | ACTION: Designate a facilitator (who encourages <b>sharing</b> ).<br>Speak <b>concisely</b> when it's your turn. |
| Show Appreciation &<br>Acknowledge<br>Teamwork | MEETING AGENDA: Include <b>bright spots</b> as an agenda item; create collaborative time during meetings         |
|                                                | ACTION: Include your <b>team member's name</b> on your slides, name who provided you with the idea               |
| Listen to Understand                           | MEETING AGENDA: everyone <b>summarizes</b> ; write and <b>share</b> meeting minutes                              |
|                                                | ACTION: Ask real questions to <b>learn more</b> , not to argue - for example, "Tell me more"                     |
| Communicate Context                            | MEETING AGENDA: Items or discussion start with<br>background information                                         |
|                                                | ACTION: Describe the <b>goal/purpose</b> of the conversation/meeting                                             |
| Value New Ideas &                              | MEETING AGENDA: specify time for new ideas/innovation,                                                           |
|                                                | ACTION: "Tell me more," and build on others ideas - "yes, that's great , <b>and (not but)</b> "                  |
| Offer Constructive                             | MEETING AGENDA: make time for review and reflection                                                              |
| - Coubler                                      | ACTION: ask "what worked well?" Check your<br>understanding. Ask "what feedback would be meaningful?"            |

## Julio's slide from CESM workshop, June 13, 2023

## **Co-chair rotation!!**

I will be rotating off after 6 interesting and eventful years.

Peter Lauritzen will become the new internal AMWG co-chair, starting this week.



June 2017







### AMWG overview (incl. CAM-SIMA)



Kevin Reed External AMWG co-chair Stony Brook University Hui Wan External AMWG co-chair PNNL

Peter Hjort Lauritzen Internal (NCAR) AMWG co-chair **Cecile Hannay** AMWG Science Liaison

#### February 12, 2024

## Outline

- CAM code base: What CAM-SIMA means for CAM? (SIMA = System for Integrated Modeling of the Atmosphere)
- CESM3/CAM7 timeline
- CAM6 -> CAM7
- CESM3 coupled development

CAM-SIMA will replace CAM as the atmospheric component of CESM. CAM-SIMA will continue to be governed by the AMWG, but through its enabling applications outside CESM's current capabilities, CAM-SIMA will provide a means to pursue different and new types of scientific problems, while broadening the CESM user base and contributing to a more diverse community.



## One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

CAM4,5,6 and 7 (currently called cam\_dev) physics uses the same "driver code":

Complicated logic, "hidden" dependencies, hard to change physics scheme ordering (e.g., took months to move CLUBB call from after coupler to before),

physics/cam/zm\_conv\_intr.F90: use phys\_control, only: phys\_deepconv\_pbl, phys\_getopts, cam\_physpkg\_is . . . physics/cam/zm\_conv\_intr.F90: use phys\_control, only: cam\_physpkg\_is if( microp\_scheme == 'RK' ) then physics/cam/zm\_conv\_intr.F90: if ( .not. cam\_physpkg\_is('cam3')) then physics/cam/zm\_conv\_intr.F90: use phys\_control, only: cam\_physpkg\_is ! Calculate stratiform tendency (sedimentation, detrain, cloud fraction and min else if  $(nbulk > 0 . and. cam_physpkg_is('cam4'))$  then physics/cam/zm conv intr.F90: call t startf('rk stratiform tend') physics/cam/original1.convect\_shallow.F90: use phys\_control, only : cam\_physpka\_is call rk\_stratiform\_tend(state, ptend, pbuf, ztodt, & physics/cam/original1.convect\_shallow.F90: if( cam\_physpka\_is('cam3') .or. cam\_physpkq\_is('cam4') ) then cam\_in%icefrac, cam\_in%landfrac, cam\_in%ocnfrac, & cam in%snowhland, & ! sediment physics/cam/original1.nucleate\_ice\_cam.F90:use phys\_control, only: cam\_physpkg\_is dlf. dlf2. & ! detrain rlig . & ! check energy after detrain physics/cam/original1.nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then cmfmc, & physics/cam/original1.nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then cam in%ts, cam\_in%sst, zdu) physics/cam/original1.nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then call physics\_update(state, ptend, ztodt, tend) call check energy chng(state, tend, "cldwat tend", nstep, ztodt, zero, prec str physics/cam/original1.nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then call t stopf('rk stratiform tend') physics/cam/original1.nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then if (cam\_physpkg\_is("cam\_dev")) then elseif( microp\_scheme == 'MG' ) then physics/cam/original1.nucleate\_ice\_cam.F90: ! Start co-substepping of macrophysics and microphysics physics/cam/cospsimulator\_intr.F90: use phys\_control, only: cam\_physpka\_is cld\_macmic\_ztodt = ztodt/cld\_macmic\_num\_steps physics/cam/nucleate\_ice\_cam.F90:use phys\_control, only: cam\_physpkg\_is ! Clear precip fields that should accumulate. physics/cam/nucleate\_ice\_cam.F90: if (cam\_physpkg\_is("cam\_dev")) then prec sed macmic = 0. r8 snow sed macmic = 0. r8 prec\_pcw\_macmic = 0.\_r8 physics/cam/nucleate ice cam.F90: if (cam physpka is("cam dev")) then snow pcw\_macmic = 0. r8

## One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

Maintaining code base untenable (with current staffing levels): recommendation from large inter institutional group (NCAR, NOAA, NRL, ...) of software engineers was to create CCPP



The CCPP is a software framework that automatically generates the Fortran interface (cap) layer for a physics parameterization (scheme).

Note:

- The CCPP will always reside in a host model. For example, the host model is responsible for how tendencies from physics are added to the model state (conservation!!!).
- The dycore is not part of the CCPP!
- Once a parameterization is ported we pull it into cam\_development (i.e. no duplication of physics schemes in the repositories)

See Jesse Nusbaumer's presentation from last AMWG winter meeting



## One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

Maintaining code base untenable (with current staffing levels): recommendation from large inter institutional group (NCAR, NOAA, NRL, ...) of software engineers was to create CCPP



Common Community Physics Package (CCPP)

The CCPP is a software framework that automatically generates the Fortran interface (cap) layer for a physics parameterization (scheme).

Status of CCPP'ization of CAM:

- Close to done with porting CESM simpler models physics to the CCPP
- CAM7 physics to be ported by end of FY25. Full chemistry and aerosols will be ported by end of FY25 or soon afterwards
- Funded NSF CSSI proposal for porting CAM4,5,6ish

See Jesse Nusbaumer's presentation from last AMWG winter meeting

CAM-SIMA

For example, not porting old radiation package (will use RRTMG-P), ...

#### **CAM-SIMA:** New infrastructure to support CCPP and other functionality

A new code repository for CAM (to be released with CESM3.x where x>0):





## Outline

- CAM code base: What CAM-SIMA means for CAM? (SIMA = System for Integrated Modeling of the Atmosphere)
- CESM3/CAM7 timeline
- CAM6 -> CAM7
- CESM3 coupled development



#### **Draft CMIP7 Timeline**



UCAR

## Outline

- CAM code base: What CAM-SIMA means for CAM? (SIMA = System for Integrated Modeling of the Atmosphere)
- CESM3/CAM7 timeline
- CAM6 -> CAM7
- CESM3 coupled development



## From CAM6 towards CAM7: what is already part of CAM7?

Increase vertical resolution (~93 levels; incl. extra layers in boundary layer) and raise model top to ~80km (new COMPSET name FMTHIST, low top version FLTHIST with 58 levels)

Some WACCM settings now default in FMT/FLT: Same simplified chemistry in low and high top (CO2 is advected and radiatively active), unified treatment of gravity waves

Changed dynamical core from FV (used for CAM4,5,6) to spectral-elements (SE): lots of changes to the original HOMME dynamical core (dry-mass vertical coordinate, incl. condensates in pressure and energy, reference profiles to alleviate noise of steep orography, physics grid, CSLAM transport scheme, ...

Switched from MG to PUMAS microphysics code base (incl. several science changes) Updated L-scale CLUBB code with prognostic momentum transport



AMWG Overview

| F | From C                 | PUMAS v1                                                                                                                                                           | 17?               |   |
|---|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
|   | Increase v             | Fall speed correction for rain/snow/graupel                                                                                                                        | odel top to ~80km |   |
|   | (new COM               | Adjust ice number limiter (independent of aerosols, at end of scheme)                                                                                              |                   |   |
|   | Some WA0<br>(CO2 is ad | Adds in vapor deposition onto snow as a process                                                                                                                    | high top          |   |
|   |                        | Implicit fall speed for sedimentation                                                                                                                              |                   |   |
|   |                        | Accretion to see newly autoconverted rain (liquid only)                                                                                                            |                   |   |
|   | Changed d              | PUMAS is an external to CAM: https://github.com/ESCOMP/PUMAS                                                                                                       | f changes to the  |   |
|   | reference p            | See more details from A. Gettelman's presentation from last AMWG winter meeting<br>https://www.cesm.ucar.edu/sites/default/files/2023-03/2023-AMWG-A-Gettelman.pdf | cheme,            | / |
| 1 | l                      |                                                                                                                                                                    |                   |   |

Switched from MG to PUMAS microphysics code base (incl. several science changes) Updated L-scale CLUBB code with prognostic momentum transport



**AMWG Overview** 

## From CAM6 towards CAM7: almost or maybe in CAM7

CLUBB taus code (science evaluation ongoing): L-scale or taus for CAM7? It's decision time ...

Convective gustiness parameterization (PR submitted)

New gravity wave drag parameterizations (not in code base yet; science evaluation ongoing)

New radiation code base (RRTMG-P) (PR almost done)

Thermodynamically more advanced coupling between MOM6 and CAM7: Enthalpy fluxes (code almost ready for science evaluations; code changes involve coupler code CMEPS)



AMWG Overview

# One presentation per arrow\* this afternoon ...

| 14:05 | The impact of vertical resolution on the representation of the large scale<br>circulation within CAM | Isla Simpson     |
|-------|------------------------------------------------------------------------------------------------------|------------------|
| 14:20 | Changes to the hydrostatic spectral-elements dynamical core for CESM3:<br>SE-CSLAM                   | Peter Lauritzen  |
| 14:35 | Break                                                                                                |                  |
| 14:50 | Assembling tropospheric physics in a pre-industrial coupled setup                                    | Adam Herrington  |
| 15:05 | Comparing the CLUBB-L and CLUBB-taus damping algorithms in CAM<br>and CESM experiments               | Ben Stephens     |
| 15:20 | Convective gustiness                                                                                 | Meg Fowler       |
| 15:35 | Drag parameterizations and stratospheric wind biases                                                 | Julio Bacmeister |
| 15:50 | RRTMG-P update                                                                                       | Brian Medeiros   |
| (C) ( |                                                                                                      |                  |

\*SE dycore and enthalpy flux arrows in same talk (because they are intrinsically related!)



## Outline

- CAM code base: What CAM-SIMA means for CAM? (SIMA = System for Integrated Modeling of the Atmosphere)
- CESM3/CAM7 timeline
- CAM6 -> CAM7
- CESM3 coupled development



# Two candidate CAM7 configurations based on two versions of CLUBB: L and taus



#### Configurations

#26g: Coupled Evaluation 1

 L58, ZM2, physics reordering, subcycle surface fluxes in macmic loop
MOM6, CICE5/6

**#75: Coupled Evaluation 2 - CLUBB-L** 

- Update PUMAS, update CLUBB, update MAM, HB above diff.

**#77: Coupled Evaluation 2 - CLUBB-taus** 

- Same as #75 but using CLUBB taus code

More details in Adam Herringtons talk later today ...



# Nino3.4 index

Ensemble Summary: Niño3.4 Standard Deviation (Monthly)



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ē

Left: The orange lines represent values from CLUBB-L configuration (#75), and are the same for both panels. The top panel box plots (showing 10%/25/median/75/90%) values) represent the spread seen in the 78 60yr slices from the CESM2 piControl. The bottom panel box plots represent the spread seen in 13 overlapping 60yr periods from observations.

"The match between CLUBB-L config. and observations seen in the bottom panel is likely the best I've ever seen from a CESM run." A. Phillips

Right: Frequency analysis

Disclaimer: #75 is only 60 years!

CESM3dev-75-TS 43-102





0.9

0.6 0.3

# Hovmoller diagrams



Plots courtesy of Adam Phillips



El Nino's not transitioning ⇐to La Nina's in 75 (similar to other developmen versions)

**CLUBB-L** configuration

#### **CLUBB-taus configuration**



See also Adam Herrington's presentation ...

8 Tot

## Labrador sea freeze: Perturbation experiments



Perturbations of 64 (total 7 runs): 64e,64f,64i,64j: starting from 64 at yr 43 64g,64h: starting from 64 at yr 33 Only 64, 64e has frozen

Disclaimer: Sample size is small ...











Vational Center for Atmospheric Research is a major facility sponsored by the ASA under Cooperative Agreement No. 185297