

Frequently used acronyms:

CESM = Community Earth System Model CAM = Community Atmosphere Model

CCPP and related work in CGD

Peter Hjort Lauritzen

Senior Scientist Internal AMWG (Atmospheric Model Working Group) co-chair for CAM

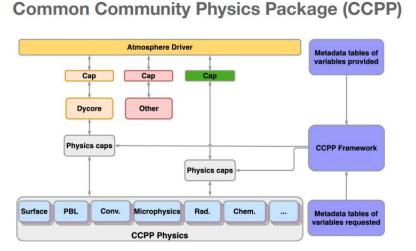
Climate and Global Dynamics Laboratory (CGD)

National Science Foundation (NSF) National Center for Atmospheric Research (NCAR)

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

CAM4,5,6 and 7 (currently called cam_dev) physics uses the same "driver code":


Complicated logic, "hidden" dependencies, hard to change physics scheme ordering (e.g., took months to move CLUBB call from after coupler to before),

physics/cam/zm_conv_intr.F90: use phys_control, only: phys_deepconv_pbl, phys_getopts, cam_physpkg_is . . . physics/cam/zm_conv_intr.F90: use phys_control, only: cam_physpkg_is if(microp_scheme == 'RK') then physics/cam/zm_conv_intr.F90: if (.not. cam_physpkg_is('cam3')) then physics/cam/zm_conv_intr.F90: use phys_control, only: cam_physpkg_is ! Calculate stratiform tendency (sedimentation, detrain, cloud fraction and min else if $(nbulk > 0 . and. cam_physpkg_is('cam4'))$ then physics/cam/zm conv intr.F90: call t startf('rk stratiform tend') physics/cam/original1.convect_shallow.F90: use phys_control, only : cam_physpka_is call rk_stratiform_tend(state, ptend, pbuf, ztodt, & physics/cam/original1.convect_shallow.F90: if(cam_physpka_is('cam3') .or. cam_physpkq_is('cam4')) then cam_in%icefrac, cam_in%landfrac, cam_in%ocnfrac, & cam in%snowhland, & ! sediment physics/cam/original1.nucleate_ice_cam.F90:use phys_control, only: cam_physpkg_is dlf. dlf2. & ! detrain rlig . & ! check energy after detrain physics/cam/original1.nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then cmfmc, & physics/cam/original1.nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then cam in%ts, cam_in%sst, zdu) physics/cam/original1.nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then call physics_update(state, ptend, ztodt, tend) call check energy chng(state, tend, "cldwat tend", nstep, ztodt, zero, prec str physics/cam/original1.nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then call t stopf('rk stratiform tend') physics/cam/original1.nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then if (cam_physpkg_is("cam_dev")) then elseif(microp_scheme == 'MG') then physics/cam/original1.nucleate_ice_cam.F90: ! Start co-substepping of macrophysics and microphysics physics/cam/cospsimulator_intr.F90: use phys_control, only: cam_physpka_is cld_macmic_ztodt = ztodt/cld_macmic_num_steps physics/cam/nucleate_ice_cam.F90:use phys_control, only: cam_physpkg_is ! Clear precip fields that should accumulate. physics/cam/nucleate_ice_cam.F90: if (cam_physpkg_is("cam_dev")) then prec sed macmic = 0. r8 snow sed macmic = 0. r8 prec_pcw_macmic = 0._r8 physics/cam/nucleate ice cam.F90: if (cam physpka is("cam dev")) then snow pcw_macmic = 0. r8

CAM-SIMA

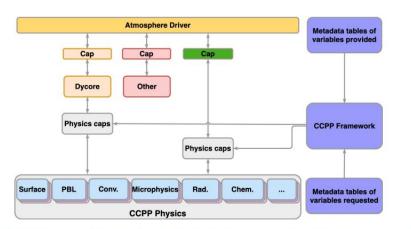
One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

Maintaining code base untenable (with current staffing levels): recommendation from large inter institutional group (NCAR, NOAA, NRL, ...) of software engineers was to create CCPP

The CCPP is a software framework that automatically generates the Fortran interface (cap) layer for a physics parameterization (scheme).

Note:

- The CCPP will always reside in a host model. For example, the host model is responsible for how tendencies from physics are added to the model state (conservation!!!).
- The dycore is not part of the CCPP!
- Once a parameterization is ported we pull it into cam_development (i.e. no duplication of physics schemes in the repositories)


See Jesse Nusbaumer's presentation from last AMWG winter meeting

CAM-SIMA

One motivation for CAM-SIMA: physics scheme "clarification" and flexibility

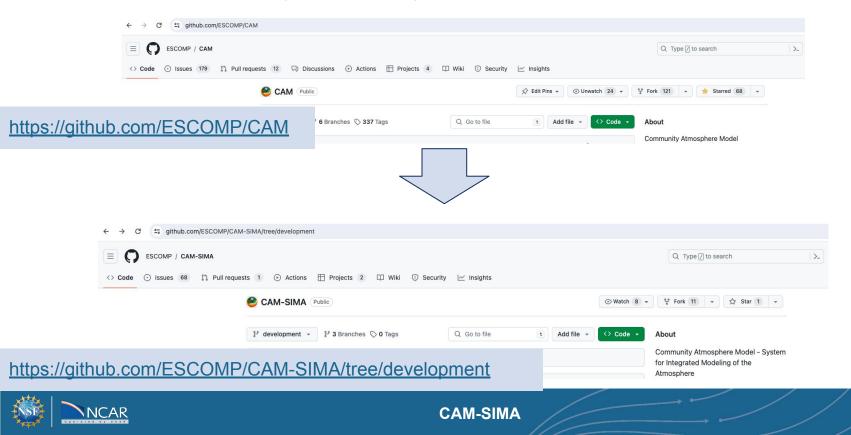
Maintaining code base untenable (with current staffing levels): recommendation from large inter institutional group (NCAR, NOAA, NRL, ...) of software engineers was to create CCPP

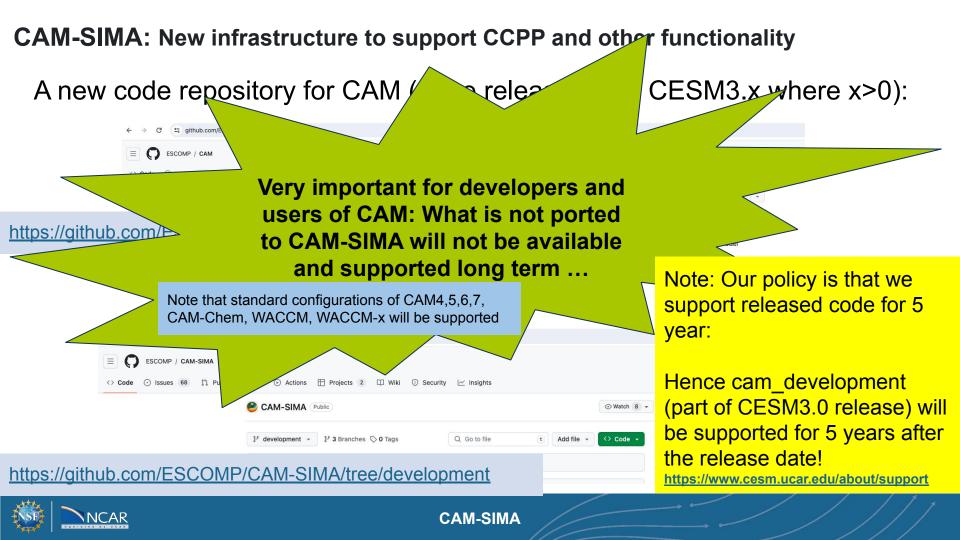
Common Community Physics Package (CCPP)

The CCPP is a software framework that automatically generates the Fortran interface (cap) layer for a physics parameterization (scheme).

Status of CCPP'ization of CAM:

- Close to done with porting CESM simpler models physics to the CCPP
- CAM7 physics to be ported by end of FY25. Full chemistry and aerosols will be ported by end of FY25 or soon afterwards
- Funded NSF CSSI proposal for porting CAM4,5,6ish

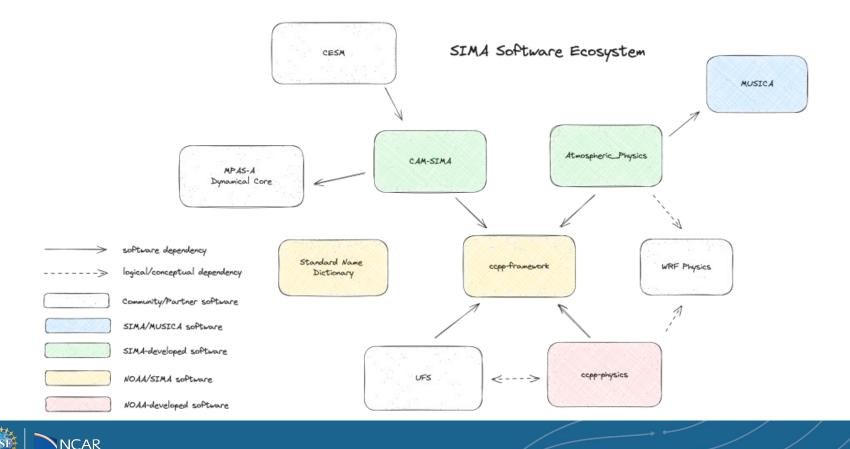

See Jesse Nusbaumer's presentation from last AMWG winter meeting


CAM-SIMA

For example, not porting old radiation package (will use RRTMG-P), ...

CAM-SIMA: New infrastructure to support CCPP and other functionality

A new code repository for CAM (to be released with CESM3.x where x>0):

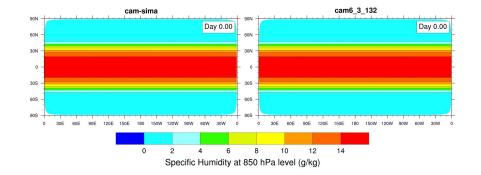


On the factory floor of model development ...

https://sima.ucar.edu/what-we-do/technical-developments

CAM-SIMA infrastructure

- Modularization of history (started by Steve G.; now Courtney)
- Constituents object (already in core framework; is NOAA using it?)
- Dycore port: dynamic levels and number of tracers (runtime); can also change number of tasks without recompiling


Testing/validation

- Using snapshots of state before and after parameterization from cam_development run and use of validation in CAM-SIMA
- Regression tests in cam_development
- Little regression testing in CAM-SIMA (this is highly needed but postponed due to time constraints from funders); unit testing for helper schemes

CAM-SIMA: idealized physics mostly done

- Baroclinic wave with simple warm rain microphysics (Kessler)
- Held-Suarez physics
- Moist Held-Suarez (TJ16) physics

Animation courtesy of Adam Herrington

CAM-SIMA: planned work for CAM7 (and older CAM versions)

Scheme =	Status \Xi	Assignee =	Estimate (FTE months) =		
clubb_tend_cam	Not Started	Adam	9		
PUMAS (microp_driver_tend)	Not Started	Jesse	9		
hack (convect_shallow)	In Progress	Haipeng	4		
rk_stratiform_tend	Not Started	Haipeng	4		
HB PBL	Not Started	Haipeng	4		
cam_thermo_water_update	In Progress	Haipeng	3		
RRTMGP (radiation_tend)	Not Started	Courtney	3		
qneg4	Not Started		2		
ZM (convect_deep & convect_deep_tend_2)	In Progress	Cheryl	1.5		
flux_avg_run	Not Started		1		
check_energy_chng	In Progress	Haipeng	1		
vertical_diffusion_tend	In Progress	Michael W	1		
rayleigh_friction_tend	Not Started	Kate	1		
gw_tend	In Progress	John T	1		
physics_dme_adjust	In Progress	Brian D	1		
tropopause_output	Done	Haipeng	1		
state & tendency diagnostics	In Progress	Courtney	0.5		
set_dry_to_wet	Done	Steve	0		
qneg3	Done	Courtney / Steve	0		
dadadj_tend	Done	John T	0		
		Total FTE months	47		

Time sinks and lessons learned

- PR's to two repos
- CCPP standard naming (biweekly meeting software engineers <-> scientists)
 almost done for CAM
- Debugging constituents (in particular SE dycore)
- Restructure code for CCPP'ization (legacy code; decades old)
 probably biggest time sink
- cam_development keeps evolving (we are in rapid model development phase for CESM3)
- Quick back and forth between software engineers and scientists very important!
 need very close collaboration (we do 1.5-3hours hackathons every week)

Time sinks and lessons learned

- PR's to two repos
- CCPP standard naming (biweekly meeting software engineers <-> scientists)
 almost done for CAM
- Debugging constituents (in particular SE dycore)
- Restructure code for CCPP'ization (legacy code; decades old)
 probably biggest time sink
- cam_development keeps CESM3)

Adam Herrington (CGD) will be our first scientist paid for CCPP work (focus on CLUBB)

ment phase for

Quick back and forth between software engineers and scientists very important!
 need very close collaboration (we do 1.5-3hours hackathons every week)

🗳 CAM-SIMA

🔥 🔍 Search

cam-sima 0 - Background & Pren work		0 - Background & Prep work	Table of contents
Home		o Baokground at rep work	Background
	~		Running jobs in CAM and CAM- SIMA
0 - Background & Prep work Background		Background	Prep Work
1 - Convert the "portable" laye	er		Conversion Spreadsheet
2 - Create metadata Running jobs in CAM and CAM-SIMA		Create Github Issues	
3 - Create namelist XML file		See this section for how to run CAM-SIMA and CAM.	
4 - Interstitials		See this section for now to run CAM-SIMA and CAM.	Setting up your sandbox
5 - Create an SDF Depending on which machine you are on, you may prefer to run the ./case.build command on a compute node instead of the login node due to user resource utilization limits on the login nodes.		Set up local clones and branches	
		branches	
7 - Check metadata			
8 - Run CAM-SIMA			
9 - Bring back into CAM	Bring back into CAM Prep Work		
Walkthrough Example			
Design	>	Conversion Spreadsheet	
Development	>	Put the parameterization that you are going to convert into the conversion spreadsheet.	
Usage	>		
Atmospheric_physics	>	Create Github Issues	
		1. Create a Github Issue in the ESCOMP/CAM repo that states which physics parameterization you are planning to convert to the CCPP	

framework.

Some personal ideas on future developments with the CCPP!

National Center for Atmospheric Research is a major facility sponsored by the National Cooperative Agreement No. 1952

Generalized thermodynamic infrastructure moving forward?

This is likely more involved than defining common functions to compute Exner pressure, potential temperature, etc.

• Parameterizations should be told how to change temperature due to heating

dQ = rho*cp(d)*dT (some models use generalized cp, some use cv)

- Phase changes: host model should tell the parameterization how to compute heating due to phase changes (to support variable latent heats)
- Isotopes: needs to know details of phase transitions and mixing

CSSI proposal being prepared to explore this (isotope focus though!)

WGNE Questionnaire on physics-dynamics coupling and energy budgets in Earth System Models

Peter Lauritzen (CGD/NCAR) and Romain Roehrig (Meteo France)

Effort started in 2023

National Center for Atmospheric Research is a major facility sponsored by the Maturater Cooperative Agreement No. 1885

Why this effort on physics-dynamics coupling and energy budgets?

No coordinated effort to discuss/evaluate how/if Earth System Models close total energy budgets (yet climate change is an energy imbalance!)

It is a very technical subject and model development is not always published

Why WGNE? The Working Group on Numerical Experimentation (WGNE) has responsibility for the development of Earth system models for use in weather, climate, water and environmental prediction on all time scales, and diagnosing and resolving shortcomings.

⁸Toward Consistent Diagnostics of the Coupled Atmosphere and Ocean Energy Budgets

MICHAEL MAYER AND LEOPOLD HAIMBERGER

Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

JAMES Journal of Advances in Modeling Earth Systems[°]

Physics-dynamics coupling is often overlooked or regarded as a technical detail; this paper is an attempt to draw more attention to this "complex" topic!

P. H. Lauritzen¹, N. K.-R. Kevlahan², T. Toniazzo^{3,4}, C. Eldred⁵, T. Dubos⁶, A. Gassmann⁷, V. E. Larson^{8,9}, C. Jablonowski¹⁰, O. Guba⁵, B. Shipway¹¹, B. E. Harrop⁹, F. Lemarié¹², R. Tailleux¹³, A. R. Herrington¹, W. Large¹, P. J. Rasch⁹, A. S. Donahue¹⁴, H. Wan⁹, A. Conley¹, and J. T. Bacmeister¹

Featured as Editor's Highlight in Eos:

https://eos.org/editor-highlights/consistently-closing-the-energy-budget-in-earth-system-models

Paper link: <u>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003117</u> (warning: 83 pages)

Paper earned the 2023 UCAR/NCAR outstanding publication award

Modeling groups who responded (received many in-depth responses)

- NCEP GFS/UFS (USA)
- GFDL (USA)
- NASA GISS (USA)
- CNRM-CM (France)
- CMC (Canada)
- ECMWF IFS (Europe)
- DOE E3SM (USA)
- NCAR CESM3/CAM7 (USA)

Vational Center for Atmospheric Research is a major facility sponsored by the ASA under Cooperative Agreement No. 185297