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Orography variables

e PHIS: surface geopotential

* SGH30: standard deviation of topography on

scales approximately < 3-6 km.
Used for turbulent mountain stress (TMS) parameterization

(sub-grid-scale orographic drag)

* SGH: standard deviation of topography on scales
approximately > 3-6km (and < grid scale)

(momentum flux deposition due to unresolved gravity waves)

 (LANDFRAC: land-ocean mask)
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New software
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A standard test case suite for two-dimensional linear transport on
the sphere
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Abstract. It is the purpose of this paper to propose a standard
test case suite for two-dimensional transport schemes on the
sphere intended to be used for model development and facili-
tating scheme intercomparison. The test cases are designed to
assess important aspects of accuracy in geophysical fluid dy-
namics such as numerical order of convergence, “minimal”
resolution, the ability of the transport scheme to preserve fil-
aments, transport “rough” distributions, and to preserve pre-
existing functional relations between species/tracers under
challenging flow conditions.

Results manuscript in preparation with results from 10-15 state-of-the-art transport schemes
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Semi-Lagrangian scheme in HOMME Semi Lagrangian Scheme

Remapping
Two-dimensional transport equation on the sphere (no source/sinks):

d
= dz =0,
dt /A<t>w '

1 .. .tracer density t...time A(t)...Lagrangian area

Christoph Erath 1/9



Semi-Lagrangian scheme in HOMME Semi Lagrangian Scheme

Remapping
Two-dimensional transport equation on the sphere (no source/sinks):

d
= dz =0,
dt /A<t>w '

1 .. .tracer density t...time A(t)...Lagrangian area
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The third order CSLAM scheme:

—nt1 : :
ot |Ax| = / WY}, ee dT = reconstruction x weights
Dy

weights. .. can be reused for each tracer ->multi-tracer efficient!
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Semi-Lagrangian scheme in HOMME

Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.
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Semi-Lagrangian scheme in HOMME Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.

.|____________

Christoph Erath 2/9



Semi-Lagrangian scheme in HOMME

Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.
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Semi-Lagrangian scheme in HOMME Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.

“|Finite volume grid
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Semi-Lagrangian scheme in HOMME Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.

“]Reconstruction
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Semi-Lagrangian scheme in HOMME

Challenges in HOMME

Different Halo Zone and Grid

because of the departure cell and the reconstruction.

One element with its halo zone!
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Semi-Lagrangian scheme in HOMME Challenges in HOMME

Summary of CSLAM in CAM-SE (HOMME)

@ Why HOMME? Because it is scalable up to 170000 cores.
@ We want to have a multi-tracer efficient advection scheme.

@ Departure grid and order of the scheme define the depth of the
halo zone.

@ Departure and arrival cells are always on the same core.
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Communication

Reconstruction coefficients depend on the tracer value, only ONE
nearest neighbor communication for each time step (array of multiple
tracer values).
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Semi-Lagrangian scheme in HOMME Challenges in HOMME

Summary of CSLAM in CAM-SE (HOMME)

@ Why HOMME? Because it is scalable up to 170000 cores.
@ We want to have a multi-tracer efficient advection scheme.

@ Departure grid and order of the scheme define the depth of the
halo zone.

@ Departure and arrival cells are always on the same core.

Communication

Reconstruction coefficients depend on the tracer value, only ONE
nearest neighbor communication for each time step (array of multiple
tracer values).

Mass conservation

The scheme in HOMME conserves mass to machine precision as well!
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Semi-Lagrangian scheme in HOMME

Performance

Scalability on NCAR/CU Blue Gene/L System

Standalone CSLAM, standard benchmark test.
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Semi-Lagrangian scheme in HOMME

Performance

Communication Time
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Semi-Lagrangian scheme in HOMME Performance

Comparison: Spectral Elements (SE) advection scheme
versus CSLAM in HOMME on NCAR’s Cray XTbm

@ Integrated in the atmospheric primitive equations SE, calculate
CSLAM departure grid from SE velocities

@ Resolution 0.75 degree on the equator, tstep= 50 s for the
dynamics, running the baroclinic test case for 15 days
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Semi-Lagrangian scheme in HOMME Performance

Comparison: Spectral Elements (SE) advection scheme
versus CSLAM in HOMME on NCAR’s Cray XTbm

@ Integrated in the atmospheric primitive equations SE, calculate
CSLAM departure grid from SE velocities

@ Resolution 0.75 degree on the equator, tstep= 50 s for the
dynamics, running the baroclinic test case for 15 days

o CFL SE < 0.28 with shape preserving mode, CFL CSLAM< 1
Tracer time steps: SE= 250 s, CSLAM= 800 s
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Semi-Lagrangian scheme in HOMME

Performance

Advection schemes SE and CSLAM
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Semi-Lagrangian scheme in HOMME Performance

Advection schemes SE and CSLAM
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Semi-Lagrangian scheme in HOMME Performance

Performance
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Semi-Lagrangian scheme in HOMME Performance

Future Work

@ More robustness tests.
@ Consistent coupling of CAM-SE mass field and CSLAM.

@ Integrating in CAM-SE from HOMME *“should be" straight
forward.
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Semi-Lagrangian scheme in HOMME Performance

Future Work

@ More robustness tests.
@ Consistent coupling of CAM-SE mass field and CSLAM.

@ Integrating in CAM-SE from HOMME *“should be" straight
forward.

Further Questions?

o erath@ucar.edu

o http://www.csc.cs.colorado.edu/~ce/
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