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Abstract
The flux-form incremental remapping transport scheme introduced by Dukowicz and Baum-
gardner [1] converts the transport problem into a remapping problem. This involves identifying
overlap areas between quadrilateral flux-areas and regular square grid cells which is non-trivial
and leads to some algorithm complexity. In the simpler swept area approach (originally intro-
duced by Hirt et al. [2]) the search for overlap areas is eliminated even if the flux-areas overlap
several regular grid cells. The resulting simplified scheme leads to a much simpler and robust
algorithm.

We show that for sufficiently small Courant numbers (approximatelyCFL≤1/2) the simplified
(or swept area) scheme can be more accurate than the original incremental remapping scheme.
This is demonstrated through a Von Neumann stability analysis, an error analysis and in idealized
transport test cases on the sphere using the ‘incremental remapping’-based scheme called FF-
CSLAM (Flux-Form version of the Conservative Semi-Lagrangian Multi-tracer scheme) on the
cubed-sphere.

Keywords: Conservative Transport, Cubed-sphere, Error Analysis, Finite-Volume, Flux-Form
Semi-Lagrangian, Von Neumann Stability Analysis, Remapping, Multi-Tracer Transport

1. Introduction

Consider the flux-form continuity equation for some inert and passive mass variable ψ (for
example, fluid density ρ or tracer density ρ q, where q is a mixing ratio)

∂ψ

∂t
+ ∇ · (ψ$v) = 0, (1)

where $v = (u, v) is the velocity vector. Following [1], the 2D Cartesian discretization of the
integral form of (1) for a particular grid cell A can be written as

(
ψ
n+1 − ψn

)
|A| − (FW + FS + FE + FN) = 0, (2)
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(a) West and east cell edge.
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(b) North and south cell edge.

Figure 1: Graphical illustration of the rigorous and simplified schemes for a constant traverse
flow (u = v). In both subfigures, A1 . . . A4 denote the Eulerian grid cells. The domains AW , AE
AN , and AS (gray) represent the flux-areas for the respective cell edges. See text for more details.

where (·) refers to the cell-averaged value, n the time-level index, |A| = ∆x∆y is the area of the
grid cell, FW is the flux of mass into the cell through its West cell edge (here we use standard
compass point notation), and similarly for the East, North and South cell edges. In the incre-
mental remapping approach, the flux is approximated through integration of the reconstruction
function ψn(x, y) over the area ‘swept’ through the cell edge during a time-step ∆t; these areas
are referred to as the flux-areas AW , AE , AN and AS for the respective cell edges as shown on
Fig. 1. For a recent review of ‘remap-type’ tracer transport schemes see the book chapter [3].

The incremental remapping scheme and simplified schemes are described with the aid of
Fig. 1. The flux-areas are approximated with quadrilaterals with the end points of the cell edges
as vertices as well as their upstream translated counterparts (shaded areas on Fig. 1). We assume
that trajectories do not cross. In the incremental remapping algorithm presented in [1] the flux
of mass through the West cell edge is given in terms of integrals over overlap areas between AW
and the regular grid cells A1 and A2 such that

FW =
∫

A1∩AW
ψn1(x, y) dx dy +

∫

A2∩AW
ψn2(x, y) dx dy, (3)

where ψnj (x, y) is the reconstruction function in cell j (see [1] for details). Similarly for the East,
North, and South cell edges. Note that FW , FS ≥ 0 and FE , FN ≤ 0 in Fig. 1.

For the West cell edge and simply-connected flux-area AW , the simplified scheme only uses
one sub-grid-cell reconstruction function (either the one immediately to the East or West of the
cell edge) for the entire flux integral, even if the flux-area spans more regular grid cells. This
approach, equivalent to the donor cell option in [2], is widely used in the literature and often
referred to as swept area remapping [e.g. 4, 5, 6]. The reconstruction function used is the one
‘upstream’. That is, for theWest edge the reconstruction functionψ n1(x, y) is used if |A1∩AW | ≥ 0
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Figure 2: Hourglass velocity movement: In Subfigure (a) point N 1 moves with $v = (0,−v), v > 0
whereas N2 with $v = (0, v). In Subfigure (b) the movement is vice versa. In both figures the other
nodes do not move. The fluxes through the East, South and West edges are 0 in both cases.

else ψn4(x, y). For the situation depicted on Fig. 1 the simplified fluxes are

Fsimple
W =

∫

AW
ψn1(x, y) dxdy, Fsimple

E = −
∫

AE
ψn4(x, y) dx dy, (4)

Fsimple
N = −

∫

AN
ψn4(x, y) dx dy, Fsimple

S =

∫

AS
ψn3(x, y) dxdy. (5)

Note that for CFL≤1 and flow parallel to either of the coordinate directions, the rigorous and
simplified schemes are identical

Fsimple
T = FT , for $v = (u, 0) or $v = (0, v), (6)

where T ∈ {N, S , E,W}. Hence the rigorous and simplified schemes differ the most when the
flow is traverse to the grid lines ($v = (u, u) = (v, v)).

For flux areas that are not simply-connected (i.e. where the flow direction normal to the cell
face changes resulting in overlap areas on either side of the cell edge as illustrated on Fig. 2), there
are basically two approaches for computing the flux within the simplified scheme methodology.
We use the situation depicted on Fig. 2(a) to explain the schemes.

The flux-area AN is split into two triangles AN,1 and AN,2, one on each side of the North flux-
face. In this case AN,1 is located to the North and AN,2 to the South of the flux edge, respectively.
One can either choose to use the same reconstruction function (determined by the largest overlap
area) to integrate over AN,1 and AN,2

Fsimple
N =




∫
AN,1
ψn1(x, y) dxdy −

∫
AN,2
ψn1(x, y) dxdy if |AN,1| > |AN,2|,∫

AN,1
ψn2(x, y) dxdy −

∫
AN,2
ψn2(x, y) dxdy else,

(7)

or one can choose to use the reconstruction function immediately to the North and South of the
flux edge to integrate over AN,1 and AN,2, respectively,

Fsimple
N =

∫

AN,1
ψn1(x, y) dxdy −

∫

AN,2
ψn2(x, y) dx dy. (8)
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Similarly for the East, West and South faces. As for the simply connected flux-integrals, even
if the triangular area AN,1 span more Eulerian cells only one reconstruction function is used to
integrate over AN,1 (similarly for AN,2). For the flow situations depicted on Fig. 2 the simplified
scheme (8) is equivalent to the rigorous scheme since AN,1 and AN,2 do not span more than one
Eulerian cell.

First a Von Neumann stability and error analysis of the rigorous (original incremental remap-
ping) and simplified schemes is presented for a traverse flow for which the flux-areas are simply-
connected (quadrilaterals). An error analysis for the ‘hourglass’ flow is presented as well to
investigate the accuracy when the flux-areas are not simply connected. Both of these flow situ-
ations appear frequently in practical simulations. Thereafter results for idealized transport test
cases on sphere, using a flux-form version of the CSLAM scheme [7] on the cubed-sphere (re-
ferred to as FF-CSLAM [8]), based on rigorous and simplified fluxes are presented.

2. Theoretical analysis

2.1. Von Neumann stability analysis - traverse flow
We closely follow the Von Neumann analysis of [9], that is, assume a constant velocity

$v = (u, v) with u = v (traverse flow which is the most challenging case [9]), and ∆x = ∆y.
Assume a solution in the form

ψn(x, y) := ψ0Γneı(kx x+kyy),

where ı is the imaginary unit, ψ0 the initial amplitude, kx = 2π/Lx and ky = 2π/Ly are the
wavenumbers in each coordinate direction (L x and Ly are the corresponding wave lengths), re-
spectively, and Γ is the complex amplification factor that can be written as

Γ = |Γ|e−ıω∗∆t, (9)

where ω∗ is the numerical frequency. We define the relative frequency R := ω ∗/ω in terms of the
exact frequency

ω = µ
(
kx∆x + ky∆y

)
, (10)

where µ := µx = µy = u∆t/∆x = v∆t/∆y is the dimensionless displacement parameter that is
identical in each coordinate direction for traverse flow and equidistant grid-spacing. The scheme
is unstable for |Γ| > 1. For simplicity we assume ‘symmetric’ waves, i.e. L x = Ly.

As in [9] the von Neumann stability analysis is performed for three reconstruction functions:
Piecewise Constant Method (PCM) where ψnj (x, y) is a constant function in each grid cell, Piece-
wise Linear Method (PLM) where ψnj(x, y) is a 2D bilinear function as used in [1], and Piecewise
Parabolic Method (PPM) where ψnj(x, y) is a fully 2D biparabolic reconstruction function with
cross-terms (see [7] for details). Fig. 3 depicts the squared modulus of the amplification factor
|Γ|2 and relative frequency R for the rigorous incremental remapping and simplified scheme.

Considering first |Γ|2 we note that the simplified scheme based on any of the reconstruction
methods is less damping than the rigorous scheme for µ ≤ 1/2. In fact, the simplified scheme
based on PCM or PLM is exact (|Γ|2 = 1 and R = 1) for µ = 1/2 contrary to the rigorous scheme
that is most damping for µ = 1/2. When µ exceeds half the simplified scheme based on PCM
and PLM becomes unstable. When using PPM the simplified scheme starts damping more than
the rigorous scheme for µ > 1/2 and becomes unstable for the shortest wavelength for µ > 3/4
(for wavelengths longer than approximately L x = Ly = 4 the simplified scheme is stable for
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Courant numbers exceeding one). The simplified scheme most likely becomes unstable because
the region of ‘extrapolation’ (overlap between flux-area and non-adjacent upstream grid cell, e.g.,
A2 ∩ AW for AW ) becomes too large compared to the flux-overlap-area adjacent and upstream to
the cell edge (e.g., A1 ∩ AW). Similar observations are made for the relative frequency R.

2.2. Error analysis - traverse flow
In the error analysis we make the same assumptions as for the Von Neumann stability analy-

sis. For simplicity we assume PCM and analyze the situation depicted on Fig. 1. Let ψ n(x, y) =
eı(kx x+kyy) denote the exact solution so that the exact mean flux over an area A j is

ψ j =
1
|Aj|

∫

Aj

ψn(x, y) dx dy,

which represents the approximation on the Eulerian grid A j, j = 1 . . .4. The numerical flux,
which enters the West cell edge of A4, for the rigorous and simplified scheme are

FW = |A1 ∩ AW |ψ1 + |A2 ∩ AW |ψ2 and Fsimple
W = |AW |ψ1,

respectively. The exact flux on the West cell edge is

FexactW =

∫

AW
ψn(x, y) dx dy.

With the parameter µ = u∆t/∆x we can write |A1 ∩ AW | = (µ − µ2/2)∆x2 and |A2 ∩ AW | =
(µ2/2)∆x2. Note that we assume ∆x = ∆y and u = v. For the other sides the approximation
is done similarly according to Fig. 1. With this notation, the errors for the rigorous scheme,
εT := FexactT − FT for T ∈ {W, E,N, S }, are given by

εW = ı∆x3
1
2
kxµ(1 − µ) + O(∆x4) & εE = −ı∆x3

1
2
kxµ(1 − µ) + O(∆x4),

εS = ı∆x3
1
2
kyµ(1 − µ) + O(∆x4) & εN = −ı∆x3

1
2
kyµ(1 − µ) + O(∆x4).

(11)

The above is computed by evaluating the integrals with respect to the origin (0, 0) according
to Fig. 1 and then writing the errors in a Taylor Series expansion. Similarly for the simplified
scheme the errors, ε simpleT := FexactT − Fsimple

T , are given by

ε simpleW = ı∆x3
1
2µ
(
kx − µ(kx + ky)

)
+ O(∆x4) & ε simpleE = −ı∆x3 12µ

(
kx − µ(kx + ky)

)
+ O(∆x4),

ε simpleS = ı∆x3
1
2
µ
(
ky − µ(kx + ky)

)
+ O(∆x4) & ε simpleN = −ı∆x3 1

2
µ
(
ky − µ(kx + ky)

)
+ O(∆x4).

(12)

Note that εW,E and εN,S in (11) are independent of ky and kx, respectively, since the corre-
sponding wave part is parallel to the sides.

The errors εW,E and ε simpleW,E differ in the terms of

kx(1 − µ) and kx − µ(kx + ky),
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so if

0 < µ < 2kx
2kx + ky

then the simplified scheme using only one reconstruction function instead of two is more accu-
rate. Note that kx, ky > 0. Similarly for the errors εS ,N and ε simpleS ,N where we get

0 < µ <
2ky

2ky + kx
.

For kx = ky the errors εT and ε simpleT for T ∈ {W, E,N, S } only differ in one factor, namely 1−µ
versus 1 − 2µ. That means, the absolute error of the simplified scheme fluxes is indeed better at
least for 0 < µ < 2/3, which is in the stability range µ ∈ (0, 1/2). In other words the absolute
value of ε simpleT is (1 − µ)/(1 − 2µ)-times better than εT .

2.3. Error analysis - ‘hourglass’ flow
The Von Neumann stability and error analysis assumed a traverse flow for which the flux-

areas are simply-connected quadrilaterals. Here we analyze a situation, that appears frequently in
practial (non-idealized) simulations, in which the flux-area is non-simple using the ‘hourglass’
velocity field for the North flux edge. That is, the West node N 1 for the Northern flux edge
moves Southward with $v = (0,−v), v > 0 and the East node N 2 moves in the opposite direction
(Northward) at the same rate $v = (0, v) (Fig. 2(a)) or vice versa (Fig. 2(b)). The flux-area is
non-simple and can be divided into a triangle North of the flux edge (A N,1) and South of the flux
edge (AN,2). All other nodes for the cell are stationary so there is no flux through the East, West
and South cell edges.

For the situation depicted on Fig. 2(a) the exact flux is

FexactN =

∫

AN,1
ψ(x, y) dx dy −

∫

AN,2
ψ(x, y) dx dy.

The numerical flux for the simplified scheme using two reconstruction functions (which in this
case is identical to the rigorous scheme since |AN,1 ∩ A1| = |AN,1| and |AN,2 ∩ A2| = |AN,2|) and
simplified scheme based on one reconstruction function for the integral over A N,1 ∪ AN,2 are

FN = |AN,1|ψ1 − |AN,2|ψ2 = |AN,1|
(
ψ1 − ψ2

)

(note that |AN,1| = |AN,2|) and

Fsimple
N = |AN,1|ψ1 − |AN,2|ψ1 = 0

= |AN,1|ψ2 − |AN,2|ψ2 = 0,

respectively. Using the same techniques as used for the error analysis for the traverse flow pre-
sented above and the point of origin as in Fig. 2(a), leads to

εN,H = ı∆x3
1
12
µ
(
ky(2µ − 3) − 2kx

)
+ O(∆x4) and ε simpleN,H = ı∆x3

1
6
µ(kyµ − kx) + O(∆x4).

(13)
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The errors εN,H and ε simpleN,H differ in the terms of

ky
(
µ − 3

2

)
− kx and kyµ − kx,

so if

µ <
3
4
+
kx
ky
, (14)

then the simplified scheme using only one reconstruction function instead of two is more accu-
rate. The condition (14) is always met in practice since k x, ky > 0 and 0 ≤ µ ) 1.

If we change the sign of v so that node N1 moves with v > 0 whereas N2 with −v (see Fig. 2b)
and perform the same analysis, the corresponding errors are

εN,H = ı∆x3
1
12
µ
(
ky(2µ − 3) + 2kx

)
+ O(∆x4) and ε simpleN,H = ı∆x3

1
6
µ(kyµ + kx) + O(∆x4).

(15)

Now the errors differ by

ky
(
µ − 3

2

)
+ kx and kyµ + kx.

so the simplified scheme using only one reconstruction function is more accurate than the sim-
plified scheme using two reconstruction functions for the flux-integral over A N only if

µ <
3
4
− kx
ky
.

For symmetric waves (kx = ky) the simplified scheme is always more accurate for the ‘anti-
clockwise’ flow (Fig. 2(a)) whereas for the ‘clockwise’ flow (Fig. 2(b)) the rigorous scheme is
always more accurate.

3. Results

To evaluate if the findings for the linear analysis also hold in more complicated settings,
we use the global transport scheme FF-CSLAM on the cubed-sphere grid. The FF-CSLAM
scheme is based on the incremental remapping algorithm but extended to the sphere and third-
order accuracy. Also, instead of using Gaussian quadrature the overlap integrals are converted
to line-integrals on the gnomonic projection using the Divergence theorem which provides a
rigorous treatment of the metric terms [12]. Since the cubed-sphere discretization is based on
quadrilaterals in computational space, the simplified FF-CSLAM scheme is implemented exactly
as outlined in Cartesian geometry. Each of the cubed-sphere panels is partitioned into N 2 cells,
and the equivalent resolution with respect to the regular latitude-longitude sphere at the equator
is approximately 90◦/N. For all simulations we use N = 60 corresponding to approximately
1.5◦ resolution. We solve the coupled system of continuity equations for air density ρ and tracer
density ρ q as described in [11]. Initial condition for ρ is one everywhere and q is non-constant as
described below for the particular test cases. The coupling between the continuity equation for ρ
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Table 1: Standard error norms for q for the translational (solid-body), moving vortices [10],
and highly deformational [11] (‘boomerang’) test cases for different configurations of the third-
order FF-CSLAM scheme. Maximum CFL number (the longest distance traveled by a parcel in
units of the grid-spacing) of the two coordinate directions locally on each cubed-sphere panel is
approximately 0.42, 0.53, and 0.53 for each of the three test cases, respectively.

Scheme Experiment (1 (2 (∞ φmax φmin
rigorous solid-body 0.0013 0.0063 0.0104 −0.0025 −0.0077
simplified solid-body 0.0012 0.0061 0.0102 −0.0026 −0.0077
rigorous moving vortices 0.0018 0.0064 0.0332 0.0000 0.0000
simplified moving vortices 0.0016 0.0060 0.0309 0.0000 0.0000
rigorous ‘boomerang’ 0.0565 0.1150 0.1548 −0.1403 −0.0573
simplified ‘boomerang’ 0.0551 0.1126 0.1503 −0.1386 −0.0571

and ρ q in FF-CSLAM is described in Appendix A of [8]. All error norms are based on mixing
ratio q. Below we do not distinguish between the two versions of the simplified scheme for non-
simple flux-areas since the results were indistinguishable in terms of standard error norms most
likely since the non-simple flux areas are very rare for the idealized test cases considered here.

First we use the standard solid-body test case [13] and the exact same setup as [14], that
is, rotation angle 45◦ (predominantly traverse flow on the Equatorial cubed-sphere panels), one
revolution completed in 576 time-steps and cosine hill initial condition for q (with amplitude
1000 and radius 1/3). Standard error norms (see, e.g., Appendix C in [11]) for the rigorous and
simplified schemes are given in Table 1. The simplified scheme is slightly more accurate than the
rigorous scheme as expected from the Von Neumann stability analysis for traverse flows. Similar
results are obtained with the moving vortices test case [10] (∆t is chosen such that one revolution
is completed in 576 time-steps as in [14]).

To challenge the schememore we use the recently developed strongly deformational test case
on the sphere [11] (their Case-4). The time-step is chosen such that the simulation is completed
in 1200 time-steps and cosine hills initial condition is used. Again, the findings are very similar
to the solid-body transport case even though the flow is strongly deformational.

4. Conclusions

In this paper we have demonstrated that the incremental remapping algorithm for small
Courant numbers (approximatelyCFL<1/2) can be simplified significantlywith minimal changes
in accuracy. The simplification is only to use the reconstruction function in the cell immediately
upstream to a cell face for the entire flux computation and, hence, no search for overlap areas
that is necessary for the original (rigorous) incremental remapping algorithm is needed. The sim-
plified scheme (unlimited) is slightly more accurate in idealized test cases on the sphere using
the ‘incremental remapping’-type FF-CSLAM scheme on the cubed-sphere. Therefore a Von
Neumann stability analysis and error analysis on the Cartesian plane with traverse as well as
‘hourglass’ flows were performed and those confirmed our findings.

Although the computational cost of the search algorithm in the rigorous incremental remap-
ping scheme becomes marginal for an increased number of tracers, we believe that the simplified
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scheme will render this flux-form semi-Lagrangian method more robust and computationally
competitive even for a small number of tracers. For large Courant numbers, however, the rigor-
ous scheme, e.g. FF-CSLAM, must be used.
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Figure 3: Squared modulus of the amplification |Γ| 2 (first column) and relative frequency R (sec-
ond column) for the rigorous incremental remapping scheme (solid lines) and simplified scheme
(dashed lines) as a function of the displacement parameter µ and wavelength L for traverse flow
(µ = µx = µy) and ‘symmetric’ waves (Lx = Ly). Contours are marked on the plots and the
shaded areas mark where the simplified scheme is unstable (|Γ| 2 ≥ 1). First, second, and third
rows are for reconstruction functions based on the PCM, PLM, and PPM, respectively.
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