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Lagrangian formulation of CSLAM

The 2D transport equation (no sources/sinks) for cell Ay 1s given by:
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where 1 is the density, dA is the element area, and A, (¢) Lagrangian area.

O//7( Use upstream discretization:

: 5 | e Ay (t+Ar) = A, = Eulerian grid cell with area AA;
a%./ I e Ai(t) = a; = corresponding upstream Lagrangian (de-
c formed) cell with area day

Then (1) can be written as

Ve A = by (2)
where @nﬂ 1s the average of ¢ over Ay and
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e Use polynomial reconstruction functions in each Eulerian cell £ in the form
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where cél’] ) are derived coefficients ensuring mass-conservation.
e Reconstructions are piecewise parabolic, and so third order accurate.

e Since fy(x,y) is local to Ay and no continuity across cell borders is enforced,
the integration over a; 1n (5) must be split into overlap integrals
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where L 1s the number of overlap areas and
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e We convert area integrals in (5) into line-integrals by applying the Gauss-
Green theorem (Dukowicz 1984):

//akgfz(x,y) dxdy = féakf [Pdx+Qdy],

where day is the boundary of a, and —48 + 22 = f(x,y).

e = CSLAM scheme 1s given by (Lauritzen et al. 2010)
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where w,(féj ) are functions of the coordinate locations of the vertices of a.y and

can be re-used for each additional tracer (multi-tracer efficiency).

Flux-form formulation of CSLAM (FF-CSLAM)

The two-dimensional transport equation (no sources/sinks) for a cell Ay:
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where dA; is the boundary of static Eulerian cell A; and 7 the outward nor-
mal vector to dA;. The second-term on the left-hand side of (7) represents the
instantaneous flux of mass through the boundaries of Ay.
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where s* = £1 for inflow and outflow, respectively, and face-fluxes
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where L; 1s the number of non-empty overlap areas between the flux-area a;
and the Eulerian grid. More details in Harris and Lauritzen (2010).

Note that the union of the areas used in FF-CSLAM and CSLAM are
1dentical

AA —37_, (st x 8af) = day,
1.e. the two schemes will produce identical results.

e Extension to the cubed-sphere 1s described 1in Lauritzen et al. (2010).

e Method extendable to other unstructured spherical grids (e.g. icosahedral).

Monotonicity preservation
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e A priori (“Monotone filtering”): Filter the reconstruction
fr(x,y) so that extreme values lie within the adjacent cell-

— 1o filter

average values. ,

e A posteriori (“Monotone limiting”): Limit the fluxes to prevent new extrema
in P! using flux-corrected transport (Zalesak 1979).

e Selective filtering/selective limiting (Blossey and Durran 2008): apply filter-
ing or limiting only where a smoothness metric exceeds a certain threshold.

Why flux-form?

e FF-CSLAM can use flux limiters and flux-corrected transport (Zalesak 1979)
as well as reconstruction filtering to enforce shape-preservation (monotonic-
ity and positivity), while Lagrangian CSLAM is restricted to filtering.

e Flux-form methods allow sub-cycling, or tracer advection at a longer
timestep than that of the dynamics. This 1s done by accumulating the air-mass
fluxes for the continuity equation over the long timestep and multiplying by
the time- and space-averaged mixing ratio for the tracer.

Results: smooth cosine bell test
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Convergence plots for
C2 cone

e A smooth cosine bell tracer distribution was advected once around the sphere,
over the corners of the cubed-sphere grid.

e The selective methods converge with third-order accuracy (see above) and re-
tain physical extrema (see below), unlike either monotone filtering or mono-
tone limiting.

a) Unlimited b) Monotone filter/limiter c) Selective filter/limiter

Efficiency (for one tracer)

e For CFL<1 FF-CSLAM 1s at most 40% more expensive than CSLAM (for
CFL~3 FF-CSLAM is approximately 110% more expensive than CSLAM)

e The monotone filtering 1s much less efficient than monotone limiting in FF-
CSLAM (monotone limiting almost doubles the cost whereas monotone fil-
tering almost triples the cost)

e Selective filtering 1s more efficient than monotone limiting!

DOE BER effort: Implement (FF-)CSLAM into CAM-HOMME
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