A Flux-form version of the Conservative Semi-Lagrangian Multi-Tracer Transport Scheme (CSLAM) Peter H. Lauritzen ^{a,*} and Lucas M. Harris^b

^a pel@ucar.edu, Climate and Global Dynamics Division, National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA. ^b **Iharris@atmos.washington.edu**, Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA.

Lagrangian formulation of CSLAM

The 2D transport equation (no sources/sinks) for cell A_k is given by:

$$\frac{d}{dt}\int_{A_k(t)}\psi\,dA=0,\quad \text{Lagrangian}$$

where ψ is the density, dA is the element area, and $A_k(t)$ Lagrangian area.

	A _k
a	

Use upstream discretization:

• $A_k(t + \Delta t) = A_k$ = Eulerian grid cell with area ΔA_k • $A_k(t) = a_k$ = corresponding upstream Lagrangian (de-

formed) cell with area δa_k

Then (1) can be written as

$$\overline{\psi}_k^{n+1} \Delta A_k = \overline{\psi}_k^{*^n} \delta a_k$$

where $(\cdot)'$ is the average of ψ over A_k and

$$\overline{\psi_k^*}^n = \frac{1}{\delta a_k} \iint_{a_k} \psi^n(x, y) \, dx \, dy.$$

• Use polynomial reconstruction functions in each Eulerian cell ℓ in the form

$$f_{\ell}(x,y) = \sum_{i+j \leq 2} c_{\ell}^{(i,j)} x^i y^j, \quad i,j \in \{0,1,2\},$$

where $c_{\ell}^{(l,j)}$ are derived coefficients ensuring mass-conservation.

- Reconstructions are piecewise parabolic, and so third order accurate.
- Since $f_{\ell}(x, y)$ is local to A_{ℓ} and no continuity across cell borders is enforced, the integration over a_k in (5) must be split into overlap integrals

$$\overline{\psi_k^*}^n = \frac{1}{\delta a_k} \sum_{\ell=1}^{L_k} \iint_{a_{k\ell}} f_\ell(x, y) \, dx \, dy.$$

where L_k is the number of overlap areas and

- $a_{k\ell} = a_k \cap A_\ell, \quad a_{k\ell} \neq \emptyset; \quad \ell = 1, \dots, L_k.$
- We convert area integrals in (5) into line-integrals by applying the Gauss-Green theorem (Dukowicz 1984):

$$\iint_{a_{k\ell}} f_{\ell}(x,y) \, dx \, dy = \oint_{\partial a_{k\ell}} \left[P \, dx + Q \, dy \right],$$

where $\partial a_{k\ell}$ is the boundary of $a_{k\ell}$ and $-\frac{\partial P}{\partial v} + \frac{\partial Q}{\partial x} = f_{\ell}(x, y)$. • \Rightarrow CSLAM scheme is given by (Lauritzen et al. 2010)

$$\overline{\psi}_k^{n+1} \Delta A_k = \sum_{\ell=1}^{L_k} \iint_{a_{k\ell}} f_\ell(x, y) \, dx \, dy = \sum_{\ell=1}^{L_k} \left[\sum_{i+j \le 2} c_\ell^{(i,j)} w_{k\ell}^{(i,j)} \right]$$

where $w_{k\ell}^{(l,j)}$ are functions of the coordinate locations of the vertices of $a_{k\ell}$ and can be re-used for each additional tracer (multi-tracer efficiency).

Flux-form formulation of CSLAM (FF-CSLAM)

The two-dimensional transport equation (no sources/sinks) for a cell A_k :

$$\frac{d}{dt} \int_{A_k} \psi \, dA + \oint_{\partial A_k} (\psi \, \vec{v}) \cdot \vec{n} \, dS = 0, \quad \text{flux-form}$$

where ∂A_k is the boundary of static Eulerian cell A_k and \vec{n} the outward normal vector to ∂A_k . The second-term on the left-hand side of (7) represents the instantaneous flux of mass through the boundaries of A_k .

Flux-form version of CSLAM is based on semi-Lagrangian discretization of (7)

$$\overline{\psi}_k^{n+1} \Delta A_k = \overline{\psi}_k^n \Delta A_k + \sum_{\varepsilon=1}^4 s^{\varepsilon} F_k^{\varepsilon},$$

where $s^{\varepsilon} = \pm 1$ for inflow and outflow, respectively, and face-fluxes

$$F_k^{\varepsilon} = \sum_{\ell=1}^{L_k^{\varepsilon}} F_{k\ell}^{\varepsilon} = \sum_{\ell=1}^{L_k^{\varepsilon}} \iint_{a_k^{\varepsilon}} f_\ell(x, y) \, dx \, dy$$

where L_k^{ε} is the number of non-empty overlap areas between the flux-area a_k^{ε} and the Eulerian grid. More details in Harris and Lauritzen (2010).

Note that the union of the areas used in FF-CSLAM and CSLAM are identical

$$\mathbf{A} - \sum_{\varepsilon=1}^{4} \left(s^{\varepsilon} \times \delta a_{k}^{\varepsilon} \right) = \delta a_{k},$$

i.e. the two schemes will produce identical results.

- Extension to the cubed-sphere is described in Lauritzen et al. (2010).
- Method extendable to other unstructured spherical grids (e.g. icosahedral).

Monotonicity preservation

- A priori ("Monotone filtering"): Filter the reconstruction $f_{\ell}(x,y)$ so that extreme values lie within the adjacent cellaverage values.
- A posteriori ("Monotone limiting"): Limit the fluxes to prevent new extrema in $\overline{\psi}^{n+1}$ using flux-corrected transport (Zalesak 1979).
- Selective filtering/selective limiting (Blossey and Durran 2008): apply filtering or limiting only where a smoothness metric exceeds a certain threshold.

(1)

(2)

(3)

(4)

(5)

* Supported by **DOE BER program** #DE-SC0001658

m (Eulerian)

(7)

(9)

— no filter — monotone filter

Why flux-form?

- FF-CSLAM can use flux limiters and flux-corrected transport (Zalesak 1979) as well as reconstruction filtering to enforce shape-preservation (monotonicity and positivity), while Lagrangian CSLAM is restricted to filtering.
- Flux-form methods allow **sub-cycling**, or tracer advection at a longer timestep than that of the dynamics. This is done by accumulating the air-mass fluxes for the continuity equation over the long timestep and multiplying by the time- and space-averaged mixing ratio for the tracer.

Results: smooth cosine bell test

- A smooth cosine bell tracer distribution was advected once around the sphere, over the corners of the cubed-sphere grid.
- The selective methods converge with third-order accuracy (see above) and retain physical extrema (see below), unlike either monotone filtering or monotone limiting.

Efficiency (for one tracer)

- For CFL<1 FF-CSLAM is at most 40% more expensive than CSLAM (for CFL \approx 3 FF-CSLAM is approximately 110% more expensive than CSLAM)
- The monotone filtering is much less efficient than monotone limiting in FF-CSLAM (monotone limiting almost doubles the cost whereas monotone filtering almost triples the cost)
- Selective filtering is more efficient than monotone limiting!

DOE BER effort: Implement (FF-)CSLAM into CAM-HOMME

References

Blossey, P. and D. Durran, 2008: Selective monotonicity preservation in scalar advection. J. Comput. Phys., 227, 5160–5183. Dukowicz, J., 1984: Conservative rezoning (remapping) for general quadrilateral meshes. J. Comput. Phys., 54, 411–424. Harris, L. M. and P. H. Lauritzen, 2010: A flux-form version of the conservative semi-lagrangian multi-tracer transport scheme (cslam) on the cubed sphere grid. J. Comput. Phys., submitted. Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (cslam) on the cubed-sphere grid. J. Comput. *Phys.*, **229**, 1401–1424.

Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., **31**, 335–362.

