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ABSTRACT

A locally mass conservative shallow-water model using a two-time-level, semi-implicit, semi-Lagrangian
integration scheme is presented. The momentum equations are solved with the traditional semi-Lagrangian
gridpoint form. The explicit continuity equation is solved using a cell-integrated semi-Lagrangian scheme,
and the semi-implicit part is designed such that the resulting elliptic equation is on the same form as for the
traditional semi-Lagrangian gridpoint system.

The accuracy of the model is assessed by running standard test cases adapted to a limited-area domain.
The accuracy and efficiency of the new model is comparable to traditional semi-Lagrangian methods.

1. Introduction

In atmospheric modeling the accurate and very effi-
cient semi-implicit and semi-Lagrangian (SISL; see ap-
pendix A for a complete list of acronyms used in this
paper) time-stepping schemes have become popular
since their introduction by Robert (1969), Kwizak and
Robert (1971), and Robert (1981, 1982), respectively.
The popularity is reflected in the large number of me-
teorological centers that have adopted the SISL
schemes for operational models. Until recently a dis-
tressing deficiency of semi-Lagrangian models has been
their lack of inherent mass conservation, which can re-
sult in a significant drift in the global mass field (Moor-
thi et al. 1995) and most likely can also lead to signifi-
cant local errors (Machenhauer and Olk 1997). To re-
store global mass conservation ad hoc a posteriori
algorithms may be employed (e.g., Priestley 1993;
Gravel and Staniforth 1994; Bermejo and Conde 2002).
There is, however, a degree of arbitrariness in the way
these “mass fixing” algorithms repeatedly correct the

total mass without ensuring the fulfillment of the con-
tinuity equation for individual grid cells. In other
words, the “mass fixing” algorithms ensure global but
not local mass conservation. Recently such local or in-
herent mass-conserving advection, which also auto-
matically ensures global mass conservation, has been
achieved with the development of cell-integrated semi-
Lagrangian (CISL) advection scheme (Rančić 1992;
Nair and Machenhauer 2002; Nair et al. 2002; Zer-
roukat et al. 2004b). In these schemes, changes in the
total mass of cells moving with the fluid are computed
from the continuity equation applied to each cell. CISL
schemes are also referred to as finite-volume semi-
Lagrangian schemes or semi-Lagrangian remapping
schemes (Dukowicz and Baumgardner 2000) in the lit-
erature. In addition to being locally mass conservative,
accurate, and permitting long time steps, desirable
properties such as monotonicity and positive definite-
ness can easily be enforced when using CISL schemes.
To exploit the efficiency of semi-Lagrangian methods
in full models it is, however, important to use long time
steps, which require a special treatment of the equation
terms involved in gravity wave motions, for example, by
treating the fast waves semi-implicitly. So far CISL
schemes have only been applied to full models using
explicit time stepping (e.g., Lin 2004).
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The main novelty of the present study is the coupling
of the CISL scheme with a semi-implicit time stepping.
A preliminary study was made by Machenhauer and
Olk (1997) who derived a one-dimensional SISL shal-
low-water model based on CISL advection schemes
conserving either mass and total energy or mass and
angular momentum. The model is yet to be extended to
two dimensions and spherical geometry. In one dimen-
sion, the derivation of the semi-implicit scheme is
rather straightforward but the two-dimensional exten-
sion is not obvious. The reason is that the semi-implicit
scheme must be consistent with the cell-integrated
method, and in two dimensions, this geometric ap-
proach leads to a very complicated elliptic system. In-
stead, we follow a more simple approach suggested by
Kaas et al. (2005) for the formulation of a semi-implicit
CISL scheme that leads to a simpler elliptic system.

The model presented here is the first step toward a
long-term goal: the development of a dynamical core
for a global, baroclinic, quasi-hydrostatic, and SISL
model that is locally as well as globally mass conserving.
In such a model the application of the continuity equa-
tion for additional atmospheric constituents on CISL
form will automatically guarantee their local mass con-
servation. Note that if the continuity equation of a dy-
namical core using a pressure-based vertical coordinate
is solved with a numerical method different from a for-
mally mass conservative one used online or offline for
tracer transport, the mass of the tracer may not be con-
served or the transport may be modeled inaccurately,
even if the dynamical core is mass conservative. The
problem is caused by the lack of consistency between
the mass and wind field, which is explained in detail by
Jöckel et al. (2001). A major motivation for the devel-
opment of a semi-implicit CISL dynamical core is to
guarantee consistent online transport of chemical con-
stituents as well as the hydrological variables such as
water vapor and cloud water.

In this first step toward the long-term goal, a mass-
conserving SISL shallow-water system is set up and
tested for a limited area in spherical geometry. The
limited-area models (LAMs) cover a rectangular area
around the equator of a rotated spherical latitude–
longitude grid, which does not include the pole. Hence,
the pole problem is not explicitly treated here but pos-
sible extensions to a global domain are discussed. The
continuity equation is solved using a CISL method on
the ! grid, that is, a latitude–longitude grid in which the
latitude " is replaced by ! # sin(") (Nair and Machen-
hauer 2002, hereafter referred to as NM02), whereas
the momentum equations are solved using the tradi-
tional gridpoint semi-Lagrangian method on a rotated
spherical latitude–longitude grid. The semi-implicit

continuity equation is formulated such that the result-
ing elliptic equation is on the same form as for the
traditional SISL gridpoint system. The results of test
cases with the mass-conservative model are compared
to results obtained with a shallow-water version of the
traditional nonconserving SISL High Resolution Lim-
ited Area Model (HIRLAM) (McDonald and Haugen
1992; McDonald and Haugen 1993).

The mathematical formulation of the traditional
semi-Lagrangian method used for the momentum
equations and the formulation of the CISL method
used for the continuity equation are presented in sec-
tion 2. The accuracy of the model has been assessed
using selected problems from the standard test suite of
Williamson et al. (1992, hereafter referred to as W92).
The adaptations to a LAM setup and the results from
numerical integrations of selected test cases are pre-
sented in section 3. Hereafter, possible extensions to a
global domain are discussed (section 4) followed by a
summary.

2. The model

a. Governing equations

The equations used here are the shallow-water con-
tinuity equation

d!

dt
# $!! · v %1&

and the momentum equations on component form
(e.g., McDonald and Bates 1989)

du
dt

# $
1

a cos"

#!

#$
' f%, %2&

d%

dt
# $

1
a

#!

#"
$ fu, %3&

where ( is the geopotential height, f is the Coriolis
parameter, v is the velocity vector v # (u, )), d/dt is the
horizontal total derivative, ! is the horizontal gradient
operator, a is the radius of the earth, * is the longitude,
and " is the latitude. In a semi-Lagrangian model, the
trajectory equation

dr
dt

# v %4&

is one of the prognostic equations as well. Equations
(1)–(4) are the basis for the discretizations in traditional
semi-Lagrangian models.

To formulate a CISL continuity equation we inte-
grate (1) over an infinitesimal area +a moving with the
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fluid. For consistency the divergence ! · v in (1) must
be expressed on the Lagrangian form

! #
1

&a
d
dt

%&a&. %5&

Using (5) and integration by parts, (1) becomes the
CISL continuity equation

d
dt

%!&a& # 0. %6&

The discretizations in the model presented here are
based on (2), (3), (4), and (6).

b. Trajectory algorithm

The first step in the semi-Lagrangian algorithm is the
computation of the trajectories. The trajectory algo-
rithm used here works directly in (*, ") coordinates so
r # (*, "). To accommodate the semi-implicit formula-
tion of the continuity equation an iterative departure
point algorithm in which the trajectory is split into a
part involving only velocities extrapolated to time level
(n ' 1) and a part involving only velocities at time level
(n) is used. This is done by splitting the trajectory into
two segments (see Fig. 1):

1) The first contribution is the trajectory from the de-
parture point rn

* to the trajectory midpoint rn'1/2
*/2 .

Approximating this half-trajectory with a Taylor se-
ries expansion about the departure point, only ve-
locities at time level (n) are used. The Nth-order
approximation is given by

r*'2
n'1'2 # rn

* ' C1, %7&

where

C1 #
(t
2

vn

* ' ,
)#1

N$1 1
%) ' 1&! !(t

2 ")'1!d)v

dt)"n

*
.

%8&

The first-guess departure point is the arrival point
r n'1. The total derivative is approximated as in
McGregor (1993), that is, by discarding the Eulerian
velocity change

dv
dt

- v · !v, %9&

where the operator ! is expressed in spherical co-
ordinates. Higher-order derivatives are defined re-
cursively:

d)v

dt)
#

d
dt !d)$1v

dt)$1" ) # 2, 3, . . , N $ 1. %10&

2) The second contribution is the trajectory from the
midpoint rn'1/2

*/2 to the arrival point rn'1. A Taylor
series expansion about the arrival point involves
only extrapolated velocities ṽn'1, where the opera-
tor (·)

.n'1 is defined by

%·&
.n'1 # 2%·&n $ %·&n$1. %11&

We have

r*'2
n'1'2 # rn'1 $ C2, %12&

where

C2 #
(t
2

ṽn'1 $ ,
)#1

N$1 1
%) ' 1&! !$

(t
2 ")'1 d)

dt)
%ṽn'1&.

%13&

Combining (7) and (12) the departure point is
given in terms of the sum of two contributions

rn

* # rn'1 $ %C1 ' C2&. %14&

To increase accuracy C1 is iterated. Note that the
second contribution C2 is based entirely on grid-
point values of the velocity field and is not iterated.
We use the first-order (N # 1) approximation to the
departure point

rn

* # rn'1 $
(t
2 %vn

* ' ṽn'1&, %15&

for the Lagrangian divergence computations (see
below). For all other terms, we include the accelera-
tion (N # 2) for the trajectory computations and use
three iterations. For efficiency, bilinear, biquadratic,
and bicubic Lagrange interpolation is used for the
first, second, and third iteration, respectively. In the
present study, we did not investigate if fewer itera-
tions affect the accuracy of the model. This will be
the scope of future work.

FIG. 1. A space–time diagram (time is plotted on the y axis, and
departure point distance is plotted on the x axis) of a trajectory;
r n'1 is the arrival point, r n

* is the departure point, and r n'1/2
*

denotes the trajectory midpoint. Here C1 and C2 are the two
contributions to the trajectory. See text for details.
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c. The traditional semi-implicit, semi-Lagrangian
discretization

The shallow-water Eqs. (1)–(3) can be written as

d*

dt
# N* ' L*; * # u, %, !, %16&

where L/ and N/ are the linear and nonlinear parts of
the right-hand side of the equation for /, respectively.
The explicit two-time-level traditional semi-Lagrangian
discretization of (16) is given by

*exp
n'1 # *n

* ' (t0%L*&*'2
n'1'2 ' %N*&*'2

n'1'21, %17&

where the known terms have been collected on the
right-hand side. Values at time level (n ' 1⁄2) are ob-
tained by linear extrapolation in time. The classical
semi-implicit technique introduced by Robert et al.
(1972) treats the nonlinear terms explicitly and the lin-
ear part semi-implicitly in terms of a temporal average.
The traditional SISL scheme is given by

*n'1 # *n

* ' (t%N*&*'2
n'1'2 '

(t
2 0%L*&n'1 ' %L*&n

*1 %18&

(e.g., Temperton and Staniforth 1987). It can easily be
shown that (18) can be written as

*n'1 # *exp
n'1 '

(t
2 #%L*&n'1 $ %L*&

.n'1$, %19&

by adding and subtracting (L/)n'1/2
*/2 , using the approxi-

mation

%L*&*'2
n'1'2 #

1
2 #%L*&n

* ' %L*&
.n'1$ %20&

and (17). Motivated by noise and stability problems,
several other ways to evaluate the nonlinear terms have
been suggested in the literature. For example, there are
the spatially averaged approach where (N/)n'1/2

*/2 in (18)
is replaced by

1
2 0%N*&n'1'2 ' %N*&*

n'1/21 %21&

(Kaas 1987) and the stable extrapolation two-time-level
scheme (SETTLS) used at the European Centre for
Medium-Range Weather Forecasts (ECMWF),

1
2 02%N*&n

* $ %N*&*
n$1 ' %N*&n1 %22&

(Hortal 2002). The stability of these schemes, and oth-
ers, is discussed in Durran and Reinecke (2004). Noise
problems associated with orographic forcing can also be
alleviated by using de-centering (also referred to as un-
centering or off-centering in the literature) in which a

small off-centering in the time-averaged terms is ap-
plied (Rivest et al. 1994).

For the momentum equations, the traditional semi-
Lagrangian scheme (19) on an Arakawa C grid (Ar-
akawa and Lamb 1977) with the spatially averaged ap-
proximation to the nonlinear terms (21) is used. Treat-
ing the continuity equation in the same way, the
configuration corresponds to a shallow-water version of
the semi-Lagrangian HIRLAM (hereafter referred to
as SW-HIRLAM), which will be used for comparison
throughout this study. The linear and nonlinear terms
are given in appendix B.

d. The discrete CISL continuity equation

The explicit continuity equation is solved in spherical
geometry on a ! grid using the discrete form of (6),

!exp
n'1

(A # !
n

*&An, %23&

where

!
n

* #
1

&An %%
&An

!n%$, +& dA %24&

is the integral mean value of the geopotential over the
irregular departure cell area +An, and (

n'1
exp is the mean

value of the geopotential over the regular arrival cell
area 2A. The departure area is defined by tracking
backward the trajectories from the corner points of the
arrival cell (see, e.g., NM02; Nair et al. 2002). Under the
assumption that the time step is chosen such that the
trajectories do not cross, the departure cell is “well de-
fined” and the method is guaranteed to be conserva-
tive; if cells are not well defined it is detected immedi-
ately by the lack of mass conservation. The computa-
tion of the integral on the right-hand side of (23)
employs two steps. First, the geometry of the departure
cell is defined. Second, the remapping is performed,
that is, computing the integral over the departure cell
using some reconstruction of the subgrid cell distribu-
tion at the previous time step. The geometrical defini-
tion of the departure cell and the complexity of the
subgrid-scale distribution are crucial for the efficiency
of the scheme.

In Fig. 2 the departure cells of three different
schemes are shown. Rančić (1992) defines the depar-
ture cell simply as the quadrilateral resulting from con-
necting the departure points A, B, C, and D with
straight lines (Fig. 2a). For the subgrid-scale distribu-
tion, Rančić chose a piecewise biparabolic representa-
tion. The scheme, however, was found to be approxi-
mately 2.5 times less efficient than the traditional semi-
Lagrangian advection scheme. To speed up the
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remapping process Machenhauer and Olk (1998, 76–
85) simplified both the geometry of the departure cell
and the subgrid-scale distribution. These simplifications
were used in the scheme presented in NM02. The de-
parture cell is defined as a polygon with sides parallel to
the coordinate axis (Fig. 2b). The sides parallel to the *
axis are at the ! values of the departure points, and the
sides parallel to the ! axis pass through E, F, G, and H,
located halfway between the departure points. The bi-
parabolic subgrid-scale representation of Rančić was
made pseudo-biparabolic by dropping the “diagonal”
terms. Thus, the representation is simply the sum of two
one-dimensional parabolic functions, one in each of the
two coordinate directions. With this form of departure
cell and subgrid-scale distribution the integral over the
departure cell can be computed much more efficiently
compared to the approach taken by Rančić (1992). For
advection in Cartesian geometry, NM02 reported a
10% overhead compared to the traditional semi-
Lagrangian scheme. The NM02 scheme is hereafter re-
ferred to as the pseudo-biparabolic CISL (PB-CISL)
scheme.

The remapping can also be performed by splitting it
into two one-dimensional remapping steps using the
so-called cascade approach (Purser and Leslie 1991;
Rančić 1995; Nair et al. 1999). One such approach is the
conservative cascade CISL scheme (CC-CISL) of Nair
et al. (2002). In this scheme the departure cells are also
defined as polygons with sides parallel to the coordi-
nate axis, and in each one-dimensional cascade step a
piecewise parabolic representation is used. Compared
to the PB-CISL scheme the departure cell geometry in
the CC-CISL scheme is defined somewhat differently
(see Fig. 2c). Two of the sides parallel to the ! axis,
* # *(E) and * # *(G), are defined as in the PB-CISL
scheme and the remaining two sides are at the Eulerian
longitude * # *i. The sides parallel to the * axis are
determined from the intermediate Lagrangian grid
points I, J, K, L, M, and N defined as ! # 1/2 [!(I) '
!(J)], ! # 1/2 [!(K) ' !(L)], ! # 1/2 [!(L) ' !(M)],
and ! # 1/2 [!(N) ' !(I)], respectively. Here the !
values of the intermediate points are determined by a
cubic Lagrange interpolation between the ! values of
four adjacent departure points along the Lagrangian

FIG. 2. The departure cells (shaded area) when using the (a)
scheme of Rančić (1992), (b) PB-CISL scheme, and (c) CC-
CISL scheme. The filled circles are the departure points, open
circles are the midpoints between the departure points, and
asterisks are the intermediate grid points, which are used to
define the intermediate cells in the cascade scheme (cross-
hatched area).
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latitude (dashed line in Fig. 2c). The upstream integral
is computed by a remapping in the north–south direc-
tion from the Eulerian cells to the intermediate cells
(cross-hatched rectangular regions on Fig. 2c) followed
by a remapping along the Lagrangian latitudes from the
intermediate cells to the departure cells. Since the two
remappings are one-dimensional, the scheme is more
than twice as efficient as the PB-CISL scheme (Nair et
al. 2002). Another conservative cascade scheme is the
one of Zerroukat et al. (2004), which, contrary to the
CC-CISL, does not make explicit reference to depar-
ture areas during the remapping procedure. Hence, the
scheme cannot directly be used in the present model
since we make explicit use of areas in the semi-implicit
formulation.

Note that all departure areas in Fig. 2 completely
cover the entire integration area without overlaps or
cracks, and hence the total mass is conserved exactly.
The size of the PB-CISL area (Fig. 2c) is equal to that
of the Rančić area (Fig. 2b) whereas the CC-CISL area
(Fig. 2c) is only approximately so. Therefore, accepting
the Rančić definition of the departure area as the most
accurate, the PB-CISL area is the most accurate one of
the two other schemes. The “jump” in the north and
south walls in the CC-CISL scheme is not necessarily
midway between the departure points and hence the
CC-CISL scheme may conserve mass locally less accu-
rately than the PB-CISL scheme. On the other hand,
the CC-CISL scheme may obtain in certain cases a
more accurate subgrid-scale representation, namely,
when significant variations are along the Lagrangian
latitudes and these are sloping toward northeast or
southeast. In such situations, the PB-CISL subgrid-
scale representation becomes less accurate due to the
missing “diagonal” terms. Generally the most accurate
subgrid-scale representation of the three schemes is ob-
tained with the full biparabolic representation of Ran-
čić (1992).

As the PB-CISL and CC-CISL scheme use the piece-
wise parabolic method of Colella and Woodward
(1984) for reconstructing the subgrid cell distributions,
the monotonic (M), positive-definite (P), and semi-
monotonic (SM) constraints as described in Lin and
Rood (1996) can optionally be used. In the present
model, the PB-CISL and the CC-CISL scheme are
used.

To formulate the semi-implicit continuity equation,
the Lagrangian divergence (5) is discretized by a cen-
tered approximation,

!n'1'2 #
1

(A
(A $ &An

(t
. %25&

Note that the discretized divergence is determined en-
tirely by the trajectories and the geometrical definition
of the departure area. Since the trajectory is split into a
part using only extrapolated velocities and velocities at
time level (n), the departure area can to first order be
split into two parts. The Lagrangian divergence is de-
fined in terms of areas; hence ! can be split into two
parts as well:

!n'%1'2& #
1
2 0!%ṽn'1& ' !%vn&1. %26&

The first term on the right-hand side of (26) is given by

!%ṽn'1& #
1

(A
(A $ &A%ṽn'1&

(t
, %27&

where the departure area +A(ṽn'1) is computed using
only extrapolated winds. As mentioned in section 2b
only first-order trajectories (15) are used for the
Lagrangian divergence computations, that is, the area is
computed using the departure points located at

rn'1 $ ṽn'1(t. %28&

For all other terms, the acceleration is included in the
trajectory computations.

The ideal semi-implicit continuity equation is derived
as in the one-dimensional shallow-water system of Ma-
chenhauer and Olk (1997). Isolating +An in (25) and
thereafter substituting the resulting expression into the
explicit continuity Eq. (23), we get

! exp
n'1

(A # !
n

*(A $ (t!n'1'2!00(A

$ (t!n'1'2!,
n

*(A, %29&

where the geopotential (
n

* in the divergence terms has
been split into a constant geopotential (00 and a per-
turbation (3*. Treating the linear term semi-implicitly,
the ideal semi-implicit continuity equation becomes
similar to that of the traditional system:

!
n'1

# !exp
n'1

$
(t
2

!000!
n'1 $ !%ṽn'1&1. %30&

Since the arrival and departure areas span the entire
domain without overlaps or cracks, (30) conserves mass
when integrated over the domain when assuming no
mass flux through the domain boundaries. Derivation
of the full semi-implicit system using (30) and (19) with
/ # u, ) requires a formula for the Lagrangian diver-
gence as a function of wind components. This is by no
means an impossible task but results in an elliptic equa-
tion more complicated than the elliptic equation asso-
ciated with the traditional system. Rather than pursuing
that avenue, we use a predictor-corrector approach that
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results in an elliptic equation on the same form as the
one associated with the traditional system. Thereby the
method is more easily implemented in existing models.
The algorithm is an extension to spherical geometry of
the algorithm presented in Kaas et al. (2005).

By replacing !n'1 with the discretized Eulerian di-
vergence Dn'1 in (30), an elliptic equation on the same
form as the traditional system results. However, in this
context the discretized Eulerian divergence is inconsis-
tent since it corresponds to a discretized Lagrangian
divergence with a departure cell area different from
that defined for the CISL scheme in question. The “Eu-
lerian” departure cell areas, which correspond to the
cell configuration of Laprise and Plante (1995), gener-
ally overlap and do not span the entire domain. The
inconsistency introduced by using the Eulerian diver-
gence is corrected for in the next time step. The SISL
cell-integrated continuity equation becomes

!
n'1

# !exp
n'1

$
(t
2

!000D
n'1 $ !%ṽn'1&1

'
(t
2

!000D
n $ !%vn&1

&An

(A
. %31&

Note that the correction term [last term on the right-
hand side of (31)] is integrated over the departure area.
The scheme conserves mass both locally and globally.
As discussed in connection with the ideal semi-implicit
continuity Eq. (30), mass is conserved globally since the
Lagrangian divergence terms give no contribution
when integrated over the entire domain when assuming
no mass flux over the boundaries of the domain. With
the same assumption and given that a conservative
method is used, the Eulerian divergences Dn and Dn'1

integrated over the domain both yield zero.
The inconsistent semi-implicit term [second term on

the right-hand side of (31)] is corrected for explicitly,
which could be a potential source of instability. Nu-
merically we found that by choosing (00 sufficiently
large the scheme is stable for large Courant numbers. A
similar condition for stability was derived by Simmons
and Temperton (1997) as a result of a stability analysis
performed on a two-time-level SISL baroclinic model.
They found that the reference surface pressure should
be higher than the actual surface pressure in order to
have stable integrations. The phase speed of the gravity
waves in the model is increased as (00 is increased, but
that is normally of no concern in meteorological appli-
cations.

In SW-HIRLAM, as in many atmospheric models, a
staggered Arakawa C grid is used. That is, the mass
point is situated in the center of a grid cell and the

velocity components are situated at the cell sides as
indicated on Fig. 3. The principal argument for this
choice is that, compared to a nonstaggered A grid with
the same resolution, the truncation error of the cen-
tered second-order finite-difference approximations for
the pressure gradient and the divergence are mini-
mized. To keep our model as close as possible to SW-
HIRLAM we also use an Arakawa C grid for the cell-
integrated versions. Consequently, the discretization of
the momentum equations and the Eulerian divergence
used in the correction procedure are as in SW-
HIRLAM. In addition, the elliptic equation is on the
same form as the one in SW-HIRLAM when a C grid is
used.

The algorithm for the cell-integrated models is as
follows:

• Interpolate the velocities to cell corner points (using
cubic Lagrange interpolation) and compute the tra-
jectories for cell vertices,

• add the correction term

(t
2

!000D
n $ !%vn&1, %32&

to (
n

and compute the upstream integral of

!
n

'
(t
2

!000D
n $ !%vn&1, and %33&

compute !(ṽn'1). Now all known terms on the right-
hand side of (31) are computed and the algorithm
continues exactly as for the traditional system (e.g.,
Staniforth and Côté 1991).

Since a “half-implicit Coriolis scheme” is used (see ap-
pendix B), the elliptic equation is a Helmholtz equa-
tion. It is solved using the solver of HIRLAM, which
applies a Fourier transform in the zonal direction

FIG. 3. The placement of the Eulerian cell with respect to the
Arakawa C grid.
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(Källén 1996, p. 2.14). The divergence is assumed zero
on the boundaries.

We will refer to the version of the new model as the
PB-CISL shallow-water model (PB-CISL-SWM) when
using the scheme of NM02 for the continuity equation
and the conservative cascade shallow-water model
(CC-CISL-SWM) when using the CC-CISL scheme.
Note that the Lagrangian divergence is computed ac-
cording to the departure cell geometry associated with
the respective schemes.

3. Results of some tests

The widely accepted test suite proposed by W92 has
been used to assess the accuracy of the model. The W92
test cases, however, are formulated for a global domain.
Here the tests are run on a limited-area domain, which,
of course, requires frequent specification of boundary
fields. The analytic solution or a reference solution is
used to provide values at the boundaries. But in W92
the reference solutions were only provided daily, which
is too infrequent for updating boundary fields in a
LAM. Hence, the high-resolution spectral model used
in W92 has been rerun to provide boundary data more
frequently. A detailed description of the reference so-
lutions and the parameters used for the reference
model runs can be found in Jakob et al. (1993).

The LAM uses a rotated spherical latitude–longitude
grid. Subsequent reference to the LAM grid refers to
the rotated grid and not necessarily to a geographical
latitude–longitude grid. The active grid points, that is,
grid points at which the solution is computed by the
LAM, extend 180° in the longitudinal direction and
from 45°S to 45°N on the LAM grid unless stated ex-
plicitly otherwise. Around the active domain, there is a
halo zone where the reference solution is prescribed. In
a 9°-wide zone adjacent to the boundaries of the active
domain the solution is relaxed toward the boundary
field using a relaxation coefficient, which is decreasing
from one to zero over the relaxation zone (Davies
1976). The resolution for the runs is 1.125° unless stated
explicitly otherwise. To minimize the errors introduced
by the boundary relaxation the boundary fields are up-
dated with the reference solution at every time step.
The error measures are computed every hour.

It would be unfair to compare the performance of the
LAM to the performance of global models because of
the boundary relaxation. Instead a reference shallow-
water version of the semi-Lagrangian HIRLAM has
been run. SW-HIRLAM uses decentering, filtering of
the nonlinear terms in time, and the noise-reducing tra-
jectory scheme of McDonald (1999) (for additional de-
tails see section 2c and Undén 2002). For comparison

the SW-HIRLAM has been run without decentering as
well. The filtering of the nonlinear terms is used in the
semi-Lagrangian HIRLAM for stability reasons, but in
the tests run here the accuracy was not affected by
turning the filter on or off.

For the SW-HIRLAM, we use a constant geopoten-
tial (00 that is equal to the maximum geopotential
height of the initial field, (0

max. For the cell-integrated
models, we use a constant geopotential that is 10%
larger than (0

max (see discussion in section 2d).

a. Advection experiments (test case 1)

Test case 1 consists of solid-body rotation on the
sphere of a cosine bell. For this test case a nonrotated
(geographical) grid is used. The wind field is given by

u # u0%cos" cos- ' cos$ sin" sin-&, %34&

% # $u0 sin$ sin-, %35&

where 4 is the angle between the axis of solid-body
rotation and the polar axis and u0 is a constant given by

u0 #
2.a

%12 days&
, %36&

where a # 6.37122 5 106 m is the radius of the earth.
W92 proposed advection along the geographical equa-
tor (4 # 0.0) and over the pole (a # 6/2; a # 6/2 $
0.05). These orientations, however, favor the transport
scheme since the flow is approximately parallel to the
coordinate axis. To complement the results published
for the PB-CISL and the CC-CISL schemes, the advec-
tion test has been run for 4 # 30°. The flow results in
deformed departure cells, which make the problem
more challenging than if the departure cells would be
rectangles as is the case for 4 # 0.0. The cell deforma-
tions affect the upstream integral and divergence com-
putations. For this experiment a global domain in the
east–west direction and a resolution of 2.8125° 5
2.8125° are used.

Standard nondimensional error measures (see, e.g.,
W92) for the advection test for different schemes are
listed in Table 1. As expected the errors have increased
compared to advection for 4 # 0.0 (cf. to Table 1 in
Nair et al. 2002). In general the CC-CISL outperforms
the PB-CISL scheme. This is because the subgrid-scale
representation in the PB-CISL scheme eliminates the
cross terms and therefore only includes variation along
Eulerian latitudes and longitudes. The CC-CISL
scheme may in certain cases include some of the diago-
nal variation since the second remapping is along the
Lagrangian latitudes. In the present case the northern
part of the cosine bell is compressed in the (*, !) co-
ordinate system as it approaches the most northern po-
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sition and vice versa for the most southern position.
Obviously, this asymmetry is better resolved along
sloping Lagrangian latitudes than along the Eulerian
latitudes. When enforcing the P and SM filters, the ac-
curacy is improved. On the other hand, the M filter
severely damps and decreases the accuracy. It may be
possible to improve the monotonicity filter by adapting
the filter of Zerroukat et al. (2005) to the piecewise
parabolic method. Note also that 1D filters that prevent
under- and overshoots in one dimension do not neces-
sarily guarantee these properties when applied in each
coordinate direction to the pseudo-biparabolic subgrid
cell representation of the PB-CISL scheme. In the case
of negative values at the boundaries of both unfiltered
1D parabolic representations of a cell an even larger
negative value may be present in one or more of the cell
corners when the 1D representations are added. The
1D M, P, and SM filters eliminate only the negative
values at the boundaries and not the larger negative
corner values. The same has been observed with the
scheme of Lin and Rood (1996) and by NM02. The
cascade scheme does not produce negative values after
the application of the M, P, or SM filter since the two
1D parabolic representations are applied successively
and are never added. Using either the PB-CISL or CC-
CISL scheme the accuracy is greatly improved com-
pared to the traditional semi-Lagrangian scheme.

For a nondivergent flow the advection of a constant,
for example, (00, should ideally yield (00 at all times. It
is well known that CISL schemes do not have this prop-
erty due to the approximation of the departure cell,

which fails to preserve the area exactly (e.g., Laprise
and Plante 1995). Consequently, the Lagrangian diver-
gence computations are not strictly correct whereas the
Eulerian formula for divergence yields zero at the ma-
chine precision. To investigate the severity of the prob-
lem the constant field (00 # 50 000 m2 s$2 has been
advected one time step in the solid-body rotation flow
of test case 1. The results for 2t # 4050 s are shown in
Fig. 4. The errors introduced by the inaccuracies in the
departure cell approximations are of the order of 1
m2 s$2 for both CISL schemes. Compared to (00 these
errors are considered small.

b. Nonlinear geostrophic flow (test case 2)

The flow field is a geostrophically balanced flow
given by (34), (35), and

! # gh0 $ !a/u0 '
u0

2

2 "
5 %$cos$ cos" sin- ' sin" cos-&2, %37&

FIG. 4. The constant geopotential (00 # 50 000 m2 s$2 has been
advected one time step (2t # 4050 s) using the solid-body rotation
flow of test case 1. The figure shows the deviation from (00 when
using the (a) PB-CISL and (b) CC-CISL scheme, respectively.
The contour interval is 0.2 m2 s$2.

TABLE 1. Standard nondimensional error measures for solid-
body rotation of a cosine bell for the PB-CISL scheme, the CC-
CISL, and the traditional semi-Lagrangian (TRAD) scheme using
bicubic Lagrange interpolation, respectively. The angle between
the axis of solid-body rotation and the polar axis is 30°, the reso-
lution is 2.8125°, and one revolution is completed in 256 time
steps. The letters P, M, and SM denote positive-definite, mono-
tonic, and semimonotonic options, respectively (Lin and Rood
1996). The monotonic filter for TRAD is described in Bermejo
and Staniforth (1992). Exact trajectories were used.

Scheme l1 l2 l7 Min Max

PB-CISL 0.075 0.051 0.083 $0.0088 $0.083
CC-CISL 0.051 0.039 0.076 $0.0070 $0.076
PB-CISL-P 0.043 0.040 0.082 $0.00079 $0.082
CC-CISL-P 0.033 0.034 0.077 0.0 $0.077
PB-CISL-M 0.077 0.089 0.18 $0.0038 $0.18
CC-CISL-M 0.070 0.086 0.186 0.0 $0.186
PB-CISL-SM 0.047 0.041 0.082 $0.0032 $0.082
CC-CISL-SM 0.035 0.034 0.076 0.0 $0.076
TRAD 0.25 0.15 0.15 $0.017 $0.151
TRAD-M 0.25 0.19 0.22 0.0 $0.217
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where g is the acceleration due to gravity, g h0 is a
constant set to 29 400 m2 s$2, and 8 is the rotation rate
of the earth. Ideally, the numerical solution should not
change in time. Again a geographical grid is used and
4 # 30°. Since an analytic solution exists the problem is
well suited for verifying the convergence of the numeri-
cal algorithm. In the context of the PB-CISL scheme
the test case is quite useful. As discussed the PB-CISL
algorithm favors flow, which is either along longitudes
or latitudes, which is not the case in this experiment,
and second it serves to investigate if the errors in the
Lagrangian divergence computations cause problems
for the semi-implicit scheme.

Standard nondimensional error measures for test
case 2 are listed in Table 2 for different model configu-
rations and resolutions. As expected, all models con-
verge. The accuracy of the mass-conservative models is
significantly better than the accuracy of the SW–
HIRLAM. The difference between the error measures
of the CISL models is small and probably insignificant
given that only a limited area is considered.

c. Flow over an isolated mountain (test case 5)

Test case 5 consists of the fields of test case 2 with
u0 # 20 m s$1 and h0 # 5960 m and a surface orography
given by

hs # hs0!1 $
r
R", %38&

where
hs0 # 2000 m, R # ./9, and

r2 # min0R2, %$ $ $c&
2 ' %" $ "c&

21, %39&

where (*c, "c) # (36/2, 6/6). The rotated south pole is
located at 60°S, 270°W so that the peak of the mountain
is at the origin of the LAM grid. The initial condition on
the LAM grid is shown in Fig. 5. There is no analytic
solution to this problem so the high-resolution spectral
model is used to produce a reference solution. The rep-
resentation of the mountain, however, is a challenge for
the spectral scheme due to Gibbs’s phenomena. As
shown in Fig. 5 small-scale noise is present near the rim
of the mountain already in the initial state. The maxi-
mum difference in the geopotential height field be-
tween the analytic initial condition and the initial con-
dition constructed using spectral coefficients is approxi-
mately 100 m2 s$2. In addition to the inaccuracies
introduced by Gibbs’s phenomena, the flow will ini-
tially experience an abrupt change due to the presence

FIG. 5. (solid contours) The initial height field constructed on
the LAM grid using the spectral coefficients of the T213 reference
solution for test case 5. The LAM grid is a rotated grid and the
axis labels denote location on the LAM grid. Only part of the
integration domain is shown. The solid-line contour interval is 100
m. (dashed contours) The geopotential height of the orography,
(s. The dashed-line contours start at 2000 m2 s$2 and increase
monotonically to 20 000 m2 s$2 with an increment of 2000 m2 s$2.
Note the noise in the height field near the rim of the mountain.
The maximal deviation from the analytical initial condition is ap-
proximately 100 m2 s$2.

TABLE 2. Standard nondimensional error measures for the geo-
potential height field after 10 days of simulation for test case 2.
See text or appendix A for definition of the acronyms. The maxi-
mum Courant number is approximately 3.5 for all resolutions,
which corresponds to a time step of 900, 1800, and 3600 s for the
high-, medium-, and low-resolution runs, respectively.

Model
Resolution

(°) l1(h) l2(h) l7(h)

SW-HIRLAM 0.5625 3.973E-6 5.931E-6 1.753E-5
SW-HIRLAM

no decentering
0.5625 2.126E-6 2.645E-6 6.640E-6

PB-CISL-SWM 0.5625 1.872E-6 2.242E-6 3.701E-6
CC-CISL-SWM 0.5625 2.044E-6 2.453E-6 4.372E-6
SW-HIRLAM 1.125 1.231E-5 1.768E-5 5.077E-5
SW-HIRLAM

no decentering
1.125 6.880E-6 1.036E-5 3.863E-5

PB-CISL-SWM 1.125 5.298E-6 6.871E-6 1.766E-5
CC-CISL-SWM 1.125 5.960E-6 7.613E-6 1.868E-5
SW-HIRLAM 2.25 4.829E-5 7.243E-5 2.195E-4
SW-HIRLAM

no decentering
2.25 5.607E-5 5.607E-5 2.099E-4

PB-CISL-SWM 2.25 2.635E-5 3.703E-5 9.719E-5
CC-CISL-SWM 2.25 2.844E-5 3.944E-5 9.820E-5
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of the mountain, which suddenly is raised in the bal-
anced flow. This creates an initial imbalance that ex-
cites gravity waves.

The gravity waves excited by the imbalance in the
initial condition will complete one revolution in ap-
proximately 44 h. The phase and amplitude of the grav-
ity waves in the global reference solution and in the
LAM numerical solutions are not identical due to the
boundary relaxation and the model’s representation of
the gravity waves. Therefore, we see extrema in the
error measures approximately every second day when
gravity waves enter the domain (see Fig. 6). Since (00 is
large in the CISL models, they perform worse than

SW–HIRLAM as the gravity waves sweep through the
domain. Otherwise the cell-integrated models perform
much better than SW–HIRLAM while the cell-
integrated models perform equally well. When not us-
ing decentering in the SW–HIRLAM the accuracy is
comparable to the CISL models.

d. Rossby–Haurwitz wave (test case 6)

The initial condition is a Rossby–Haurwitz wave with
wavenumber 4. The problem has an analytic solution
for the nonlinear barotropic vorticity equation on the
sphere but not for the nonlinear shallow-water equa-
tions. It was previously believed that wavenumber 4 is

FIG. 6. Standard nondimensional error measure (a) l1, (b) l2, and (c) l7 for the geopotential
height as a function of time for test case 5 when using the (dashed line) SW-HIRLAM,
(dashed–dotted line) SW-HIRLAM without decentering, (solid line) PB-CISL-SWM, and
(dotted line) CC-CISL-SWM. The x axis is the same for all plots. The time step is 30 min,
which corresponds to a maximal Courant number of approximately five. The boundary field
is updated at every time step using the reference solution. The error measures for the CISL
models are indistinguishable on the figure.
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stable (Hoskins 1973), but Thuburn and Li (2000) have
shown that if a perturbation is introduced, small-scale
features develop in the vorticity field due to an insta-
bility of the flow. This, of course, questions the accuracy
of the reference solution. Sufficient diffusion of the nu-
merical method or explicitly added diffusion tends to
suppress the instability. However, for the high-
resolution models used in Thuburn and Li (2000),
which include the spectral model used here, the dy-
namical instability first shows by day 10 of the simula-
tion. Hence, for the test runs here, which are less than
10 days, the instability may not degrade the accuracy of
the reference solution.

It is difficult to argue that some region has more
activity than others. Therefore, the LAM grid is chosen
to coincide with the geographical latitude–longitude
grid.

The Rossby–Haurwitz wave propagates slowly east-
ward with small vacillations about the steady propagat-
ing wave structure. The error measures for the different
models are shown in Fig. 7. The numerically simulated
wave propagates with a phase speed close to the one
predicted by the nondivergent barotropic model. The
noise in the error measures is primarily due to the vac-
illations. The CISL models are as accurate as the
SW–HIRLAM without decentering. The SW–HIRLAM
with decentering, however, performs significantly
worse than all other model configurations.

e. Analyzed 500-mb height and wind field initial
conditions (test case 7)

Three different initial conditions for the 500-mb
height and winds were proposed in W92. These initial

FIG. 7. Same as Fig. 6 but for test case 6 and a time step of 12 min. The error measures for
the CISL models are indistinguishable on the figure.
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conditions were chosen more or less randomly and in
this context there is no particular reason for choosing
one of the situations over the others. Here the initial
data from UTC9 January 1979 are used and the limited
area is placed where a blocking develops (see Fig. 8).

The error measures are shown in Fig. 9. The CISL
models perform better than the traditional model with
respect to l1 and l2. Also, l3 is slightly larger for the
CISL models up to about day 4 after which the CISL
models clearly perform better.

f. Computational cost

Ultimately the efficiency of using CISL schemes may
only be discussed in full-blown 3D models implemented
in multiprocessing environments. However, the hori-
zontal part of a 3D hydrostatic model is similar to a
shallow-water system, so it is important to discuss how
the efficiency is affected by going from passive CISL
advection to a semi-implicit CISL shallow-water model
and to discuss the differences in the two CISL models
tested here.

The CISL models have been implemented within the
framework of the HIRLAM code without any attempts
to optimize the code. The SW–HIRLAM code, how-
ever, is optimized and it would therefore make little
sense to compare the actual CPU times for the two
types of models. The computational cost for the mo-
mentum equations and the elliptic equation solver is
identical for all model configurations. The explicit con-
tinuity equation is solved more efficiently using the CC-
CISL scheme compared to the traditional method and
less efficiently with the PB-CISL scheme. In general,
the CISL schemes use more memory than conventional
methods but that would have little effect on execution

time on massively parallel computers since the extra
memory usage consists of local information only. Com-
putation of the correction term is not needed for the
traditional system. The correction term is computed
very efficiently with the PB-CISL scheme since the de-
parture cell area is defined explicitly in terms of the
departure points. In the CC-CISL scheme the intersec-
tion between the Lagrangian latitudes and Eulerian
longitudes must be computed in order to define the
departure cell geometry, which reduces the computa-
tional advantage the CC-CISL scheme has over the PB-
CISL scheme for explicit advection. Weighing these dif-
ferences, a small computational overhead for the CISL
models compared to the conventional model is ex-
pected for an efficient implementation. With the
present coding, it is not possible to decide about the
relative efficiency of the two CISL models.

4. Possible extensions to a global domain

The model presented here is for a limited area, and
for wider applications, an extension to a global domain
is, of course, important. We suggest two methods to
extend the model to a global domain. One extension
uses a global latitude–longitude grid, which requires a
certain amount of “engineering” and approximations
near the poles. Perhaps a more viable approach to
avoid the pole problem is to use the so-called Yin-Yang
grid for spherical geometry (Kageyama and Sato 2004).
We shall comment on each of these possibilities.

The first extension suggested requires the momen-
tum equations be solved on vector form rather than on
component form to avoid instability near the poles
(e.g., Ritchie and Beaudoin 1994). In addition, the half-
implicit Coriolis scheme must be replaced by a fully
implicit scheme, and a vector form trajectory algorithm
must be used. Then the semi-implicit CISL scheme for
the continuity equation must be extended to a global
domain.

Both CISL advection schemes used here have origi-
nally been formulated on the sphere and both use the
same local approach for accurate transport over the
polar regions, which allows for large meridional Cou-
rant numbers (NM02). In the vicinity of the poles, a
high-resolution tangent plane is introduced. Apart from
the two cells that include the Eulerian poles, the depar-
ture cells are “well defined” on the tangent plane and
the remapping is formally equivalent to the regular
case. For the polar singularity, a “latitudinal” belt of
Lagrangian cells that contains the Eulerian pole, re-
ferred to as the “singular belt,” is defined. The total
mass inside the singular belt can be computed using the

FIG. 8. The initial height field in meters on the LAM grid for
test case 7. The rotated south pole is located at 40°S, 0°, and the
axis labels denote position in the rotated grid. The contour inter-
val is 100 m.
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regular algorithm on the tangent plane. Thereafter the
total mass is approximately distributed to each cell us-
ing the weights equal to the mass at the midpoints of
each cell computed by the traditional semi-Lagrangian
method.

To extend the treatment of the polar regions used in
the CISL advection schemes to the semi-implicit ones,
the Lagrangian divergence must be computed. Apart
from the singular belt, the departure cells are well de-
fined and the Lagrangian divergence is easily com-
puted. For the singular belt, the extension is also rather
straightforward. An approach could be to advect a
nonzero constant. Then the divergence will be readily
available since the deviation from constancy is propor-
tional to the change in area. So using the same method
of distribution of mass in the singular belt outlined
above also the divergence can be made available.
Hence, theoretically we see no obvious obstacles in ex-

tending the limited-area model to a global domain us-
ing this approach but it does imply some algorithmic
complexity.

Alternatively, the pole problem can be addressed by
using the yin-yang grid recently developed for spherical
geometry. This orthogonal grid is based on the overset
grid methodology, that is, two overlapping subgrids
where each subgrid is a spherically rotated latitude–
longitude grid. Thus, effectively two LAMs are
coupled. Hence, the model presented here can be ap-
plied without modifications on each subgrid. The pole
problem is avoided at the expense of introducing an
overlap region. This region is, however, static, and mass
in the interface region can be conservatively remapped
using an approach such as the pseudo-piecewise-
parabolic method used here in one of the CISL model
versions. A problem that must be solved is how to
couple the elliptic systems of the two LAMs.

FIG. 9. Same as Fig. 6, but for test case 7 and a time step of 24 min.
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5. Summary

Two versions of a semi-implicit, semi-Lagrangian
shallow-water model, which guarantees mass conserva-
tion by using cell-integrated methods for the continu-
ity equation, have been developed. The two versions
differ in the definition of their departure areas and in
their subgrid-scale representations. The version based
on the NM02 scheme uses a pseudo-biparabolic repre-
sentation, which is the sum of two 1D piecewise para-
bolic functions along the Eulerian longitudes and lati-
tudes. The version based on the advection scheme of
Nair et al. (2002) uses a cascade approach with two
successive remappings using 1D parabolic representa-
tions along Eulerian longitudes and Lagrangian lati-
tudes, respectively. The mass is conserved locally in
both versions and there is no need for ad hoc a poste-
riori mass-fixing algorithms as is the case for traditional
semi-Lagrangian models. The cell-integrated models
are efficient since they permit large time steps and their
elliptic equation is on the same form as for the tradi-
tional semi-Lagrangian system and is relatively inex-
pensive to solve. In addition, desirable properties such
as monotonicity and positive definiteness can easily be
enforced.

The accuracy of the model has been assessed using
selected test cases from the suite of test cases proposed
by W92. For passive tracer advection the conservative
transport schemes are much more accurate than tradi-
tional semi-Lagrangian methods. We believe that addi-
tional advantages of these models will be revealed in
three-dimensional applications where they will guaran-
tee consistency between a conservative transport of to-
tal mass and a conservative mass transport of individual
tracers. The lack of such a consistency will generally
violate the mass conservation of tracers (Jöckel et al.
2001).

For shallow-water model runs the accuracy and effi-
ciency of the new models was estimated to be compa-
rable to traditional semi-Lagrangian models. In all test
cases, the cell-integrated models performed better than
the traditional semi-Lagrangian method with decenter-
ing. The shallow-water tests performed revealed no
clear difference in the accuracy of the two conservative
model versions.
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APPENDIX A

List of Acronyms

CISL Cell-integrated semi-Lagrangian
CC-CISL Conservative cascade cell-integrated

semi-Lagrangian
CC-CISL-SWM Conservative cascade cell-integrated

semi-Lagrangian shallow-water model
ECMWF European Centre for Medium-Range

Weather Forecasts
HIRLAM High Resolution Limited Area Model
LAM Limited area model
M Monotone
P Positive definite
PB-CISL Pseudo-biparabolic cell-integrated

semi-Lagrangian
PB-CISL-SWM Pseudo-biparabolic cell-integrated

semi-Lagrangian shallow-water model
SETTLS Stable extrapolation two-time-level

scheme
SISL Semi-implicit semi-Lagrangian
SM Semi-monotone
SW-HIRLAM Shallow-water version of the HIRLAM
TRAD Traditional semi-Lagrangian

APPENDIX B

Linear and Nonlinear Terms

In spherical coordinates the linear and nonlinear
terms are given by

Lu # f0% $
1

a cos"

#

#$
%! ' !s&, %B1&

L% # $f0u $
1
a

#

#"
%! ' !s&, %B2&

L! # $!00D, %B3&

Nu # f ,% '
u%

a
tan", %B4&

N% # $f ,u $
u2

a
tan", %B5&

N! # $%! $ !00&! · v, %B6&

where the half-implicit Coriolis scheme (McDonald and
Haugen 1992) has been used; that is, the Coriolis pa-
rameter is split into a constant part and the deviation
from the constant, f # f0 ' f 3. For discretization details
see Undén (2002).
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