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abstract

A high-order monotone and conservative Cascade Remapping algorithm between

Spherical grids (CaRS) is developed. This algorithm is specifically designed to remap

between the cubed-sphere and regular latitude-longitude grids. The remapping approach

is based on the conservative cascade method in which a two-dimensional remapping

problem is split into two one-dimensional problems. This allows for easy implementation

of high-order sub-grid-cell reconstructions as well as the application of advanced

monotone filters. The accuracy of CaRS is assessed by remapping analytic fields from

the regular latitude-longitude grid to the cubed-sphere grid. In terms of standard error

measures, CaRS is found to be competitive compared to an existing algorithm when

regridding from a fine to a coarse grid and more accurate when regridding from a coarse

to a fine grid.
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1. Introduction Table 1.

The choice of a spherical grid system is crucial for designing efficient scalable

global atmospheric models that can exploit the enormous computing potentials of

present-day distributed memory parallel machines. Because of the problems associated

with the polar grid singularities, the regular latitude-longitude (RLL, see Table 1 for a

complete list of acronyms used in this paper) spherical grid is not well suited for being

a candidate for developing such scalable models. In recent years, there has been great

interest in developing numerical models based on more isotropic spherical grid systems

that are free from singularities or contain weaker singularities and are suitable for local

numerical methods such as finite-volume or high-order Galerkin methods. For example,

the cubed-sphere (spherical cube or expanded cube) geometry introduced by Sadourny

(1972) in the early days of atmospheric modeling has recently been reintroduced by

Ronchi et al. (1996) and Rančić et al. (1996) with additional desirable features such as

the equiangular grid-spacing and orthogonality. This grid system is being considered

by many research groups for their new generation high-order spectral element or

finite-volume models (see, e.g., Thomas and Loft 2002; Giraldo and Rosmond 2004;

Adcroft et al. 2004; Baer et al. 2006).

General modeling environments are composed of various model components often

defined on different grid systems. For example, the atmospheric component may be

defined on a cubed-sphere grid whereas the land-surface and other components are

defined on the RLL grid. For the coupling between model components data must be

regridded. There are many practical issues for transferring data from a grid system

to another with fidelity. High-order accurate interpolation of field variables from

one spherical grid to another without violating properties such as conservation and

monotonicity (non-oscillatory) is a daunting task.

Our focus in this paper is the development of a high-order conservative and

monotone remapping scheme that is specifically designed to remap between the
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cubed-sphere class of grid systems and conventional latitude-longitude spherical grids.

The proposed method could be used for coupling RLL based physics packages and

other model components to cubed-sphere dynamical cores. Moreover this remapping

may be employed for pre- and post-processing of data on the cubed-sphere and data

visualization on RLL based graphic packages.

Jones (1999) developed a conservative remapping procedure on the sphere (SCRIP)

by employing the divergence theorem. This method has great geometric flexibility and

is capable of handling different types of spherical grids. The resulting conservative

remapping algorithm is up to second-order accurate. For the second-order SCRIP

remapping the gradients in spherical coordinates must be approximated and supplied

to SCRIP. In a coupled model setting one may use the internal representation of the

model numerics, such a spectral methods, finite elements etc., for the approximation of

the gradients.

A new conservative remapping method between the cubed-sphere grids and the

RLL grids (hereafter referred to as CaRS - Cascade Remapping between Spherical

grids) is presented. This approach is based on the conservative cascade interpolation

framework, therefore the order of the interpolation (remapping) can relatively easily

be varied and there are efficient options for enforcing monotonicity. We compare our

results against SCRIP for a set of scalar fields. The remainder of the paper is organized

as follows. Section 2 provides a brief review of conservative cascade remapping and

Section 3 details the remapping algorithm CaRS between cubed-sphere and RLL grids.

Numerical experiments and test results are given in Section 4 followed by summary and

conclusions in Section 5.

2. Conservative cascade remapping

Cascade interpolation was introduced by Purser and Leslie (1991) in the context of

semi-Lagrangian advection. Cascade schemes significantly reduce the computational cost
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of the upstream (or downstream) multi-dimensional interpolation problem associated

with semi-Lagrangian advection by employing an efficient sequence of one-dimensional

interpolations. Nair et al. (1999) extended this method to spherical geometry, and a

conservative version of the cascade scheme on the sphere was introduced in Nair et al.

(2002) and in Zerroukat et al. (2005). In two dimensions, the cascade interpolation

method requires the underlying surfaces represented by two families of structured grid

lines forming a rectangular mesh.

a. Source and target grids

For the two-dimensional forward-trajectory semi-Lagrangian scheme on the sphere

(Nair et al. 2003) the source grid is defined by the flow-distorted Lagrangian grid and the

target grid is the RLL (Eulerian) grid, but for the popularly used backward-trajectory

semi-Lagrangian scheme the source and target grids are reversed. In either case

the cascade interpolation transfers data from the source to target grid through an

intermediate grid system by employing a sequence of one-dimensional interpolations

(or remappings). Unlike the cascade semi-Lagrangian schemes, the current remapping

problem between the source and target grids is not constrained by trajectories. For

the CaRS algorithm the source and target grids can be switched between RLL and

cubed-sphere grids.

In general the cubed-sphere provides different classes of grid systems such as

equiangular, equidistant and orthogonal (conformal cubic grids) with different spatial

properties (for details see Nair et al. 2005). Without loss of generality we consider

the equiangular cubed-sphere, where a sphere is decomposed into six identical regions

(panels or faces) and the grid lines on each panel on the sphere are defined by the

equi-spaced central angles (α, β) ∈ [−π/4, π/4]. The panel indexing is shown on

Fig. 1. This grid system is non-orthogonal and the resulting curvilinear coordinates are

discontinuous at the edges of the panels. Throughout this paper the term cubed-sphere
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refers to this grid system. Fig. 1.

b. Basic one-dimensional remapping scheme

The cascade method relies on dimension splitting and the one-dimensional

remapping scheme is the basic component of the multi-dimensional cascade algorithm.

Consider a one-dimensional domain I ≡ [IL, IR] spanned by two monotonic grid lines,

ξ
(s)
k and ξ

(t)
l , representing source and target grids, respectively, and with corresponding

grid spacing δξ
(s)
k = ξ

(s)
k+1− ξ(s)

k , δξ
(t)
l = ξ

(t)
l+1− ξ(t)

l . Let ψ(ξ) be a generic density function

for ξ ∈ I. By remapping we transfer the average values ψ(ξ(s)) defined on the source

grid to ψ(ξ(t)) on the target grid with mass conservation as a constraint. Also, for

consistency it is required that

|IR − IL| =
∑

k

δξ
(s)
k =

∑

l

δξ
(t)
l . (1)

The cell averaged masses in the source grid cells for ξ ∈ [ξ
(s)
k , ξ

(s)
k+1] are defined by

ψk(ξ
(s)) =

1

δξ
(s)
k

∫ ξ
(s)
k+1

ξ
(s)
k

ψ(ξ) dξ. (2)

We follow the “accumulated mass” approach as used in many finite-volume based

remapping schemes (Dukowicz 1984; Rančić 1995; Nair and Machenhauer 2002), that is,

the mass in a target grid cell for ξ ∈ [ξ
(t)
l+1, ξ

(t)
l ] is given by

ψl(ξ
(t)) δξ

(t)
l =

∫ ξ
(t)
l+1

ξ
(t)
l

ψ(ξ) dξ

=

∫ ξ
(t)
l+1

IL

ψ(ξ) dξ −
∫ ξ

(t)
l

IL

ψ(ξ) dξ. (3)

The above equation shows that the masses in the target cells can be represented as the

differences of the accumulated mass from a common reference point IL. Moreover the

accumulated mass can be expressed in terms of the source grid variables as follows,

∫ ξ
(t)
l

IL

ψ(ξ) dξ =

q∑
n=1

ψn(ξ(s)) δξ(s)
n +

∫ ξ
(t)
l

ξ
(s)
q

ψ(ξ)dξ, (4)
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where ξ
(s)
q ∈ [ξ

(t)
l−1, ξ

(t)
l ] and ξs

1 = IL. The cell averaged density field ψl(ξ
(t)) at any target

cell can be determined from (3) by employing (4). A schematic illustration of this

one-dimensional remapping is shown in Nair and Machenhauer (2002).

ψ(ξ) in (3) and (4) is not known and must be constructed from the known grid-cell

averages ψ(ξ(s)). This process is referred to as sub-grid-cell reconstruction. The accuracy

and efficiency of the one-dimensional remapping scheme depends on the sub-grid-scale

reconstruction method that is usually represented by polynomial functions. Here we

use the reconstructions described in Zerroukat et al. (2005) and Zerroukat et al. (2006)

where cubic (and lower order) polynomials and parabolic splines are used, respectively.

The coefficients (a
(i)
k , i = 0, 3) of the cubic polynomial

ψk(ξ) = a
(0)
k + a

(1)
k ξ + a

(2)
k ξ2 + a

(3)
k ξ3, (5)

in the kth grid cell are computed by requiring that
∫ ξk+1

ξk

ψk(ξ) dξ = ψk(ξ), (6)

ψk(ξk) = ψL
k (ξ), (7)

ψk(ξk+1) = ψR
k (ξ), (8)

dψ

dξ

∣∣∣∣
(ξk+ξk+1)/2

= δψk(ξ), (9)

where (ψL
k (ξ), ψR

k (ξ), δψk(ξ)) are obtained by a quartic interpolation procedure from the

source grid cell averages (see Zerroukat et al. 2002 for details). The reconstruction (5)

is referred to as the piecewise cubic method (PCM). By setting

δψk(ξ) = ψR
k (ξ)− ψL

k (ξ), (10)

(5) reduces a quadratic reconstruction referred to as the piecewise parabolic method

(PPM) introduced by Colella and Woodward (1984). Furthermore, by setting

ψR
k (ξ)− ψL

k (ξ) = δψk(ξ), (11)

ψR
k (ξ) + ψL

k (ξ) = 2ψk(ξ), (12)
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a piecewise linear (PLM) reconstruction results. Finally, by setting

δψk(ξ) = 0, (13)

ψR
k (ξ) = ψL

k (ξ) = ψk(ξ), (14)

a piecewise constant (PCoM) sub-grid-scale distribution results. These reconstructions

as well as the parabolic spline method (PSM) are used in the current implementation of

the algorithm but in general any reconstruction fulfilling (6) can be used.

c. Monotonic filtering

An important advantage of the cascade method is the ease at which filters can

be applied since they only have to be one-dimensional. Filters do, in general, tend

to make the remapping more diffusive (e.g., Lauritzen 2007). It is important that

‘physical’ extrema in the sub-grid-cell reconstruction are retained while unphysical

ones are filtered out. Less sophisticated filters reduce the sub-grid-cell reconstruction

to first-order for any local extrema which can be detrimental to accuracy in idealized

advection test cases (see, e.g., Table 2 in Nair and Machenhauer 2002). Zerroukat et al.

(2005) and Zerroukat et al. (2006) refined the filters of Sun et al. (1996) and Nair et al.

(1999), and adapted them to the higher-order sub-grid-cell reconstructions used here.

These filters recursively reduce the order of the sub-grid-cell reconstruction until the

sub-grid-cell distribution is monotone. A nice feature of this filter is that it retains

physically allowable extrema instead of reducing the reconstruction to PCoM whenever

the local polynomial exhibits so-called monotonicity-violating behavior. Note that this

is a relaxed way of implementing monotone filters since small amplitude over- and

undershoots can occur if they are physically allowable. In idealized test cases using a

cascade scheme these filters have been demonstrated to have relatively little impact on

the error measures (Zerroukat et al. 2007). For some test cases the accuracy is even
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improved when applying the filter.

d. The two-dimensional cascade remapping
Fig. 2.

In order to illustrate the cascade remapping in simple terms, we consider a

rectangular region on a Cartesian plane overlaid by the source and target grids as

depicted in Fig. 2. The idea of the cascade remapping process is closely related to that

of the cascade interpolation procedure introduced in Purser and Leslie (1991). Therefore

we first describe the cascade interpolation procedure with the aid of Fig. 2.

Let (xs, ys) and (xt, yt) be the source and target grids that are represented by

dashed lines and solid curves in Fig. 2. Now our task is to transfer data from the source

grid points (open circles) to the target grid points (filled circles) as shown in Fig 2. This

is achieved by a “cascade” of one-dimensional interpolation operations from source to

target grid through an intermediate grid system. The intermediate grid is a hybrid grid

consisting of intersections of target grid x-lines with source grid y-lines or vice versa. For

the present application we consider the intermediate grid as the intersection of target

grid xt-curves with source grid ys-lines (‘×’ marks in Fig. 2). Thus the intermediate

grid may be expressed as (x′, y′), where x′ = xs and y′ is the interpolated or, as done in

this article, exactly computed y-coordinate values along the target grid xt-curves. The

details of intermediate grid generation and its properties are discussed in Nair et al.

(1999).

The first stage (sweep) of cascade interpolation transfers data from source to

intermediate grid by means of one-dimensional operations. This is followed by the

second stage of one-dimensional interpolations to transfer data from the intermediate

to the destination grid which completes the cascade cycle. The two-dimensional

conservative remapping can be done in analogous manner (Nair et al. 2002) where the

one-dimensional interpolations are replaced by one-dimensional remapping operations

as described in the previous Section. Because of the conservation constraints the
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remapping is a more restrictive operation than interpolation. Moreover, as a consistency

requirement, the total length (area) of the source, intermediate and target grids should

be the same when conservative cascade remapping is performed. Also, since mass in

grid cells is represented by length intervals one should either define the length scale in

terms of the actual area of the cells (as done herein) or scale the densitites appropriately

so that mass is conserved. The approach taken herein guarantees that a constant field

is preserved.

Even though the remapping between RLL and cubed-sphere grids, and semi-

Lagrangian advection based on the conservative cascade scheme share many common

features, there are some major differences too. The remapping between RLL and

cubed-sphere grids are not connected by ‘trajectories’, in other words, there is no

one-to-one correspondence between the grid points for these two different grid systems.

In some sense the remapping between the RLL and cubed sphere is more relaxed. The

grid points on the target grid system are dependent only on the neighboring grid points

of the source grid and one has more liberty in choosing the intermediate grid and

cascade sweep directions. We describe the remapping algorithm between the RLL and

cubed sphere in the following Sections.

3. The CaRS method

The cubed-sphere grid is constructed by the decomposition of the sphere into six

identical regions (referred to as panels), obtained by projecting the sides of a inscribed

cube onto the sphere. Here we consider the equiangular cubed-sphere mesh so the

grid lines on each panel are great-circle arcs. Figure 1 shows the RLL grid on the

gnomonic projection and the indexing of the cubed-sphere panels used here. The RLL

grid longitudes and equator, which are great-circle arcs, will appear as straight lines on

a gnomonic projection.

Traditionally the grid-lines of the cubed-sphere are defined panelwise by employing
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a local Cartesian grid system. By this definition three indices (i, j, p) are needed to

represent the coordinate lines, where i, j, and p are the row, column and panel indices,

respectively (see Fig. 3). For easy implementation of the cascade method we reconstruct

the entire cubed-sphere grid system with a family of horizontal and vertical grid lines

similar to the longitudes and latitudes of the RLL grid. Also we define the term latitude

belt for a collection of contiguous areas (lengths) along a latitude line, and similarly

for the longitude belt. We define the cubed-sphere latitudes as vertically stacked closed

curves (squared patterns) centered about the vertical axis of the sphere as shown on

Fig. 4. The cubed-sphere latitude lines are only C0 continuous at the four corners. The

cubed-sphere latitude belts are intersected by a set of cubed-sphere longitudes. On the

equatorial panels each cubed-sphere latitude belt has the same number of intersections

(cubed-sphere longitudes). But for the polar panels the number of cubed-sphere

longitude intersections decreases from the side to the center. In this interpretation the

cubed-sphere grid may be considered to be a deformed reduced RLL grid. Fig. 3.

Fig. 4.To start with we consider the remapping from the RLL grid to the cubed-sphere

grid. The cascade directions are chosen as follows. The first cascade sweep is in the

north-south direction along longitude belts of the RLL grid. For this cascade sweep

the source grid is defined in terms of the RLL longitude belt and the target grid is an

intermediate grid. Analogous to the two-dimensional Cartesian case, the intermediate

grid is defined in terms of RLL longitudes and the cubed-sphere latitudes. The second

cascade sweep is from the intermediate grid to the cubed-sphere latitudes.

The one-dimensional grids used in the cascade cycles are defined in terms of exact

areas of the grid cells, leading to what we refer to as an area consistent approach. For

example, for the first cascade sweep the spherical areas of the RLL grid cells along a

longitude belt are logically mapped onto a one-dimensional grid (the source grid ξ(s)),

so that there is a one-to-one correspondence between the lengths on ξ(s) and the actual

RLL grid cell spherical areas. Similarly for the intermediate grid the exact spherical area
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of the overlapping between the RLL longitude belt and the cubed-sphere latitude belts

define the one-dimensional grid. This area consistent definition of the one-dimensional

grids used for the remapping obviously fulfills the consistency requirement (1), that is,

the length of the source and intermediate grids are equal. The spherical areas of the

cubed-sphere grid cells along a cubed-sphere latitude define the target grid. This is

explained in detail below.

a. Definition of spherical grids

Consider a RLL grid on a unit sphere with Nλ longitudes and Nθ latitudes with

grid spacing

∆λ =
2π

Nλ

, ∆θ =
π

Nθ − 1
, (15)

including the pole point so that there are Nλ × (Nθ − 1) cells on the RLL grid. The

longitudes and latitudes define the walls of the RLL grid cells. For simplicity it is

assumed that the longitudes λ = 0, π/2, π, 3π/2 are on the RLL grid so that the

remapping coefficients only require to be computed for a quarter of the sphere. The

remapping coefficients for the rest of the domain are obtained by symmetry. The

algorithm can easily be generalized to accommodate any longitudes of the RLL grids

with or without a pole point (see sub-Section d).

Let Nc be the number of grid-lines on each panel of the cubed sphere, such that

there are (Nc−1)× (Nc−1) cubed-sphere grid cells on each panel. In the local Cartesian

gnomonic (or central) projection the grid lines are defined by (e.g, Rančić et al. 1996),

(xi, yj) = (a tanαi, a tan βj), 1 ≤ i, j ≤ Nc, (16)

where a = 1/
√

3 is half of the length of the cube inscribed into the unit sphere, and the

central angles (αi, βj) are given by

αi = −π
4

+
π (i− 1)

2(Nc − 1)
, βj = −π

4
+

π (j − 1)

2(Nc − 1)
. (17)
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The total number of cubed-sphere latitudes in terms of Nc is given by

L = 2Nh +Nc − 1, (18)

where Nh is the integer value of Nc/2. Let (ν, `) be the cubed-sphere longitude and

latitude indices. As depicted on Fig. 5 the cubed-sphere longitude indexing convention

(ν) is such that the cell in a cubed-sphere latitude belt around or immediately east of

λ = 0 has ν = 1, and ν increases eastward. The cubed-sphere latitude indexing is as in

the case of RLL grids. The details of the transformation from the traditional (i, j, p)

index to cubed-sphere longitude-latitude indexing (ν, `) are given in Appendix B. Fig. 5.

Fig. 6.The RLL grid and the cubed-sphere grid are placed such that the pole points of

the RLL grid are located in the center of the cubed-sphere polar panels (panel 5 and

6). Furthermore, the RLL grid is rotated zonally such that the Meridian Line (λ = 0)

coincides with the edge shared by panel 1 and 4 (see Fig. 6). The more general case is

described in sub-Section d.

b. The first cascade sweep

The cascade remapping process consists of three important steps that are

one-dimensional remapping from a source to a target grid through an intermediate grid

as described in the two-dimensional Cartesian case. In the remapping process the source

and target grids are defined in terms of accumulated spherical areas along the direction

of the sweeps.

1) Source grid

For the first sweep the source grid is the RLL grid so defining the south-pole as the

reference point, Λs
i1 = 0, the discrete accumulated area along a longitude belt i, is given

by

Λs
ij = ∆λ [sin(θj) + 1] , j = 2, Nθ, (19)
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for each longitudinal belt i. In other words, Λs is the accumulated area along the

longitudinal belts. Since an RLL grid is equi-spaced Λs is identical for all longitudinal

belts.

2) Intermediate grid

For the first sweep the intermediate grid is the target grid and is denoted Λt. The

intermediate grid Λt is defined in terms of the intersections between the RLL grid

longitudes and the cubed-sphere latitudes. Consider the part of the sphere located

in between longitudes λ = 0 and λ = π/2 so only panel 1,5, and 6 are used (see

Fig. 6). The intermediate grids on the rest of the sphere are obtained by symmetry.

The intersections between the RLL longitudes and cubed-sphere latitudes can easily be

computed analytically as described in the following Section. Given the location of the

intersections in spherical coordinates, the areas of the spherical triangles ∆i` resulting

from connecting the south pole, qi`, and qi+1` (see Fig. 6) with great-circle arcs can

easily be computed (see Appendix A). These spherical triangles are the accumulated

areas used to define the intermediate grid along each longitude belt i:

Λt
i1 = 0 (20)

Λt
i` = ∆i`, ` = 1, L− 1, (21)

Λt
iL = 4π/Nλ, (22)

where 1 ≤ i ≤ Nλ

4
− 1. Note that the computation of the spherical areas making up

the intermediate grid is exact. The intermediate grid for the rest of the sphere can be

computed by symmetry. That is, for Nλ

4
≤ i ≤ Nλ the intermediate grid Λt is given by

Λt
i1 = 0 (23)

Λt
i` = ∆M`, ` = 1, L− 1, (24)

Λt
iL = 4π/Nλ. (25)
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where M = MOD(i − 1, Nλ/4) + 1 (MOD is the standard Fortran modulus function).

Note the area consistency in the definition of the grids

Nλ∑
i=1

Λs
iNθ

=

Nλ∑
i=1

Λt
iL = 4π. (26)

3) Intermediate grid intersections

By design the gnomonic projection has the useful property that great-circle arcs are

images of straight lines on local Cartesian coordinates for each face of the inscribed cube

as defined by (16). Thus the intermediate intersections are simply crossings between

straight lines on the local Cartesian plane. The straight line segments corresponding to

the cubed-sphere latitude defined on λ ∈ [0, π/2] can be defined as

y = y`. (27)

The straight line corresponding to the RLL longitude λi on the local Cartesian plane for

the South polar panel (p = 6) is given by

y = tan

(
3π

4
− λi

)
x. (28)

Therefore the intersection between (27) and (28) is

(x, y) =

(
y`

tan
(

3π
4
− λi

) , y`

)
, 1 ≤ i ≤ Nλ/4 + 1. (29)

Similarly for the North polar panel p = 5. For the equatorial panel (p = 1) the RLL

longitude is given by

x = a tan
(
λi − π

4

)
, (30)

and the corresponding intersection is

(x, y) =
(
a tan

(
λi − π

4

)
, y`

)
, 1 ≤ i ≤ Nλ/4 + 1. (31)

These intersections are depicted on Fig. 6. The corresponding intersections in spherical

coordinates (λ, θ) are computed using the transformations given in Appendix A of Nair
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et al. (2005, note that the RLL grid in Nair et al. 2005 is rotated such that the λ = 0

longitude is in the center of panel 1 - the transformation is, however, easily adapted to

the current setting where the Meridian line coincides with the western edge of panel 1).

c. The second cascade sweep

After the first cascade sweep the data are transferred to the intermediate grid and

in the second cascade sweep they are further transferred to the cubed sphere cells. For

the second cascade sweep Θs and Θt are the one-dimensional source and target grids,

respectively. As described in the previous sub-Section the intermediate grid is defined

in terms of the overlapping spherical areas between the RLL longitudinal belts and the

cubed-sphere latitudinal belts. The spherical area of each intermediate grid cell along

the RLL longitudinal belts can be computed from Λt:

∆int
i` = Λt

i,`+1 − Λt
i`, (32)

where i is the RLL longitude index and ` the cubed-sphere latitude index. Also in the

second cascade sweep we use the intermediate cell area ∆int
i` . The source grid Θs is the

accumulated spherical area of the intermediate cells along the cubed-sphere latitudes

Θs
i` =

i∑

k=1

∆int
k` . (33)

For Θt we need the spherical areas of the cubed-sphere cells ∆cube
ij that are derived

in Appendix C. As for the other one-dimensional cascade grids, the final target grid

is defined in terms of accumulated area along the cascade direction, that is, the

accumulated spherical area of the cubed-sphere cells along the cubed-sphere latitudes

Θt
ν` =

∑̀

k=1

∆cube
k` , (34)

where ∆cube is referred to in terms of (ν, `) using the transformations given in Appendix

B.
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d. More general cases

In case the RLL grid is rotated zonally with respect to the cubed-sphere grid,

that is, λ = 0 is not a RLL grid line the algorithm can with minimal modifications be

applied. First of all, the longitudes λ = 0, π, π/2, and 3π/2 are added to the RLL grid.

In such a situation the definition of Λs given in (19) has to be slightly modified since ∆λ

is no longer a constant but varies with longitude, and one must remap mass from the

original RLL grid to the refined grid. This is, however, easily done by remapping along

the RLL latitude belts from the original source grid to the refined grid (or vice versa).

Apart from this modification the algorithm is applied as described above. In fact one

can add any multiple of four longitudes λ = λi, λi + π/2, λi + π, and λi + 3π/2 to the

grid and apply the algorithm as described above.

The remapping algorithm described here is based on a cell-centered finite-volume

method. If the data points are on the grid intersections (not the cell-centered averages),

for example, as in the standard spectral element method, grid point values must be

transferred onto a cell-centered grid without violating mass-conservation. In a spectral

element method the variables are defined at quadrature points. The quadrature points

do not have volumes associated with them so it only makes sense to associate volumes

to elements and not individual grid-points. Therefore one needs to integrate fields to

volumes before the application of CaRS. When the data are formulated in terms of cell

averages CaRS can be directly applied.

In case of conformal cubic grids (e.g., Rančić et al. 1996; Adcroft et al. 2004)

or numerically generated cubed sphere grids, the procedure for finding intermediate

intersections may not be viable. Moreover computing the intermediate areas is

impractical. In such cases the intermediate grid generation and intersections could be

done as in Nair et al. (2002), however, that is beyond the scope of the present study.
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4. Results

The new remapping algorithm (CaRS) has been implemented and tested using

various analytical fields. For comparison the SCRIP algorithm is used. Note that for

the second-order version of SCRIP gradients in spherical coordinates must be specified.

In a coupled model setting the gradients can be supplied by the internal numerics

of the model components using, for example, spectral methods, finite differences

or finite elements. In the present situation the gradients must be estimated from

cell-averaged values. Here we choose to use polynomial sub-grid-scale reconstructions

for the approximation of the gradients, that is, given the sub-grid-scale distribution

in the local coordinate system (5), the local gradient in the kth cell is approximated

by evaluating dψk(ξ)/dξ in the center of the cell. Performing this operation on the

RLL grid-cell averages the gradient components are obviously obtained directly in

spherical coordinates. For the cubed-sphere the local coordinates used for the gradient

approximation are the central angles, ξ = (α, β). The gradient in local coordinates must

then be transformed to spherical coordinates. This is done using the metric-tensor given

in Appendix D. Note that although the gradient is approximated with a higher-order

reconstruction, the sub-grid-cell variation used in SCRIP is a linear and not a parabola

or higher-order polynomial as in the directional sweeps in CaRS. However, it should

be noted that in theory SCRIP could be extended for higher-order reconstructions

by including more terms in the Taylor expansion (equation 7 in Jones 1999) but that

approach is not exploited herein. Fig. 7.

a. Test cases

We consider three idealized test cases. Results from the remapping from the RLL

grid to the cubed-sphere grid are shown. The reverse remapping was also considered but

it did not provide any new insights into the accuracy of the algorithms and hence we

only show results from the former. Following Jones (1999) a relatively smooth function
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resembling a spherical harmonic of order 2 and azimuthal wave number 2 (see Fig. 7a):

ψ = Y 2
2 = 2 + cos2 θ cos(2λ), (35)

and a realitvely high frequency wave similar to a spherical harmonic of order 32 and

azimuthal wave number 16 (see Fig. 7b):

ψ = Y 16
32 = 2 + sin16(2θ) cos(16λ), (36)

are used. These two waves test the algorithms performance for a large-scale well-resolved

field as well as a higher frequency wave in the mid-latitudes with relatively rapid

changing gradients. In addition, a third test case is considered where dual stationary

vortex fields (Nair and Machenhauer 2002) are used (see Fig. 7c). The analytic vortex

fields are given by

ψ = 1− tanh

[
ρ′

d
sin(λ′ − ω′t)

]
, (37)

where the radius ρ′ = r0 cos θ′, angular velocity

ω′(θ′) =





0 if ρ′ = 0,

Vt

ρ′ if ρ′ 6= 0,

(38)

(39)

and normalized tangential velocity of the circular vortex are given by Vt =

(3
√

3/2)sech2ρ′ tanh ρ′. The (λ′, θ′) refer to a rotated spherical coordinate system with

the rotated pole located at (λ0, θ0). For the tests used here we choose (λ0, θ0) = (0, 0.6),

r0 = 3, d = 5, and t = 6 (see Fig. 7c), that results in two symmetric vortices located

near two diametrically opposite edges of the cube with stronger spatial gradients than

Y 16
32 as well as more complex variation over the entire sphere. The vortex centers are

slightly off-centered from the vertices of the cubed sphere to avoid possible symmetry

with the subdomains. The Y 16
32 and vortex fields have significant variation over the edges
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of the cubed thereby challenging the algorithms significantly more that if, for example,

fields only having gradients in the equatorial regions.

The performance of the algorithms are quantified using standard error measures:

l1 ≡
I

(∣∣ψnum − ψexact

∣∣)

I
(
ψexact

) (40)

l2 ≡

√
I

[(
ψnum − ψexact

)2
]

√
I

[(∣∣ψexact

∣∣)2
] (41)

l∞ ≡ max
(∣∣ψnum − ψexact

∣∣)

max
(∣∣ψexact

∣∣) (42)

lmin ≡
min

(
ψnum

)−min
(
ψexact

)

max
(
ψexact

)−min
(
ψexact

) (43)

lmax ≡
max

(
ψnum

)−max
(
ψexact

)

max
(
ψexact

)−min
(
ψexact

) , (44)

where I(·) is the global integral

I(ψ) =
∑
i,j

ψij∆Aij (45)

and ψij is the average density over the grid cell with area Aij. The numerically generated

‘exact’ solution

ψexact =
1

∆A

∫

∆A

ψdA (46)

is computed by fourth order Gaussian quadrature.

b. Discussion of errors

The errors introduced by the remapping algorithms can be categorized into two

types of errors. First of all, the geometrical approximation to the cells in the remapping

algorithm. This is referred to as the geometrical error. Secondly, the approximation to

the sub-grid-cell distribution referred to as the derivative error. Of course these errors

are to some extent interrelated in the sense that in areas with large geometric error one
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can also expect increased derivative errors. The derivative error can be reduced by using

higher-order sub-grid-cell reconstructions; at least in areas with low geometric error.

The geometric error can be reduced by increasing the resolution in parts of the domain

where the algorithm makes poor approximations to the cells.

The CaRS algorithm splits the two-dimensional remapping problem into two

one-dimensional sweeps. Obviously the geometric order reduction of the problem

involves approximations that can lead to geometric error and consequently also

derivative error. The geometric error in CaRS is expected to be largest near the

edges of the cubed-sphere grid faces and near the discontinuities in the derivative of

the cubed-sphere latitudes (λ = 0, π/2, π, 3π/2) where the geometrical reduction to

one-dimension is least accurate. These angles for which CaRS perform strong stretching

are referred to as right angles. The geometric error can be reduced in two ways.

Firstly, by construction of the algorithm in terms of the area consistent definition of the

one-dimensional grids used in the remapping. Secondly, the resolution can be increased

in areas where CaRS makes less accurate approximation to the cells.

Depending on the resolution of the source and target grids, and what the source

and target grids are, the geometric error can be reduced by optionally adding longitudes

to the RLL grid near the right angles (corners) and/or increasing the resolution over

the polar cubed-sphere panels, where the approximation to the cells in the directional

sweeps of CaRS are least accurate. For example, when remapping from a low resolution

RLL grid to a high resolution cubed-sphere grid, the geometric error can be reduced

significantly by adding extra longitudes to the RLL grid near the right angles (see

Fig. 8a). Similarly when remapping from a high-resolution RLL grid to a low resolution

cubed-sphere grid, increasing the resolution on the cubed-sphere polar panels can

significantly reduce the geometric error (Fig. 8b). On the equatorial panels the geometric

error is small since the source and target grid cell walls are aligned in the vertical and

‘quasi-aligned’ in the horizontal (see Fig.1). Fig. 8.
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SCRIP uses a fully two-dimensional approximation to the cells by connecting the

cell vertices with straight lines in (λ, θ)-space. So the approximation to the RLL cells is

exact whereas the approximation to the cubed-sphere cells is not exact. For example,

the approximations to the cell walls made by SCRIP for the south polar panel are not

exact since the exact cubed-sphere cell walls are great-circle arcs (see Fig. 9). As for

CaRS the approximation to the grid cells is less accurate over the polar panels compared

to the equatorial panels.

For the grid pair considered here the an-isotropic nature of the RLL grid leads to

excessive resolution near the poles compared to the cubed-sphere grid that has a more

uniform resolution over the entire sphere. Hence there can be a loss of information

near the poles when remapping back and forth between the cubed-sphere and RLL

grids when these grids have similar resolution in the tropics and consequently have very

different resolutions over the poles. Fig. 9.

1) Geometric error in CaRS

Remapping from a fine to a coarse grid should basically correspond to an averaging

operation, in other words, the derivative error is expected to be small since all the

gradient information is lost. Consequently CaRS and SCRIP should yield similar results

if their geometric errors are similar. Consider the remapping of Y 2
2 from a fine RLL

grid (Nλ = 512,Nθ = 256) to a coarse cubed-sphere grid with resolution Nc = 22.

SCRIP based on PCoM, PLM and PPM for the gradient approximation produces

l2 = 3.5843 × 10−8, l2 = 3.4636 × 10−8 and l2 = 3.4635 × 10−8, respectively, which

demonstrates that the gradient approximation matters little for this grid pair. Similarly

for CaRS we get l2 = 4.6241 × 10−7, l2 = 4.5213 × 10−7 and l2 = 4.5215 × 10−7. The

error measure for CaRS is, however, significantly larger than for SCRIP due to the

larger geometric error in CaRS. As expected the errors are localized about the right

angles (see Fig. 10) as conceptually illustrated on Fig. 8b. The geometric error can be
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significantly reduced by increasing the cubed-sphere grid resolution on the polar panels.

Here we simply double the resolution on the cubed-sphere panels for the remapping

sweeps and then average to the coarse original cubed-sphere grid after having completed

the cascade procedure.

The increase in computational cost for this procedure is approximately 30% but

could be reduced by only increasing resolution near the right angles on the cubed-sphere

polar panels. For this setup with double polar resolution the remapping of Y 2
2 produces:

l2 = 3.2125× 10−8, l2 = 2.8292× 10−8, l2 = 2.8317× 10−8 for reconstructions based on

PCoM, PLM and PPM, respectively. The SCRIP geometric error may be due to the

fact that the cells are approximated with straight lines in (λ, θ)-space (Fig.9) that for

this particular test setup produces larger errors than the version of CaRS with increased

polar panel resolution. Note that one could also apply double resolution in SCRIP over

the cubed-sphere polar panels, but the current scope is to use the fully two-dimensional

SCRIP as a baseline for reducing the geometric error in CaRS to an acceptable level.

Similarly if one is remapping from a fine cubed-sphere grid to a coarse RLL grid the

geometric error in CaRS can be significantly reduced by adding longitudes about the

right angles (not shown). Again the refinement does not lead to major algorithmic

changes since they fit directly into the CaRS cascade framework. Fig. 10.

2) Accuracy of higher-order versions of CaRS

An advantage of CaRS is that with modest increase in computational cost one

can use high-order sub-grid-cell reconstructions as well as easily incorporate advanced

monotone filters. When remapping from a fine to a coarse grid the higher-order

reconstructions do not significantly improve accuracy, as shown in the previous Section,

but when remapping from a coarse to a fine grid the benefit of high-order polynomial

reconstructions in CaRS is evident. Here we show results of remapping analytic fields

from a coarse RLL grid (Nλ = 128,Nθ = 64) to a fine cubed-sphere grid (Nc = 130). To
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reduce the errors near the right angles conceptually illustrated on Fig.8a, we introduce

additional longitudes ±1.5(2π/360) +mπ/2, ±0.75(2π/360) +mπ/2, where m = 1, 2, 3,

to the RLL grid. This reduces l2-errors by more than a factor 2 (not shown) with an

approximately 15% extra computational cost. Doubling the cubed-sphere polar panel

resolution further decreases l1 and l2 by approximately 4% but approximately reduces

l∞ by 50% and 30% for the Y 2
2 and Y 16

32 fields, repsectively. Table 2.

Table 3.Table 2 and 3 show performance measures for the remapping of Y 2
2 , Y 16

32 , and the

idealized vortex field using SCRIP and CaRS, respectively. For SCRIP also analytic

approximations to the gradient have been used. By analytic is meant the analytic

field gradient evaluated in the center of the cell. It is not possible to specify analytic

sub-grid-cell reconstructions in CaRS because of the dimensional reduction of the

problem that renders exact reconstructions in the cascade sweeps ill-defined.

As expected the l1 and l2 error norms for both SCRIP and CaRS decrease when

going from PCoM, PLM, PPM to PCM. When using a constant (PCoM) and a linear

profile (PLM) for the reconstructions SCRIP and CaRS perform similarly. SCRIP-PPM

and SCRIP-PCM use higher-order estimates to the gradient based on PPM and PCM,

respectively, but the reconstruction profile is still linear. CaRS-PPM, CaRS-PSM and

CaRS-PCM, on the other hand, apply second and third-order polynomial reconstructions

in each cascade sweep which leads to a significant decrease in the l1 and l2 error measures

compared to SCRIP-PPM and SCRIP-PCM (Table 2 and 3).

Of the sub-grid-cell reconstructions considered here, the one leading to the most

accurate remappings is quadratic splines (PSM). This even though PSM is approximately

60% more efficient than PPM (and even more when comparing to PCM) in terms of

total operation count (Zerroukat et al. 2006). The high accuracy of the PSM is due to

the fact that it possesses the optimal reconstruction property: of all piecewise parabolic

functions, the quadratic spline is optimal in the sense that it minimizes the integrated

square curvature for a given set of cell averages.
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3) Impact on accuracy of monotone filter

The CaRS algorithm allows for efficient options for monotone filters that can be

incorporated with great ease; each cascade sweep is one-dimensional, therefore monotone

filters can be easily implemented. Global under- or overshoots can be detected if lmin

and lmax are negative and postive, respectively, for fields that are everywhere positive

as for the test cases considered here. However, as discussed in Section 2c the filters do

allow for under- and overshoot of minor amplitude if they are physical (not spurious)

(see Zerroukat et al. 2007). Table 4 shows that all versions of CaRS applying the

monontone filter produce positive lmin and negative lmax norms apart from CaRS based

on splines that show minor under- and overshoots. However, most of the unfiltered

test results shown in Table 3 are also monotone in terms lmin and lmax indicating that

the fields do not challenge the algorithm regarding global under- and overshoots. By

remapping a Gaussian hill distribution a negative undershoot would be spurious. For the

remapping of a Gaussian hill distribution from a coarse RLL grid to a fine cubed-sphere

grid (resoltions as in Table 4) using monotone versions of CaRS based on PLM, PPM,

PCM and PSM yields lmin = 0 and the unfiltered versions of CaRS yield spurious

negative undershoots since lmin = −1.3224 × 10−3, −1.6931 × 10−3, −1.5479 × 10−3,

−1.3956× 10−3, respectively.

In general the accuracy of the high-order monotone version of CaRS in terms of

l1 and l2 is very similar to the unfiltered CaRS algorithm for the smooth fields Y 2
2 and

Y 16
32 (see Table 4). As seen in idealized advection tests the l∞-error increases with the

application of monotone filters. For the less well-resolved and rapidly varying field of the

idealized vortex the impact of the monotone filter is more noticable in terms of l1, l2 and

l∞. The filter of Zerroukat et al. (2005) was not designed for low order reconstructions

such as PLM hence CaRS based on PLM use a standard limiter (e.g., van Leer 1977)

which significantly affects the accuracy of the solution compared to the advanced filter

of Zerroukat et al. (2005). Table 4.
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c. Discussion on computational cost

The computation of the geometric information needs only to be computed once and

can be reused for any additional field that needs to be remapped. However, the geometric

(grid) information used in CaRS can also be efficiently precomputed. Basically the

geometric information is based on coordinates for crossings between straight lines on the

gnomonic projection. Given the one-dimensional source, intermediate and target grids

the actual remapping can also be optimized. For a non-filtered remapping using, for

example, PCM the weights for the polynomial reconstruction can also be precomputed

since they are solely based on the geometric information. The only information that can

not be precomputed is the filter since it is inherently linked to the field that is being

remapped.

5. Summary

A general modeling environment consists of various model components usually

defined on different grid systems. The accurate transfer of state and flux variables

between different grids is crucial to the overall accuracy of the model. Especially

conservation properties are important for models intended for long runs as well

as monotonicity for the remapping of noisy scalars. Here we present a high-order

and monotone regridding method for the specific remapping of scalars between the

equiangular cubed-sphere and regular latitude-longitude grid. This new remapping

scheme is referred to as CaRS (Cascade Remapping between Spherical grids).

CaRS is based on the cascade method where the two-dimensional remapping

problem is decomposed into two one-dimensional problems. The advantages of such

an approach is that one can apply higher-order methods without excessive increase

in computational cost and one has the possibility of applying sophisticated monotone

filters. Here we use up to fourth-order methods combined with an advanced monotone

filter of Zerroukat et al. (2005).
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Since the grids are static we take into advantage that one may freely choose the

cascade remapping directions. Also, the geometrical (grid) information needed for

the remapping, such as the intersections between grid lines of the two grids, can be

precomputed and stored. The remapping directions are chosen to be aligned with the

longitudinal belts of the regular latitude-longitude grid and along what is referred to

as cubed-sphere latitudes. Instead of defining the cubed-sphere grid lines panelwise,

as is traditionally done, one may reconstruct the cubed-sphere grid with two grid-lines

similar to the longitudes and latitudes of the regular latitude-longitude grid. Choosing

the remapping directions like this insures that the deviation from orthogonality between

the cascade sweeps is minimized while exploiting the logical ordering of the data on the

different grids.

CaRS is validated by remapping smooth and rapidly varying test functions. We

compare standard error measures from remapping with the widely used SCRIP software

to the results obtained with CaRS. For the remapping from fine to coarse grids the

two methods perform similarly since all gradient information is lost in such situations.

In the reverse process, that is, when remapping from a coarse to a fine grid the

higher-order sub-grid-cell reconstructions in CaRS come into play. In terms of standard

error measures CaRS offers a higher-order alternative to SCRIP that can be more

accurate than fully two-dimensional approaches even when montone filters are applied.

However, SCRIP is more general than CaRS since it can, in principle, handle any kind

of spherical grids. Generalized versions of CaRS will require some kind of structure in

the underlaying grid systems so that the cascade method can be applied.

We exploit symmetry and the fact that great-circle arcs appear as straight lines

on the gnomonic projection. Therefore we consider remapping from and to a classical

cubed-sphere grid based on the equiangular central projection and do not explicitly

consider conformal or numerically generated cubic grids for this study. However, our

method may be generalized to accommodate such grids. So far we have only considered
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the remapping of scalar quantities. The remapping of vectors and the extension of CaRS

to other grids will be addressed in the future.
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APPENDIX A

Area of Spherical Triangle

Consider a spherical triangle with one vertice at the south pole, and the other two

vertices located at (λ1, θ1) and (λ2, θ2). The sides are defined by great-circle arcs

intersecting pairwise in the three vertices. The area A of the spherical triangle is

computed by using the formula

A = 4 tan−1

√
tan

(s
2

)
tan

(
s− a

2

)
tan

(
s− b

2

)
tan

(
s− c

2

)
, (A-1)

(e.g, Miller 1994). The auxiliary variables s, a, b, and c are given by

s =
1

2
(a+ b+ c) , (A-2)

a = θ1 +
π

2
, (A-3)

b = 2 sin−1
√

hav(a− c) + sin a+ sin c hav(λ2 − λ1), (A-4)

c = θ2 +
π

2
, (A-5)

where the haversine function is defined by hav(x) = (1− cosx)/2. Fig. 11.

APPENDIX B

Index transformations

Let (i, j) be conventional indices of the cell on each panel of the cubed sphere where

1 ≤ i, j ≤ Nc. The lower left cell in the panel has index (1, 1), and i is the column index

and j is the row index (see Fig. 3). For the formulation of the remapping algorithm

we define cubed-sphere latitudes. The latitudinal index of the cubed-sphere latitudes

is denoted ` and the cells along the cubed-sphere latitudes is denoted ν. The ν index

increases eastward along the cubed-sphere latitude (see Fig. 5). If Nc is even the first

cubed-sphere latitude is, by convention, the cell located over the pole. The number of
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cells in the `-th cubed-sphere latitude located on the south polar panel (panel 6) is

4 + (`− 1) 8. By symmetry similarly for panel 5. For the cubed-sphere latitudes on the

equatorial panels the number of cubed-sphere latitudes is simply 4 (Nc − 1).

The relationship between the conventional indexing of the cells (i, j, p), where i is

the row index, j is the column index and p is the panel number, and the cubed-sphere

latitude indexing in terms of (ν, `) described above is given by:

• Panel 6 (1 ≤ ` ≤ Nh): The regular row index i is given by

i = Nh − `+ ν, 1 ≤ ν ≤ e, (A-6)

i = Nh + `− 1 + f, e+ 1 ≤ ν ≤ 2e, (A-7)

i = Nh + `− ν + f, 2e+ 1 ≤ ν ≤ 3e, (A-8)

i = Nh + 1− ν, 3e+ 1 ≤ ν ≤ 4e, (A-9)

where Nh is the integer value of Nc/2, e is a quarter of the number of cells in a

cubed-sphere latitude

e = 1 + (`− 1) 2, (A-10)

and f = MOD(Nc, 2) (where MOD is the standard Fortran modulus function).

The regular column index j is given by

j = Nh + `− 1 + f, 1 ≤ ν ≤ e, (A-11)

j = Nh + `− ν + f, e+ 1 ≤ ν ≤ 2e, (A-12)

j = Nh − `+ 1, 2e+ 1 ≤ ν ≤ 3e, (A-13)

j = Nh − `+ ν, 3e+ 1 ≤ ν ≤ 4e. (A-14)

• Panel 1-4 (Nh + 1 ≤ ` ≤ Nh +Nc − 1): The regular row indices (i, j) are given by

i = ν + (p− 1) (Nc − 1), (A-15)

j = `−Nh, (A-16)

where p is the panel number.
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• Panel 5 (Nh +Nc ≤ ` ≤ 2Nh +Nc − 1): By symmetry one can use the formulas

for Panel 6 but with ` replaced with 2Nh +Nc − `.

APPENDIX C

Area of cubed-sphere cells

The cubed-sphere cell is defined by connecting the edges with straight lines in the

local Cartesian coordinate system. Since straight lines on the gnomonic projection are

great-circle arcs on the sphere, the area of the cubed-sphere cells on the sphere is given

by

∆cube = −2π + a1 + a2 + a3 + a4, (A-17)

where ai are the interior spherical angles of the cell. The angles can be expressed in

terms of the metric tensor

cos−1

(
g12√
g11 g22

)
. (A-18)

that for an equiangular projection is given by

ang(α, β) = − sinα sin β, (A-19)

(see, e.g., Nair et al. 2005) where (α, β) are the central angles of the vertex of the cell

(see (17)). The a1, a2, a3, and a4 in (A-17) are given by

a1 = ang(αi, βj) (A-20)

a2 = π − ang(αi+1, βj) (A-21)

a3 = π − ang(αi, βj+1) (A-22)

a4 = ang(αi+1, βj+1) (A-23)

for the (i, j)-th cubed-sphere grid cell.
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APPENDIX D

Rotation of vectors from central angle cubed sphere coordinates to regular

latitude-longitude coordinates

Given a vector v(α,β) = v1α̂ + v2β̂ in local cubed-sphere central-angle coordinates, the

corresponding vector in spherical coordinates is given by

v(λ,θ) = Q · v(α,β), (A-24)

where the matrix Q is given by

sec θ secλ

R


secλ cos2 α tan θ tanλ cos2 β

0 sec θ cos2 β


 (A-25)

1

R sin2 θ


− cos2 α sin θ cosλ cos2 β sin θ sinλ

− sinλ cos2 α cosλ cos2 β


 , (A-26)

1

R sin2 θ


cos2 α sin θ cosλ cos2 β sin θ sinλ

− sinλ cos2 α cosλ cos2 β


 , (A-27)

(Nair et al. 2005) for panel 1-4, 5, and 6, respectively. a = R/
√

3 is half of the length

of the cube inscribed into the sphere with radius R.
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Figure Captions

Fig. 1. A schematical illustration of the regular latitude-longitude grid (thin solid lines)

on the gnomonic projection. Dashed lines are the cubed-sphere grid lines and the thick

lines mark the border of each panel. The panel index is at the upper right corner of each

panel.

Fig. 2. Schematic illustration of a two-dimensional cascade interpolation from the source

grid to the target grid. The source grid (xs, ys) is represented by dashed lines with open

circles as grid points, and the target grid (xt, yt) is represented by solid curves with filled

circles as grid points. The intermediate grid intersections are defined as the intersection

of source grid ys-lines with target grid xt-curves and are marked by cross marks (×).

Fig. 3. Schematic illustration of the cubed-sphere grid on the local Cartesian coordinate

system centered on each panel as well as the traditional indexing (i, j) used to refer to

regular cubed-sphere grid cells. The panel index p is omitted since the figure is panel

independent.

Fig. 4. A schematical illustration of the cubed-sphere latitudes (thick lines with arrows)

as projected on a polar tangent plane. These latitudes are logical squares centered at the

polar axis of the sphere. The thin dashed lines show the cubed-sphere grid lines on the

polar panel 6 and the adjacent equatorial panels (1-4). See also Fig. 5.

Fig. 5. Schematical illustration of the indexing (ν, `) of the cells along the cubed-sphere

latitudes on the south polar panel (panel 6) for (a) Nc odd and (b) Nc even. The first

index ν refers to the cell number along the cubed-sphere latitude with index `. The solid

line is λ = 0 longitude and the dashed lines are the cubed-sphere grid lines.
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Fig. 6. A schematical illustration of the intermediate grid given the cubed-sphere grid

(dashed lines) and regular latitude-longitude grid (thick solid lines) shown in local Carte-

sian coordinates centered on the surface of the cubed-sphere faces (only one equatorial

face is shown). The cubed-sphere face number is in the upper-right corner of each panel.

Consider the first, i = 1, longitudinal belt (shaded area). The open circles encircle the

intersections between the cubed-sphere latitudes and the regular longitudes for i = 1.

The intersections are denoted qi` where the subscripts i and ` refer to the longitudinal

belt and cubed-sphere latitude, respectively. The accumulated areas of the intermediate

cells ∆i` along the longitudinal belt i are the areas of the spherical triangles with the

south pole, qi`, and qi+1,` as edges.

Fig. 7. Contours of the analytical function (a) Y 2
2 at intervals 0.15, (b) Y 16

32 at intervals

0.4, and (c) the vortex fields with one of the vortices centered about (λ0, θ0) = (0, 0.6)

at intervals 0.15. Thin lines show the cubed-sphere grid and dashed lines is the regular

latitude-longitude grid.
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Fig. 8. For the first cascade sweep from a RLL grid to a cubed-sphere grid (dashed

lines), the intermediate grid on the polar panels have large geometric error as illustrated

schematically on this Figure. The intermediate grid is defined in terms of the spherical

areas of the intersections between the RLL longitudes (thick solid lines) and the cubed

sphere latitudes (see also Fig. 6). Since the remapping is reduced to a one-dimensional

problem the intermediate grid cell walls for the first cascade sweep are effectively the

latitude segment lines shown on the Figure (curved thin solid lines). (a) show the situ-

ation in which the RLL grid has a coarse resolution compared to the cubed-sphere grid.

Near the right angles the effective intermediate cells are a poor approximation to the

spherical triangle defining the ‘exact’ intermediate grid cell . By adding extra longitudes

on the RLL grid near the right angles this error can be significantly reduced. Figure (b)

shows the opposite situation in which case an increase in the cubed-sphere polar panel

resolution significantly reduces the geometrical error.

Fig. 9. The Figure shows the cell walls of the cubed-sphere south polar panel plotted in

(λ, θ)-space. SCRIP approximates the cells by connecting the cell vertices (filled cirlces)

with straight lines in (λ, θ)-space (solid lines). The dotted lines are the exact cell walls

which are great circle arcs.

Fig. 10. Contours of the difference between ψexact = Y 2
2 and the remapped field ψnum

for CaRS based on PCM with (a) no refinement and (b) extra longitudes added to the

RLL grid as described in the caption of Table 3.

Fig. 11. Spherical triangle with vertices A, B, and C located at (λ1, θ1), (0,−π/2),

and (λ2, θ2), respectively. The triangle edge lengths are denoted with lower case letters.

Since B is chosen as a vertex at the Earth’s pole a and c are simply a = θ1 + π/2 and

c = θ2 + π/2. The length of edge b is given by (A-4).
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Tables

Table 1. List of acronyms used in this paper.

Acronym

CaRS Cascade Remapping between Spherical grids

()-M suffix stands for Monotone filter applied

PCM Piecewise Cubic Method

PCoM Piecewise Constant method

PLM Piecewise Linear method

PPM Piecewise Parabolic Method

PSM Piecewise Spline Method

RLL Regular Latitude-Longitude

SCRIP Spherical Coordinate Remapping and Interpolation Package
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Table 2. Performance measures for the remapping of Y 2
2 , Y 32

16 and the idealized vor-

tices (V x) from a coarse RLL grid (Nλ = 128,Nθ = 64) to a fine cubed-sphere grid

(Nc = 130) using SCRIP based on different sub-grid-cell reconstructions for the gradient

approximation as well as with exact gradients (ANA).

Method Field l1 l2 l∞ lmin lmax

SCRIP-PCoM Y 2
2 4.4915× 10−3 3.0460× 10−5 9.1806× 10−3 8.5362× 10−4 −8.5362× 10−4

SCRIP-PLM Y 2
2 4.0751× 10−4 3.4447× 10−7 1.6630× 10−3 1.0869× 10−4 4.9535× 10−4

SCRIP-PPM Y 2
2 3.9186× 10−4 3.3448× 10−7 1.6550× 10−3 −4.9684× 10−5 4.9684× 10−5

SCRIP-PCM Y 2
2 3.9110× 10−4 3.3342× 10−7 1.6538× 10−3 −5.0046× 10−5 5.0046× 10−5

S-ANA Y 2
2 8.0935× 10−5 1.0326× 10−8 2.9326× 10−4 −5.0237× 10−5 5.0237× 10−5

SCRIP-PCoM Y 16
32 1.1458× 10−2 5.4858× 10−4 8.3619× 10−2 5.3716× 10−2 −5.3502× 10−2

SCRIP-PLM Y 16
32 3.4194× 10−3 5.4405× 10−5 3.3244× 10−2 2.4733× 10−2 2.8909× 10−2

SCRIP-PPM Y 16
32 3.0454× 10−3 4.4093× 10−5 3.0220× 10−2 2.5006× 10−3 3.9442× 10−3

SCRIP-PCM Y 16
32 2.9155× 10−3 4.0242× 10−5 2.9202× 10−2 1.4938× 10−3 5.0718× 10−3

S-ANA Y 16
32 1.7229× 10−3 1.3325× 10−5 2.0219× 10−2 −2.0353× 10−2 2.9545× 10−2

SCRIP-PCoM V x 7.4300× 10−3 1.9459× 10−4 8.7704× 10−2 8.9093× 10−5 −8.9093× 10−5

SCRIP-PLM V x 1.9038× 10−3 3.1889× 10−5 6.4287× 10−2 4.6033× 10−5 1.2135× 10−4

SCRIP-PPM V x 1.4705× 10−3 1.5282× 10−5 3.8388× 10−2 1.0839× 10−5 −1.0839× 10−5

SCRIP-PCM V x 1.4116× 10−3 1.3470× 10−5 3.7308× 10−2 1.1183× 10−5 −1.1183× 10−5
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Table 3. Same as Table 2 but for CaRS with longitudes ±1.5(2π/360) +

mπ/2,±0.75(2π/360) + mπ/2 added to the grid as well as double cubed-sphere polar

panel resolution.

Method Field l1 l2 l∞ lmin lmax

CaRS-PCoM Y 2
2 4.5743× 10−3 3.1900× 10−5 9.7831× 10−3 8.5362× 10−4 −8.5362× 10−4

CaRS-PLM Y 2
2 8.1718× 10−5 1.4654× 10−8 5.2967× 10−4 1.1548× 10−4 5.0254× 10−4

CaRS-PPM Y 2
2 2.6905× 10−5 1.4736× 10−9 3.1578× 10−4 5.1533× 10−7 −5.1533× 10−7

CaRS-PCM Y 2
2 2.7011× 10−5 1.4830× 10−9 3.1279× 10−4 3.7496× 10−7 −3.7495× 10−7

CaRS-PSM Y 2
2 2.7026× 10−5 1.3803× 10−9 2.8937× 10−4 5.9434× 10−8 −5.9434× 10−8

CaRS-PCoM Y 16
32 1.1508× 10−2 5.5686× 10−4 8.3624× 10−2 5.3716× 10−2 −5.3502× 10−2

CaRS-PLM Y 16
32 2.3237× 10−3 2.6073× 10−5 3.2057× 10−2 1.4450× 10−2 4.8177× 10−2

CaRS-PPM Y 16
32 5.5509× 10−4 1.1953× 10−6 3.6339× 10−3 4.4407× 10−3 −3.9721× 10−3

CaRS-PCM Y 16
32 4.8890× 10−4 9.1914× 10−7 3.1819× 10−3 4.1227× 10−3 −3.5096× 10−3

CaRS-PSM Y 16
32 3.7525× 10−4 5.9096× 10−7 3.1124× 10−3 1.0581× 10−3 −1.0418× 10−3

CaRS-PCoM V x 7.3023× 10−3 1.8609× 10−4 8.3958× 10−2 8.9093× 10−5 −8.9093× 10−5

CaRS-PLM V x 1.6198× 10−3 3.1286× 10−5 5.9024× 10−2 4.4973× 10−5 1.1881× 10−4

CaRS-PPM V x 7.5292× 10−4 9.1247× 10−6 2.9363× 10−2 3.2974× 10−7 −3.2974× 10−7

CaRS-PCM V x 7.0393× 10−4 8.1716× 10−6 2.8681× 10−2 2.7105× 10−7 −2.7105× 10−7

CaRS-PSM V x 4.3646× 10−4 3.0533× 10−6 1.8144× 10−2 −1.1913× 10−8 1.1913× 10−8
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Table 4. Same as Table 3 but for the monotone version of CaRS.

Method Field l1 l2 l∞ lmin lmax

CaRS-PLM-M Y 2
2 1.0001× 10−4 2.9694× 10−8 9.2017× 10−4 8.5362× 10−4 −8.5362× 10−4

CaRS-PPM-M Y 2
2 2.6905× 10−5 1.4736× 10−9 3.1578× 10−4 5.1533× 10−7 −5.1533× 10−7

CaRS-PCM-M Y 2
2 2.7011× 10−5 1.4830× 10−9 3.1279× 10−4 3.7495× 10−7 −3.7495× 10−7

CaRS-PSM-M Y 2
2 2.7026× 10−5 1.3803× 10−9 2.8937× 10−4 5.9434× 10−8 −5.9434× 10−8

CaRS-PLM-M Y 16
32 4.1661× 10−3 1.0015× 10−4 4.0610× 10−2 5.3716× 10−2 −5.3502× 10−2

CaRS-PPM-M Y 16
32 5.5625× 10−4 1.1997× 10−6 3.6339× 10−3 4.4407× 10−3 −3.9721× 10−3

CaRS-PCM-M Y 16
32 4.8992× 10−4 9.2326× 10−7 3.1809× 10−3 4.1227× 10−3 −3.5096× 10−3

CaRS-PSM-M Y 16
32 3.7711× 10−4 5.9458× 10−7 3.1124× 10−3 1.0581× 10−3 −1.0418× 10−3

CaRS-PLM-M V x 1.8919× 10−3 4.3547× 10−5 5.8141× 10−2 8.9093× 10−5 −8.9093× 10−5

CaRS-PPM-M V x 1.1250× 10−3 2.7013× 10−5 5.8376× 10−2 3.2974× 10−7 −3.2974× 10−7

CaRS-PCM-M V x 1.0915× 10−3 2.6514× 10−5 5.8373× 10−2 2.7105× 10−7 −2.7105× 10−7

CaRS-PSM-M V x 9.8238× 10−4 2.5274× 10−5 6.0980× 10−2 −1.1913× 10−8 1.1913× 10−8
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Figures
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Fig. 1. A schematical illustration of the regular latitude-longitude grid (thin solid lines)

on the gnomonic projection. Dashed lines are the cubed-sphere grid lines and the thick

lines mark the border of each panel. The panel index is at the upper right corner of each

panel.
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Fig. 2. Schematic illustration of a two-dimensional cascade interpolation from the source

grid to the target grid. The source grid (xs, ys) is represented by dashed lines with open

circles as grid points, and the target grid (xt, yt) is represented by solid curves with filled

circles as grid points. The intermediate grid intersections are defined as the intersection

of source grid ys-lines with target grid xt-curves and are marked by cross marks (×).
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Fig. 3. Schematic illustration of the cubed-sphere grid on the local Cartesian coordinate

system centered on each panel as well as the traditional indexing (i, j) used to refer to

regular cubed-sphere grid cells. The panel index p is omitted since the figure is panel

independent.
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Fig. 4. A schematical illustration of the cubed-sphere latitudes (thick lines with arrows)

as projected on a polar tangent plane. These latitudes are logical squares centered at the

polar axis of the sphere. The thin dashed lines show the cubed-sphere grid lines on the

polar panel 6 and the adjacent equatorial panels (1-4). See also Fig. 5.
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(b) (N even)Panel 6
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Fig. 5. Schematical illustration of the indexing (ν, `) of the cells along the cubed-sphere

latitudes on the south polar panel (panel 6) for (a) Nc odd and (b) Nc even. The first

index ν refers to the cell number along the cubed-sphere latitude with index `. The solid

line is λ = 0 longitude and the dashed lines are the cubed-sphere grid lines.
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Fig. 6. A schematical illustration of the intermediate grid given the cubed-sphere grid

(dashed lines) and regular latitude-longitude grid (thick solid lines) shown in local Carte-

sian coordinates centered on the surface of the cubed-sphere faces (only one equatorial

face is shown). The cubed-sphere face number is in the upper-right corner of each panel.

Consider the first, i = 1, longitudinal belt (shaded area). The open circles encircle the

intersections between the cubed-sphere latitudes and the regular longitudes for i = 1.

The intersections are denoted qi` where the subscripts i and ` refer to the longitudinal

belt and cubed-sphere latitude, respectively. The accumulated areas of the intermediate

cells ∆i` along the longitudinal belt i are the areas of the spherical triangles with the

south pole, qi`, and qi+1,` as edges.
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Fig. 7. Contours of the analytical function (a) Y 2
2 at intervals 0.15, (b) Y 16

32 at intervals

0.4, and (c) the vortex fields with one of the vortices centered about (λ0, θ0) = (0, 0.6)

at intervals 0.15. Thin lines show the cubed-sphere grid and dashed lines is the regular

latitude-longitude grid.
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(b)(a)

Fig. 8. For the first cascade sweep from a RLL grid to a cubed-sphere grid (dashed

lines), the intermediate grid on the polar panels have large geometric error as illustrated

schematically on this Figure. The intermediate grid is defined in terms of the spherical

areas of the intersections between the RLL longitudes (thick solid lines) and the cubed

sphere latitudes (see also Fig. 6). Since the remapping is reduced to a one-dimensional

problem the intermediate grid cell walls for the first cascade sweep are effectively the

latitude segment lines shown on the Figure (curved thin solid lines). (a) show the situ-

ation in which the RLL grid has a coarse resolution compared to the cubed-sphere grid.

Near the right angles the effective intermediate cells are a poor approximation to the

spherical triangle defining the ‘exact’ intermediate grid cell . By adding extra longitudes

on the RLL grid near the right angles this error can be significantly reduced. Figure (b)

shows the opposite situation in which case an increase in the cubed-sphere polar panel

resolution significantly reduces the geometrical error.
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Fig. 9. The Figure shows the cell walls of the cubed-sphere south polar panel plotted in

(λ, θ)-space. SCRIP approximates the cells by connecting the cell vertices (filled cirlces)

with straight lines in (λ, θ)-space (solid lines). The dotted lines are the exact cell walls

which are great circle arcs.
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(a) (b)

Fig. 10. Contours of the difference between ψexact = Y 2
2 and the remapped field ψnum

for CaRS based on PCM with (a) no refinement and (b) extra longitudes added to the

RLL grid as described in the caption of Table 3.
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Fig. 11. Spherical triangle with vertices A, B, and C located at (λ1, θ1), (0,−π/2),

and (λ2, θ2), respectively. The triangle edge lengths are denoted with lower case letters.

Since B is chosen as a vertex at the Earth’s pole a and c are simply a = θ1 + π/2 and

c = θ2 + π/2. The length of edge b is given by (A-4).


