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1 Motivation
Why yet another idealized test case for transport?

2 Test case formulation:
Test case strategy
Class of test cases
Two non-divergent and two divergent tests

3 Some sample solutions
computed with new conservative semi-Lagrangian scheme

4 Advertisements
NCAR transport workshop for ‘transport geeks’ (early 2011)
Upcoming book: Numerical Techniques for Global Atmospheric Models
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Why a new idealized test case?

Why idealized test cases in the first place?

In ”full-blown” model simulations: Difficult to relate features/deficiencies in
the simulation to errors in the discretization schemes.

⇒ Useful in model development to use idealized test cases where simplified
settings make it easier to identify cause and effect
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Why a new idealized test case?

Why idealized test cases in the first place?

In ”full-blown” model simulations: Difficult to relate features/deficiencies in
the simulation to errors in the discretization schemes.

⇒ Useful in model development to use idealized test cases where simplified
settings make it easier to identify cause and effect

What would we like to learn from idealized tests (linear transport)?

Debug code (obvious bugs: non-conservation of symmetry, mass, ...)

Accuracy:
absolute errors in terms of error norms (exact solution)
numerical convergence rates (do they match formal order of accuracy?)
efficiency = accuracy / computational cost (multi-tracer efficiency)

consistency: Monotonicity and preservation of relative concentrations (control
chemical reaction rates!)
accuracy across scales (given the increased resolution span in global models):
Flow should force grid-scale features from well-resolved initial conditions
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Preservation of relative concentrations (chemistry)
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numerical solution to tracer 1

Figure:

Assume constant wind

Most schemes can transport tracer 2 exactly but not tracer 1

→ Relative concentrations near large gradients are altered by
numerical scheme ... can trigger highly non-linear irreversible processes
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Why a new idealized test case?

However, according to the literature most transport schemes in global
climate models have ‘only’ been tested (in idealized setup) for solid-body
advection:

No flow features of much interest (no deformation, no divergence, etc.)
Parcel trajectories are along straight-circle arcs
Preservation of a constant is easier compared to more complex non-divergent
flows (Lagrangian areas undergo no deformation, rotation, etc.)
Does not force modelers to distinguish between tracer concentration q and
tracer density ρ q (more discussion on next slide)
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Why a new idealized test case?

Air mass and tracer mass equations in flux-form:

∂ρ

∂t
+ ∇ · (ρ!v) = 0, (1)

∂(ρq)

∂t
+ ∇ · (ρq!v) = 0, (2)

where !v velocity, ρ density (kg/V), q concentration (kg/kg).

Note that the ‘flux-form’ for concentration

∂q

∂t
+ ∇ · (q!v) = q∇ ·!v. (3)

only takes the same form as in (1) if the flow is non-divergent ∇ ·!v = 0. So
for non-divergent flows one does not need to distinguish between density ρ

and concentration q for idealized testing (assuming ∇ ·!v = 0 in scheme).

⇒ For non-divergent idealized test cases the modeler is not forced to solve both
(1) and (2); not forced to consider the coupling between the two!
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Why a new idealized test case?

Air mass and tracer mass equations in flux-form:

∂ρ

∂t
+ ∇ · (ρ!v) = 0, (1)

∂(ρq)

∂t
+ ∇ · (ρq!v) = 0, (2)

where !v velocity, ρ density (kg/V), q concentration (kg/kg).

Note that the ‘flux-form’ for concentration

∂q

∂t
+ ∇ · (q!v) = q∇ ·!v. (3)

only takes the same form as in (1) if the flow is non-divergent ∇ ·!v = 0. So
for non-divergent flows one does not need to distinguish between density ρ

and concentration q for idealized testing (assuming ∇ ·!v = 0 in scheme).

Consistency: In discretized version of (1) and (2), equation (2) should reduce
to (1) when q = 1
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Why a new idealized test case?

Need more rigorous benchmark test cases in a challenging environment to:
test schemes under divergent and highly deformational flow conditions
vortices test cases: Nair and Machenhauer (2002); Nair and Jablonowski (2008)

test schemes on new unstructured spherical grids
test static and dynamic mesh refinement algorithms
test trajectory algorithms (semi-Lagrangian or Lagrangian methods) when
parcel trajectories are not great-circle arcs
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Why a new idealized test case?

Need more rigorous benchmark test cases in a challenging environment to:
test schemes under divergent and highly deformational flow conditions
vortices test cases: Nair and Machenhauer (2002); Nair and Jablonowski (2008)

test schemes on new unstructured spherical grids
test static and dynamic mesh refinement algorithms
test trajectory algorithms (semi-Lagrangian or Lagrangian methods) when
parcel trajectories are not great-circle arcs

test case has to be simple to implement otherwise (most) people will not use it!
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Test case strategy

Very hard to derive complex flows that have analytical solutions

So we follow ideas developed by LeVeque (1996) and use a time-reversing
flow field:

!v(λ,θ, t) = !̃v(λ,θ) cos

(
πt

T

)
, (4)

where T is the period.

Exact solution ψ(λ,θ, t = T) = ψ(λ,θ, t = 0) initial condition

⇒ can compute ‘exact’ error norms at t = T

Upstream parcel trajectories computed using high-order Taylor Series
expansions:

!xd ≡ !x(t − ∆t) = !x(t) − ∆t
d

dt
!x(t) +

(∆t)2

2!
d2

dt2
!x(t) − · · · (5)

dλ

dt
=

u

cos(θ)

dθ

dt
= v

where !v = d!x(t)/dt is wind vector
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Divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

Wind components are given by:

u(λ,θ, t) = −k sin2(λ/2) sin(2θ) cos(πt/T) (6)

v(λ,θ, t) =
k

2
sin(λ) cos(θ) cos(πt/T) (7)

where k is flow parameter

Initial condition: ρ = 1 & q = smooth Cosine bell or slotted cylinder
(the latter to test for monotonicity).
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Simulations performed with fully 2D CSLAM

New conservative semi-Lagrangian scheme on the cubed sphere named

CSLAM (Conservative Semi-LAgrangian Multi-tracer transport scheme)

Higher-order extension of incremental remapping (Dukowicz and
Baumgardner, 2000) to the cubed-sphere that supports large CFL numbers
Lauritzen et al. (2010), Harris and Lauritzen (2010, JCP, revising), Ullrich et al. (2009)

Scheme is currently being extended to icosahedral grids (hexagons/triangles)
see Mittal’s talk at PDEs on the sphere workshop in August, 2010
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aε
k = ‘flux-area’ (yellow area) = area swept through face ε

Lε
k = number of overlap areas for aε

k ; aε
k" = aε

k ∩ Ak

sε
k" = 1 for outflow and -1 for inflow.
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Divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

Animation 1: Evolution of ρq

Since flow is convergent MAX(ρ q) increases for t ∈ [0, T/2].

Animation 2: Evolution of q

q decreases for t ∈ [0, T/2]

q remains in interval [0, 1] (as it should!)

Animation 3: Evolution of q using slotted-cylinder initial condition using no
monotone filters

over/under shooting

Animation 4: Evolution of q using slotted-cylinder initial condition using
monotone filter

In this test the modeler must solve coupled system of continuity equations
(tracer and air density); equation for ρ is no longer trivial as for
non-divergent test cases!

Check for consistency: q = 1 everywhere as initial condition should be
preserved throughout simulation
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Non-divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

This test is non-divergent but highly deformational.

On top of the swirling flow we add solid-body advection u = cos(θ) u0

(avoid potential cancellation of errors when flow reverses)

u(λ,θ, t) = k sin2(λ) sin(2θ) cos(πt/T) + cos(θ) u0 (8)

v(λ,θ, t) = k sin(2λ) cos(θ) cos(πt/T) (9)

ψ(λ,θ, t) = k sin2(λ) cos2(θ) cos(πt/T), (10)

where ψ is the stream function: u = −∂ψ
∂θ , v = 1

cos θ
∂ψ
∂λ
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Non-divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

Animation 1: Evolution of q.
Cosine bell initial condition for q (ρ = 1). Note that the analytic solution is
ρ(t) = 1, however, schemes will, in general, not preserve a constant ρ unless
modelers use the stream-function to make sure the numerical divergence is
zero (would not be the case in a ‘real’ model setup when evaluating !v at
grid-points!).

Animation 2: Evolution of q for slotted cylinder.

Animation 2: Evolution of q for slotted cylinder with monotone filter.
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Non-divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

Animation 1: Evolution of q.
Cosine bell initial condition for q (ρ = 1). Note that the analytic solution is
ρ(t) = 1, however, schemes will, in general, not preserve a constant ρ unless
modelers use the stream-function to make sure the numerical divergence is
zero (would not be the case in a ‘real’ model setup when evaluating !v at
grid-points!).

Animation 2: Evolution of q for slotted cylinder.

Animation 2: Evolution of q for slotted cylinder with monotone filter.

Smooth and relatively well-resolved initial conditions deform into thin
filament.

Thin filaments are transported as solid-bodies near t = T/2
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Non-divergent test case 1 (Nair and Lauritzen 2010, JCP, revising)

Animation 1: Evolution of q.
Cosine bell initial condition for q (ρ = 1). Note that the analytic solution is
ρ(t) = 1, however, schemes will, in general, not preserve a constant ρ unless
modelers use the stream-function to make sure the numerical divergence is
zero (would not be the case in a ‘real’ model setup when evaluating !v at
grid-points!).

Animation 2: Evolution of q for slotted cylinder.

Animation 2: Evolution of q for slotted cylinder with monotone filter.

Smooth and relatively well-resolved initial conditions deform into thin
filament.

Thin filaments are transported as solid-bodies near t = T/2

We formulated two more test cases; one more divergent and non-divergent
test case, respectively.

Test cases are still being ‘fine-tuned’ for the revised manuscript
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Discussion

Other configurations (relevant for chemistry) to check:
if linear correlations are maintained with monotone schemes (Lin and Rood, 1996)

q1 = α + β q2 (11)

how well relative correlations are maintained for an ‘arbitrary’ pair of
concentration profiles (non-linear correlations, Thuburn and Mclntyre 1997)

q1 = f(q2), (12)

where f is a non-linear function

Use more complex background (ρ) distributions
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Other configurations (relevant for chemistry) to check:
if linear correlations are maintained with monotone schemes (Lin and Rood, 1996)

q1 = α + β q2 (11)

how well relative correlations are maintained for an ‘arbitrary’ pair of
concentration profiles (non-linear correlations, Thuburn and Mclntyre 1997)

q1 = f(q2), (12)

where f is a non-linear function

Use more complex background (ρ) distributions

Time will show if these test cases discriminate more between schemes as
compared to other test cases.

For CSLAM development we found moving vortex test case (Nair and
Jablonowski, 2008) much more discriminating than solid-body advection test.

These test cases have already helped people (including myself) finding bugs
in the code that did not appear for other test cases (solid-body advection,
static and moving vortices).
Lauritzen & Nair (NCAR) test cases June 17, 2010 14 / 18



NCAR workshop

We plan to organize a short working workshop at NCAR; tentatively March
2011 (Lauritzen, Nair, Jablonowski, Taylor, Skamarock, ...)

Participants must bring solutions!
A draft test case setup will be formulated soon (goal: get at accuracy versus
cost, gradient preservation, accuracy and cost of filters/limiters, ...)
Input/comments are very welcome!
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Lecture Notes in Computational Science and Engineering

Springer book entitled ‘Numerical Techniques for Global Atmospheric Models’ based on the
lectures given at the 2008 NCAR ASP (Advance Study Program) Summer Colloquium.

Editors: P.H. Lauritzen, C. Jablonowski, M.A. Taylor and R.D. Nair

16 Chapters; authors include J.Thuburn, J.Tribbia, D.Durran, T.Ringler, W.Skamarock,
R.Rood, J.Dennis, Editors, ... Foreword by D. Randall

Publication date: Later this year

More details at: http://www.cgd.ucar.edu/cms/pel/colloquium.html and
http://www.cgd.ucar.edu/cms/pel/lncse.html

This book surveys recent developments in numerical techniques for global 
atmospheric models. It is based upon a collection of lectures prepared by leading 
experts in the field. The chapters reveal the multitude of steps that determine the 
global atmospheric model design. They encompass the choice of the equation set, 
computational grids on the sphere, horizontal and vertical discretizations, time 
integration methods, filtering and diffusion mechanisms, conservation properties, 
tracer transport, and considerations for designing models for massively parallel 
computers. A reader interested in applied numerical methods but also the many facets 
of atmospheric modeling should find this book of particular relevance. 
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Other test cases
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