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Problem formulation

Consider two-dimensional transport equation (no sources/sinks):
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where v 1s the density, dA 1s the element area, and the integration 1s over a ar-
bitrary Lagrangian area A(¢) at time ¢, that is, an area that moves with the flow
with no flux through its boundaries. A temporal discretization of (1) reads

/ WdA = / YdA, (2)
A(t+At) A(r)

where At is time-step size. In an upstream semi-Lagrangian method A(z + At)
is a static grid cell (arrival cell) and A(¢) is a deformed (departure) cell.
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Notation:

e Denote the (regular) arrival cell A; and the corresponding departure cell ag,
where k = 1,..,N and N 1s the total number of cells in the domain €2. Their
respective areas are denoted AA; and Oay.

e Let aiy be the non-empty overlap region between departure cell a; and grid
cell Ay such that

ay =ayNAy, au#0, (=1,...L,and1 <L; <N.
e The sub-grid-scale reconstruction in cell ¢ is denoted fy(x,y):
fo(x,y) = 2 céi’j)xiyj, i,j€{0,1,2}, (3)
i+j<2
)

where ¢, are derived coefficients ensuring mass-conservation.

Continuous scheme:
The semi-Lagrangian finite-volume version of the transport equation (1) can be
written as follows:

Vi AA =y Sy (4)
where WZH 1s the average tracer density in cell k at time-level n+ 1, and W,jn 1S
the average density in the departure cell
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e Given the overlap areas a;, the transport problem is effectively reduced
to a remapping problem.

Discretization in Cartesian geometry

e The departure cell g, 1s defined by connecting the departure points (cell ver-

tices) with straight lines.
We convert area integrals in (5) into line-integrals by

applying the Gauss-Green theorem (Dukowicz 1984):

|| fitey)dedy= ¢ [Pdx+ody].
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where day, is boundary of ais, P and Q are potentials:
L 90
gl; | ag = fu(x,y).
e Given polynomial reconstruction function fy(x,y) in (3), the CSLAM scheme
1s given by

(6)

where w,(flﬁj ) are functions of the coordinate locations of the vertices of iy .

e Note: Integration of polynomials 1s exact.
o Note: Separation of weights w\’’ from reconstruction coefficients c!"”:

—Once the weights have been computed they can be reused for the integral
of each additional tracer distribution.

Discretization in cubed-sphere geometry

e Consider cubed-sphere grids resulting from equi-angular gnomonic (central)
projection. Note that any straight line on gnomonic projection corresponds to
great-circle arc on sphere.

e Integrate polynomials with Gauss-Green’s theorem on cube as in (6):

— Line-integrals along coordinate lines computed exactly (Ullrich et al. 2009).
— Line-integrals along arbitrary straight lines are approximated using Gaus-
sian quadrature.

e Biquadratic reconstruction functions; halo values are interpolated (4*"-order)

from neighboring panels to cells 1n outward extension of panel.
— (a) (b) (c)
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e Algorithm: For each panel extend panel with halo cells (Fig.a), compute de-

parture cells (Fig.b), limit departure cells to panel (Fig.c) and compute mass
in those cells. Collect mass across edges (see Fig. below).
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Results

Test 1: Solid-body advection of cosine bell across cube corners (Fig.a):
e How many Gaussian quadrature points are sufficient? 2 (see Table below).
e Is the cross-term xy in the reconstruction function important? YES!

number of Gauss

Scheme  quadrature points  [; I, L o F gure  § hows
CSLAM* 2 0.0949 0.0536 0.0288 L v
CSLAM 2 0.0764 0.0414 0.0254 Converg ence
CSLAM 3 0.0765 0.0414 0.0255 Wlth degree Of
CSLAM 4 0.0765 0.0414 0.0255 .
CSLAM 5 00765 0.0414 0.0255 reconstruction

. = DO CTOSS term ln fg(x’y> 1ord eeeeeeeeeee : ruction function3 pOlynOml.al .

e (b) Convergence plot for different At’s for one revolution (N°= number of
cells on a panel). (¢) unlimited (N) solution and (d) monotone solution (M).
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Test 2: Deformational flow test cases:

e Static vortices: Center vortices around cube corner (Fig. a). (b) Convergence
plots. (¢) and (d) are differences between analytic and CSLAM solution at
day 6 at resolutions N. = 32 and N, = 80, respectively.
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e Moving vortices test case recently introduced by Nair and Jablonowski
(2008): (a) solution after 1/4 revolution, (b) convergence plot, (¢) and (d)
CSLAM and difference after one revolution at N, = 80.
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— In all tests: Better than 2"“-order convergence (Lauritzen et al. 2009).

— CSLAM is approximately one order of magnitude more accurate than
Putman and Lin (2007) scheme.
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