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Overview

@ Motivation
@ Derivation of scheme in Cartesian geometry:
@ Semi-Lagrangian finite-volume method
@ Conversion of area integrals into line-integrals: Divergence theorem
@ Results from idealized tests in Cartesian geometry
@ Extension to the cubed-sphere:
@ Divergence theorem in gnomonic (central) coordinates
@ Line-integrals along great-circle arcs
@ Results from idealized tests in spherical geometry

@ Final Remarks
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@ Highly desirable that tracer transport scheme is efficient and
adaptable for a large number of tracers:

o

Example, the chemistry version of NCAR's Community Atmosphere
Model (CAM) model uses O(100) prognostic tracers.
Cost of running the dynamics+tracers is dominated by
computational cost of transporting tracers.
Some solutions:
@ Use computationally very cheap scheme
@ Incremental remapping (Dukowicz and Baumgardner 2000): ‘High’
startup cost (geometry calculations), however, each additional tracer
adds only relatively small cost: ‘Get extra accuracy for free!’
@ Sub-cycling tracers (by accumulating fluxes)
CSLAM follows the incremental remapping idea but higher-order
and semi-Lagrangian formulation (although flux form possible)
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Continuous equations
|

\%f
-

Consider 2D transport equation for a passive tracer:

3/
prrs YdA =0, 1)
dt A(t)

where 1) density and A(t) arbitrary Lagrangian area. A temporal
discretization of (1) along the characteristics is

/ pdA= [ ydA )
A(t+At) A(t)

where At is the time-step size.
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Semi-Lagrangian finite-volume scheme

Ay

/k

In an upstream semi-Lagrangian method:

@ A(t + At) = static grid cell = A with area AA

@ A(t) = upstream deformed cell = a with area da
Discretized transport equation for cell k can be written as

Th T AA =T day 3)

—n+1 —n . o .
where ¢k+ and ¢ is average tracer density in cell k at time-level

n + 1 and n, respectively.
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Semi-Lagrangian finite-volume scheme

@ (b)
oy

e -
\

@ The integral over the upstream cell can be broken up into the sum
of integrals of f,(x,y) over non-empty overlap regions ay;:

—n+1

Ly
W aA= T =Y [ y)axdy. @
e=1" /3¢

where f,(x,y) sub-grid-scale reconstruction in A, and
ae=ax NA;, ag#0, (=1,... L. (5)
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Approximation to upstream cell

@ (b)

Ay,

)
|

@ The integral over the upstream cell can be broken up into the sum
of integrals of f,(x,y) over non-empty overlap regions ay;:

—n+1

Ly
U AA = Yp day = Z/ fo(x,y)dx dy, (6)
e=1" /3¢

where f,(x,y) sub-grid-scale reconstruction in A, and
ae=ax NA;, ag#0, (=1,... L. (7)
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Aside: More accurate approximation to upstream cell

(@) (b) (©) (d)

099

@ To improve the approximation to the upstream cell one may introduce (b) one, (c)
two or (d) three Lagrangian points along the cell sides (unfilled circles) and
connect these by straight line segments to converge towards the exact upstream
cell boundary.

@ Would increase start-up cost of scheme, however, it would add no cost for each
additional tracer transported!
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Semi-Lagrangian finite-volume scheme

@ (b)

Akt p—ryp T//T
_ are |
A[ A[
(© (d)
1 L
akg/& akl/&
Ag AZ‘/

@ The sub-domains ax, over which one must integrate can have many possible
shapes. The practical difficulty in developing analytical integrals that cover all
possible cases is, in general, somewhat complicated but not impossible (Ran¢ic,
1992).
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Semi-Lagrangian finite-volume scheme

@) (b) ©

[ A

@ Instead the problem can be greatly simplified by converting the area-integrals
into line-integrals by appropriate use of the divergence theorem (Dukowicz 1984,
Margolin and Shashkov 2003)

Note: 2" -order version of Cartesian CSLAM = donor cell scheme of Margolin and Shashkov (2003)!

@ Instead of dealing with numerous overlap area ‘types’ one only needs to deal

with 3 types of crossings with coordinate lines.
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Upstream integral

@ (b)
I
Ay, ! %/‘ ‘ Ay
\
—n+1

Lk
wtanc=mc = Y [[ tcy)oxay.
£=1" 7%«

18



Upstream integral

@ | (b)

|
Ay
Ay, - Ay,
\

/F T

Lk
DDA = day = Z]é [P dx +Qdy],
=1

A
where 0ay, is the boundary of a,, and

oP  0Q

"oy + Y fo(X,y)
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Upstream integral

@ (b)

|
Ay
Ay, - Ay,
\

—n+1

Lk
WaA=T o = Yo f Pax+Qayl,
¢ Oayge

where 0ay, is the boundary of a,, and

_8_P aQ _ (Ivl) | HE
ay+ax =fx,y) = Y ¢,"Vx i,j €{0,1,2}.
i+j<2

Here we use PPM (Colella and Woodward 1984) in each coordinate
direction and cross term approximation as in Jablonowski (2004).
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Upstream integral - weights

@ | (b)

oy
Ak e ‘ Ak
\

Sran-e - §[ ]

=1 |i+j<2

where weights wlfie’j) are functions of the coordinates of the vertices of

ay, denoted (Xkeh, Yken) h=1,...,Np:
(0.0) 1
Wy, ' = > Z (Xkeh + Xeen—1) (Yeh — Yieh-1)
h=1
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Upstream integral - weights

@ (b)

L
Ay . ‘ A
\

Lk P I
EE—H- AAk = ¢_;n 5ak = Z |:Z CEM)WIEIZJ)] .

=1 |i+j<2

@ Weights wlfie’j) can be reused for each additional tracer
- multi tracer efficiency (Dukowicz and Baumgardner 2000)

o cg’j) must be recomputed for every tracer.
Very efficient monotone second-order reconstruction options exist
(Lipscomb and Ringler 2005)
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Results for CSLAM - Cartesian

@ Bad news: Rigorous 2D scheme (CSLAM) is not worth the extra
computational cost for applications in Cartesian geometry (at least
not in idealized tests)!
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Results: Solid-body advection in Cartesian geometry

6 revolutions of slotted cylinder
(b)

Scheme RMS Iy I, loo Reference

CSLAM  0.0650 0.2723 0.2734 0.6591 Lauritzen et al. (2009)
CSLAM* 0.0681 0.2943 0.2863 0.6736 Lauritzen et al. (2009)
SLICE 0.0673 - - - Zerroukat et al. (2007)
CISL 0.0692 0.2988 0.2908 0.6754 Nair and Machenhauer (2002)

* = Nno cross term in the reconstruction function

@ No major gain in accuracy by using rigorous 2D approach!
@ The cross term in the reconstruction function is only having a marginal effect on
accuracy.
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Results: Solid-body advection in Cartesian geometry

Idealized cyclogenesis (deformational flow)
(b) .

Scheme RMS Iy I, loo Reference

CSLAM  0.0642 0.0113 0.0646 0.8802 Lauritzen et al. (2009)
CSLAM* 0.0653 0.0116 0.0656 0.8777 Lauritzen et al. (2009)
SLICE 0.0693 - - - Zerroukat et al. (2007)
CISL 0.0666 0.0119 0.0670 0.8737 Nair and Machenhauer (2002)

* = no cross term in the reconstruction function

@ No major gain in accuracy by using rigorous 2D approach!
@ The cross term in the reconstruction function is only having a marginal effect on
accuracy.
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Extension to the cubed-sphere

@ Is there a ‘payoff’ for using rigorous fully two-dimensional ‘high-order’ CSLAM on
cubed-sphere grid?

o Are fully 2D schemes necessary to ‘consistently’ treat the corners
of the sphere or can dimensionally split approaches do the job?

@ Will try and answer this question by comparing cubed-sphere CSLAM with
cubed-sphere version of the widely used Lin and Rood (1996) scheme:

Dot =Pp +FX E (E” +fy)} TFY E (z_n +fx>} : (8)

documented in Putman and Lin (2007).
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@ Consider equi-angular cubed-sphere grid
@ All computations performed on gnomonic (central) projection:
Xx=tana and y=tang3; «,B¢€ [ z E],
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Extension to the cubed-sphere

(b) ©

@ Consider equi-angular cubed-sphere grid

@ All computations performed on gnomonic (central) projection:

m™ T

4 Z} ’

@ Note that any straight line on the gnomonic projection corresponds to a
great-circle arc on the sphere!

9)

X =tana and y =tang, a,ﬁe[—

@ = reuse Cartesian algorithm except
@ Divergence theorem must be converted to gnomonic coordinates
(and associated potentials must be found).
@ Consistently couple the panel discretizations for the global domain.
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Divergence theorem in gnomonic coordinates

Let VW be a vector field with contravariant components W, and Wy in the

direction of the unit basis vectors (ey, ey), i.e. W = Wyey + Vyey.
Divergence theorem:

V. wdV = —7{ [ﬁ:x dy + U, dx| , (10)
Axe Oaye
where v v
Uy=—2  _andV¥y = —%
T /1ry2 Y VIt x2

with p = /1 + x2 + y2. The divergence operator is given by

Oy N oy

. :3
Vov=o ox oy

. (11)
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Divergence theorem in gnomonic coordinates

A choice of potentials for fully 2D (third-order, ‘2D PPM’) reconstructions:

vix,y) = 0, i,je{0,1,2} (12)
VPO(x,y) = 1+1X2%, (13)
U (xy) = 1+1X2%, (14)
VP (xy) = —%, (15)
U (xy) = 1sz><27y7 (16)
VO (x,y) = —%—karcsinh(\/ﬁ), 17)
Ui (xy) = —%, (18)

@ Monotone filter: Barth and Jespersen (1989) that simply scales the sub-grid
scale reconstruction so that its min-max values do not exceed the cell-averages
of the neighboring cells.
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Divergence theorem in gnomonic coordinates

@ (b) (©)

[ ST [

@ Integrating the potentials along sides of ay,:
@ (Fig. c) Along coordinates lines it is possible to compute the line
integrals exactly (see Ullrich talk or Ullrich et al. (2009)).
@ (Fig. b) Along lines of arbitrary orientation we use Gaussian
quadrature.
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Coupling panels

@ (b) (©

)

VL

-r / 7 L : -r

-r

-r r -r r -r r

@ (a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring
panels are deformed on panel p’s projection.
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Coupling panels

@ (b) (©

Ll

)

-r

-r

-r

-r r -r r -r r

@ (a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring
panels are deformed on panel p’s projection.

@ (b) Compute deformed upstream grid (Figure shows departure grid for moving

vortex test case). Note that cells entering from neighboring panels are ‘naturally’
skewed
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@ (a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring
panels are deformed on panel p’s projection.

@ (b) Compute deformed upstream grid (Figure shows departure grid for moving
vortex test case). Note that cells entering from neighboring panels are ‘naturally’
skewed

@ (c) ‘Chop off’ non-local overlap areas
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Coupling panels
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@ (a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring
panels are deformed on panel p’s projection.

@ (b) Compute deformed upstream grid (Figure shows departure grid for moving
vortex test case). Note that cells entering from neighboring panels are ‘naturally’
skewed

@ (c) ‘Chop off’ non-local overlap areas
@ Do remapping local to panel (for each panel)
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Coupling panels

@ (b) (©

Ll

R

-r - An xf L1 -r

-r r -r r -r r

@ (a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring
panels are deformed on panel p’s projection.

@ (b) Compute deformed upstream grid (Figure shows departure grid for moving
vortex test case). Note that cells entering from neighboring panels are ‘naturally’
skewed

@ (c) ‘Chop off’ non-local overlap areas
@ Do remapping local to panel (for each panel)
@ Collect contributions from neighboring panels.
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Results: Solid-body advection on the sphere

Solid-body rotation of cosine bell on the sphere
Dimensions: N¢ = 32, ¢ = 7 /4, At = 4050s, 256 At'’s for one revolution.

number of Gauss

Scheme gquadrature points I1 I, loo

CSLAM*-N 2 0.0949 0.0536 0.0288
CSLAM-N 2 0.0764 0.0414 0.0254
CSLAM-N 3 0.0765 0.0414 0.0255
CSLAM-N 4 0.0765 0.0414 0.0255
CSLAM-N 5 0.0765 0.0414 0.0255

-N = non-monotone (unlimited) version of CSLAM

@ Just two quadrature points is sufficient!
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Results: Solid-body advection on the sphere

Solid-body rotation of cosine bell on the sphere
Dimensions: N¢ = 32, ¢ = 7 /4, At = 4050s, 256 At'’s for one revolution.

number of Gauss

Scheme gquadrature points I1 I, loo

CSLAM*-N 2 0.0949 0.0536 0.0288
CSLAM-N 2 0.0764 0.0414 0.0254
CSLAM-N 3 0.0765 0.0414 0.0255
CSLAM-N 4 0.0765 0.0414 0.0255
CSLAM-N 5 0.0765 0.0414 0.0255

-N = non-monotone (unlimited) version of CSLAM

@ Just two quadrature points is sufficient!
@ Cross term in reconstruction function is very important

@ = By default we include cross term in reconstruction function and
use two quadrature points for line integrals except along grid lines
(where line-integrals are evaluated exactly).
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Solid body advection of cosine bell

1.0E-0

10E-1 NG
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@ CSLAM: Better than second-order convergence rates.
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Solid body advection of cosine bell

(left) CSLAM unlimited, (right) Putman and Lin (2007)
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@ CSLAM: Better than second-order convergence rates.

@ Putman and Lin (2007): Convergence rates are 2.68, 2.54 and
1.97 for ly, I, and |.
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Solid body advection of cosine bell

(left) CSLAM monotone (right) Putman and Lin (2007)
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@ CSLAM: Better than second-order convergence rates.

@ Putman and Lin (2007): Convergence rates are 2.68, 2.54 and
1.97 for Iy, I, and | .

@ Monotone filter degrades accuracy
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Static vortices (deformational flow)

(left) monotone CSLAM, (right) day 6 solution

1, error norm

@ CSLAM: Better than second-order convergence.
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Static vortices (deformational flow)

(left) monotone CSLAM, (right) Putman and Lin (2007)
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@ CSLAM: Better than second-order convergence
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Moving vortices (solid body rotation + deformation)

Exact solution: Initial condition, 1/4, 1/2 and 1 revolution
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Moving vortices (solid body rotation + deformation)

(left) CSLAM unlimited, (right) CSLAM monotone
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@ CSLAM: Better than second-order convergence.
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Moving vortices (solid body rotation + deformation)

(left) CSLAM monotone, (right) Putman and Lin (2007)

1, error norm

@ Convergence rate for Putman and Lin (2007): 1.52, 1.67 and 1.54
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Extension to the cubed-sphere

@ Cubed sphere: Are fully 2D schemes necessary to ‘consistently’
treat the corners of the sphere or can dimensionally split
approaches do the job?

Putman and Lin (2007) uses same order of reconstruction
function (PPM) as CSLAM. So the main difference between the
schemes is that CSLAM is fully 2D whereas Putman and Lin
(2007) is dimensionally split.
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Summary and Conclusions

@ Rigorous 2D scheme developed:
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Summary and Conclusions

@ Rigorous 2D scheme developed:

@ Reuses geometric information for each additional tracer similar to
Dukowicz and Baumgardner (2000) and Lipscomb and Ringler
(2005).

@ Integrals are exact along coordinate lines (on the sphere);
quadrature elsewhere.

@ Monotone option (fully 2D filter) - room for improvement!

@ Future research:

@ Flux-form version of CSLAM (unlimited version will generate exactly
the same results as semi-Lagrangian CSLAM but it might provide
better/cheaper options for limiting)

o Flux-form does not require ay, to exactly span the sphere!

@ ’a priori’ reconstruction limiting or ‘posteriori’ with flux-limiters.
Which is optimal for CSLAM?
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Flux-form versus upstream semi-Lagrangian
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Convergence with order of reconstruction function

Same settings as previous slide

10

0.1

error norm
-
v
/ /

order of reconstruction function

@ As expected: Large improvement from 15t to 2" (I; reduced by a
factor 11), less (but still significant) improvement from 2" to 3 (I,
reduced by a factor 1.6).
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Convergence with order of reconstruction function

Same settings as previous slide

10

0.1

error norm
-
v
/ /

order of reconstruction function

@ As expected: Large improvement from 15t to 2" (I; reduced by a
factor 11), less (but still significant) improvement from 2" to 3 (I,
reduced by a factor 1.6).

@ all results shown beyond this point use third-order reconstruction

functions (‘2D PPM’).
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