Assessing accuracy of transport schemes in global
climate-weather models: new idealized test case suite
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It is the purpose of this paper to propose a standard test case suite for 2D Assess how well schemes preserve gradients and thin filaments near the Atmospheric tracers are often observed to be functionally related, and these Combute conversence rates for standard error norms in. resolution
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Sample results are shown for these schemes: 100 1 conditions (Fig.1b) Only 1t-order schemes can guarantee that all mixing is “real” mixing.
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