
Mixing diagnostics!
Atmospheric tracers are often observed to be functionally related, and these 
relations can be physically or chemically significant. It is therefore highly 
desirable that transport schemes should not disrupt such functional 
relations in unphysical ways through numerical mixing or, indeed, 
unmixing.  

Setup: Fig.1b and 1d correlated initial conditions 

Classification of mixing:  

Only 1st-order schemes can guarantee that all mixing is “real” mixing. 
Overshooting can be avoided with properly designed shape-preserving 
filters. Some range-preserving unmixing must be tolerated with higher-
order schemes.  

See Lauritzen and Thuburn (2011) for more details on the mixing 
diagnostics. 

Introduction!
•  It is the purpose of this paper to propose a standard test case suite for 2D 
transport schemes on the sphere intended to be used for model development 
and facilitating scheme intercomparison. 
•  Test cases are designed to assess important aspects of accuracy in 
geophysical fluid dynamics under challenging flow conditions. 
•  Experiments are designed to be easy to setup, i.e. only 2 analytical wind 
fields (1 non-divergent, 1 divergent; Nair and Lauritzen, 2010) and four initial 
conditions are used: 

Sample results are shown for these schemes: 

Flow deforms initial conditions into thin filaments and an “overlaid” 
translational flow transports the filaments as they deform (half way through 
simulation: t = T/2): 
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Filament diagnostic!
Assess how well schemes preserve gradients and thin  filaments near the 
grid scale. Definition from Lauritzen et al. (2012a): 

A very diffusive scheme will tend to decrease/increase lf for high/low 
values of τ (peak values decrease/more area is covered with lower values of 
mixing ratio ϕ): 

Results for higher-order schemes at t=T/2 without a shape-preserving filter 
(unlimited) and with one (shape-preserving) at two resolutions (appended 
“CN” is Courant number): 

Numerical order of convergence!
Compute convergence rates for standard error norms in  resolution 
range Δλ=3°.. 0.3° using C∞ initial conditions (Fig.1a): 

Minimal resolution 

At what resolution Δλm is l2 ≈ 0.033 (when CSLAM-CN5.5 start 
converging at 3rd-order): 

Transport of rough distribution 

To challenge shape-preserving filters transport discontinuous slotted 
cylinder initial conditions (see Fig.1c and 2c). 

Transport in divergent flow 

Demonstrate that scheme can transport under divergent flow conditions 
(usually challenges the coupling between air mass and tracers). 

Test case suite was exercised by a dozen state-of-the-art transport 
schemes at workshop at NCAR in March 2011 (Lauritzen et al., 2012b). 
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Fig. 1. Contour plots for the four initial conditions for mixing ratio φ used in this test suite. (a) de-

picts the infinitely smooth (C∞
) initial condition constructed from Gaussian surfaces, (b) the

cosine bells initial condition which is C1
, (c) the non-smooth slotted cylinders initial condition,

and (d) is the initial condition which is nonlinearly correlated with (b).
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Fig. 2. Same as Fig. 1 but for the numerical solution at t= T/2 using CSLAM with a time-step

∆t= T/120 and resolution of ∆λ=1.5
◦
.
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2 LAURITZEN et al.: Results from standard test case suite

Table 1. A list of acronyms (first column), full names (second column), primary reference (third column), and implementation grid (fourth
column) for schemes used in this paper.

scheme full scheme name primary reference implementation grid
acronym

CAM-FV Community Atmosphere Model - Lin and Rood (1996) Regular latitude-longitude
Finite Volume scheme

CSLAM Conservative Semi-LAgrangian Lauritzen et al. (2010) Gnomonic cubed-sphere
Multi-tracer scheme

HOMME High-Order Methods Modeling Enviroment Dennis et al. (2012) Gnomonic cubed-sphere
(quadrature grid)

UCISOM UC Irvine second-order moments scheme Prather (1986) Regular latitude-longitude

Table 2. A list of acronyms (first column), full names (second column), primary reference (third column), and implementation grid (fourth
column) for schemes used in this paper.

scheme full scheme name primary reference implementation grid
acronym

CAM-FV Community Atmosphere Model - Lin and Rood (1996) Regular latitude-longitude
Finite Volume scheme

CSLAM Conservative Semi-LAgrangian Lauritzen et al. (2010) Gnomonic cubed-sphere
Multi-tracer scheme

FARSIGHT Departure-point interpolation White and Dongarra (2011) Gnomonic cubed-sphere
scheme with a global mass fixer

HEL Hybrid Eulerian Lagrangian ? Gnomonic cubed-sphere
HEL-ND HEL - Non-Diffusive ? Gnomonic cubed-sphere
HOMME High-Order Methods Modeling Enviroment Dennis et al. (2012) Gnomonic cubed-sphere

(quadrature grid)
ICON-FFSL ICON - Flux-Form semi-Lagrangian scheme Miura (2007) Icosahedral-triangular
MPAS Model for Prediction Across Scales Skamarock and Gassmann (2011) Icosahedral-hexagonal
SBC Spectral Bicubic interpolation scheme Enomoto (2008) Gaussian latitude-longitude
SFF-CSLAM Simplified Flux-Form CSLAM scheme Ullrich et al. (2012) Gnomonic cubed-sphere
SLFV-SL Semi-Lagrangian type Slope Limited Miura (2007) Icosahedral hexagonal
SLFV-ML Slope Limited Finite Volume scheme Dubey et al. (2011) Icosahedral hexagonal

with method of lines (Planning to submit ) grid
UCISOM UC Irvine second-order moments scheme Prather (1986) Regular latitude-longitude
UCISOM-CS UC Irvine second-order moments scheme - Gnomonic cubed-sphere

– Please summarize your scheme in a couple of para-
graphs (in LaTex format). Required information:

– what form of the continuous continuity equation is30

your scheme based on?

– what are the CFL limitations

– (if applicable) what filters/limiters are used for
shape-preservation?

– what time-integration method is used (how many35

levels? Runge-Kutta? two-time-level semi-
Lagrangian?)

– (if applicable) Explain the coupling between tracer
mass and fluid density, in other words, how do you
recover mixing ratio φ from ρφ?40

– computational space? (cubed-sphere gnomonic,
tangent plane projection, ...)

– dimensionally split or fully two-dimensional?

If you find it necessary to use equations please use the
notation introduced in section 2.45

– Please specify (if applicable) any implementation de-
tails that are not covered in the publication describing
your scheme.

3.1 Regular latitude-longitude grid

3.1.1 Lin-Rood finite-volume scheme50

The Lin-Rood transport scheme (Lin and Rood, 1996) is a
finite-volume method based on the flux-form of the continu-
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and minimum value of the initial condition, and the global
integral I is defined as follows,

I(φ)=
1

4π

∫ 2π

0

∫ π/2

−π/2
φ(λ,θ,t)cosθdλdθ.

Appendix B620

Definition of distance function dk

The ‘minimum’ distance function dk is defined as the min-
imal normalized Euclidean distance between the correlation
point (χk,ξk) and the preexisting functional relation curve
(χ,ψ(χ)) within the range of the initial condition

dk = Lk(χ
(ψ)
k ), (B1)

where

χ(ψ)
k = min

[

max
(

χ(min),χ(root)
k

)

,χ(max)
]

. (B2)

constrains the shortest distance to the initial condition in-
terval [χmin,χmax], and the normalized distance function is
given by

Lk(χ)=

√

(

χk−χ

Rχ

)2

+

(

ξk−ψ(χ)

Rξ

)2

, (B3)

where

Rχ = χ(max)−χ(min), (B4)

Rξ = ξ(max)−ξ(min) = ψ
(

ξ(max)
)

−ψ
(

ξ(min)
)

. (B5)

For this particular test case setup Rχ =0.9, Rξ = 0.792, and
the ‘root’ χ(root)

k is given by

χ(root)
k = ck +

1

ck

(

13

75
−

5

12
ξk

)

, (B6)

where

ck =
1

60

[

65340χk+12
√

12(125ξk−52)3+29648025χ2
k

]1/3

.

(B7)

Appendix C

Numerical mixing diagnostics625

For the two-tracer test (section 3.5) three mixing diagnostics
are used and defined below (Lauritzen and Thuburn, 2011).
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Fig. B1. A schematic of the ‘minimum’ distance function dk (left-
right arrows) for different correlation points (χk,ξk) (filled circles).
(χ(ψ)

k ,ψ(χ(ψ)
k ) (unfilled circle) is the point on the preexisting func-

tional curve (thick line) that is nearest, in a normalized sense, to
(χk,ξk).
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Fig. C1. A schematic of the classification of numerical mixing. If
a scatter point is located in the area labeled withA (mathematically
defined in (C2)) it is categorized as ‘real’ mixing. Similarly for
the area labeled with B (defined in (C4)) it is categorized as range-
preserving unmixing. The remaining part of the domain is referred
to as overshooting. The thick solid line is the preexisting non-linear
functional relation curve. See text or Lauritzen and Thuburn (2011)
for details.

Mixing that resembles ‘real’ mixing

‘Real’ mixing is defined as numerical mixing that resembles
‘real’ mixing in that values are shifted to the concave side of

t=0" t=T/2"

Real mixing: Resembles mixing as 
observed in the atmosphere 

Range-preserving umixing: Spurious 
unmixing within range of initial 
conditions 

Overshooting: Spurious range-
expanding mixing 
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moving vortices test case of (Nair and Jablonowski, 2008) and extend the simulation

time so that the filaments are stretched to a level where such processes are important

and/or change the parameters in the (Nair and Lauritzen, 2010) flow field to increase

the amount of deformation (see, e.g., Kent et al., 2012; Pudykiewicz, 2011).

The “filament” preservation diagnostic is formulated as follows. Define A(τ,t) as the5

spherical area for which the spatial distribution of the tracer φ(λ,θ) satisfies

φ(λ,θ)≥ τ, (27)

at time t, where τ is the threshold value. For a non-divergent flow field and a passive

and inert tracer φ, the area A(τ,t) is invariant in time.

The discrete definition of A(τ,t) is10

A(τ,t)=
�

k∈G
∆Ak, (28)

where ∆Ak is the spherical area for which φk is representative, K is the number of grid

cells, and G is the set of indices

G = {k ∈ (1,...,K )|φk ≥ τ}. (29)

For Eulerian finite-volume schemes ∆Ak is the area of the k-th control volume. For15

Eulerian grid-point schemes a control volume for which the grid-point value is rep-

resentative must be defined. Similarly for fully Lagrangian schemes based on point

values (parcels) control volumes for which the point values are representative must

be defined. Note that the “control volumes” should span the entire domain without

overlaps or “cracks” between them.20

Define the filament preservation diagnostic

�f(τ,t)=

�
100.0× A(τ,t)

A(τ,t=0)
if A(τ,t=0) �=0,

0.0, otherwise.
(30)

For infinite resolution (continuous case) and a non-divergent flow, �f(τ,t) is invariant

in time: �f(τ,t = 0) = �f(τ,t) = 100 for all τ. At finite resolution, however, the filament
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Fig. 6. Filament diagnostics !f (t=T/2) as a function of threshold value τ for different configurations of the CSLAM scheme with Courant
number 5.5. (a) 1st-order version of CSLAM at ∆λ = 1.5◦ and ∆λ = 0.75◦ , and (b) 3rd-order version of CSLAM with and without
monotone/shape-preserving filter at resolutions ∆λ =1.5◦ and ∆λ= 0.75◦.

Fig. 7. Contour plot of the CSLAM numerical solution φ at resolution ∆λ = 1.5◦ and time-step T/120 using the slotted-cylinders initial
condition at time t= T/2 (a and c) and t = T (b and d) using no filter/limiter (a and b) and a shape-preserving filter (c and d). The standard
error norms for the unfiltered/unlimited solution are !2 = 0.24, !∞ = 0.79, φmin=−0.19, and φmax= 0.15, and for the shape-preserving
solution they are !2 = 0.26, !∞ = 0.80, φmin= 0.0, and φmax=−4.34 ·10−3.

3.5 Preservation of pre-existing functional relation: co-
sine bells and correlated cosine bells415

In the tests described in the previous sections the accuracy is
assessed in a single-tracer setup. Now we consider two trac-
ers that are both advected by the same non-divergent flow
field ((18) and (19)). The initial conditions for the two trac-
ers is the cosine bells initial condition (11) and correlated420

cosine bells (13), respectively (see Fig.1b and d). The mix-
ing ratio of the two tracers are referred to as χ and ξ. Fol-
lowing Lagrangian parcels any functional relation between
tracers should mathematically be preserved at all times and

hence any deviation from the pre-existing functional relation425

between the tracers is essentially numerical errors introduced
by the transport scheme. Note that the ‘ideal’ scheme could
be a scheme that does not exactly preserve pre-existing func-
tional relations but for which the numerical errors are less
than physical diffusive processes in nature.430

In any case transport schemes should not disrupt func-
tional relations in unphysical ways. Numerical errors that
perturb such relations essentially introduce mixing or un-
mixing between the tracers. Lauritzen and Thuburn (2011)
provides a discussion of the physical importance of transport435

Filament diagnostic 
at t=T/2 (Fig.2b) for 
Cosine bells initial 
conditions (Fig.1b) 
and non-divergent 
flow field using 1st-
order version of 
CSLAM"
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