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Atmospheric tracers are often observed to be functionally related, and these
relations can be physically or chemically signicant. It is therefore highly
desirable that the transport schemes used in chemistry and chemistry-climate
models should not disrupt such functional relations in unphysical ways through
numerical mixing or, indeed, unmixing. Here, diagnostics are proposed that
quantify numerical mixing by a transport scheme for a single tracer, two tracers
that are nonlinearly related, and three (or more) tracers that add up to a
constant. For the two-tracer test the question of how physically reasonable
the numerical mixing is can be addressed by using scatter/correlation plots.
Truncation errors will, in general, result in scatter points deviating from the
preexisting functional curve and thereby introduce numerical mixing between
the tracers. The proposed diagnostics quantify the mixing in terms of the
normalized distances between the preexisting functional curve and scatter
points, and divide it into three categories: real mixing and two types of
spurious numerical unmixing. For the three-tracer test we quantify, in terms
of standard error norms, how nearly a transport scheme can preserve the sum
by transporting the individual tracers.
The mixing diagnostics do not require the knowledge of the analytical solution
to the transport problem for the individual tracers. However, using an idealized
ow eld and spatial distributions facilitates the use of the mixing diagnostics in
transport scheme development. Hence we propose to exercise the new mixing
diagnostics using an idealized but highly deformational analytical ow eld.
Example results using the CSLAM (Conservative Semi-LAgrangian Multi-
tracer) scheme are presented. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

Tracers (chemical species, aerosols, different forms of water
in the atmosphere, etc.) are often observed to be related
through functional relations. Perhaps the most striking

†The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

example of interrelated tracers in the atmosphere is long-
lived species in the lower stratosphere such as NOy and
N2O (for a recent review see, e.g., Plumb 2007). When
the mixing ratios of N2O and NOy are plotted against
each other to form a scatter (or correlation) plot, the scatter
points collapse to a remarkably compact curve despite the
wide range in spatial scale (from a few to several thousand
kilometers). Such compact scatter plots can be physically
or chemically significant; for example, departures from
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compactness have been used to quantify chemical ozone
loss in the ozone hole (Proffitt et al. 1990). It is therefore
highly desirable that transport schemes used in modelling
the atmosphere should respect such functional relations and
not disrupt them in physically unrealistic ways.

Similarly, the total of chemical species within some
chemical family may be preserved following an air parcel
although the individual species have a complicated relation
to each other and may be transformed into each other
through chemical reactions. For example, total chlorine
consists of several organic and inorganic species; however,
the mixing ratio of total chlorine in a stratospheric air parcel
can not exceed the value determined by surface sources
and is approximately preserved on short time-scales. The
total chlorine thus provides an important constraint on the
chemistry. Similar arguments can be made for aerosol-
cloud interactions (Ovtchinnikov and Easter 2009) where
important physical properties are derived from several
tracers. The issue that may arise in this context is that when
models transport individual tracers with a shape-preserving
scheme, there is in general no guarantee that the sum of the
tracers (or any other function that is a function of more than
two tracers) is shape-preserving, and therefore the sum may
contain unphysical values.

For Eulerian transport schemes—those that solve the
governing equations on a fixed grid—truncation errors
inevitably lead to some numerical mixing. In the free
atmosphere the numericalmixing is typically much stronger
than the mixing due to physical atmospheric processes
(Thuburn and Tan 1997; Balluch and Haynes 1997) and
is related to the grid resolution. Transport schemes can
also produce numerical unmixing, that is, up-gradient
transport, for example through dispersion errors. Because
strong unmixing is highly undesirable, practical transport
schemes are usually configured so that unmixing is
weak, for example through the inclusion of flux limiters
or additional diffusion; nevertheless, unmixing can be
completely eliminated only by the use of a monotone
scheme, which can be at best first-order accurate (see
section 2), so a certain amount of unmixing is typically
tolerated in practice.

These mixing and unmixing issues become especially
relevant when two or more tracers are involved. As alluded
to above, tracers are usually transported separately although
theymay be related through functional relations. Truncation
errors may perturb preexisting functional relations between
tracers (Thuburn and McIntyre 1997, hereafter referred
to as TM97) and cause unphysical values in derived
quantities (Ovtchinnikov and Easter 2009). For pairs of
tracers that are linearly related, a linear transport scheme
will preserve that linear relation but, for higher than
first-order schemes, will not be shape-preserving. There
does exist a fairly wide class of transport schemes
(Lin and Rood 1996, TM97—TM97 call them semi-linear)
that are shape-preserving on individual tracers and preserve
linear relations between pairs of tracers. However, they will
not, in general, preserve nonlinear relations between tracers.
Distortion of preexisting functional relations between
tracers can be interpreted as numerical mixing or numerical
spreading. Careful analysis of numerical mixing can
provide insight into how physically realistic the numerical
mixing introduced by the transport operator is (TM97); in
other words, does the mixing resemble ‘physical’ mixing as
observed in the atmosphere (here referred to as real mixing)
or is it producing spurious unmixing. Real mixing between

two air parcels can only create new scatter points that lie on
mixing lines, i.e. straight lines connecting the two scatter
points corresponding to the original parcels. Hence, real
mixing between two nonlinearly correlated tracers can only
produce new data points on the scatter plot that are inside
the convex hull of the original data, since these are the only
points that can be built up by combinations of mixing lines.
Any new scatter point outside the convex hull must be a
result of numerical unmixing.

Ovtchinnikov and Easter (2009) considered three trac-
ers whose sum was initially constant. They demonstrated
how numerical errors introduced by transporting the three
tracers separately distorted the sum (a derived quantity).
We are not aware of any transport scheme that is both
shape-preserving on individual tracers and sum-preserving
for three or more tracers, and, indeed, it is not clear whether
such a scheme is possible.

Despite the importance of preserving or not spuriously
distorting relationships between tracers, as discussed above,
idealized testing of transport schemes usually only takes
place in a single tracer setup (for an overview see, e.g.,
Lauritzen et al. 2011). That is, for some analytical flow field
where the analytical solution is known, some distribution
is transported as an inert and passive scalar and thereafter
conventional/standard error norms, such as !1, !2, and !∞
(see Appendix A), are computed. While such error norms
are indeed useful to quantify the numerical errors for a
single tracer, it is not necessarily straightforward to deduce
how preexisting functional relations between tracers are
altered by truncation errors.

As far as the authors are aware the only excep-
tions to the widely used single tracer testing method-
ology in atmospheric transport scheme development,
are the one-dimensional tests proposed by TM97 and
Ovtchinnikov and Easter (2009). Both use a constant wind
(so the analytical solution is simply the translation of the
initial condition) and consider two tracers that are related
nonlinearly (TM97) and three tracers that add up to a con-
stant (Ovtchinnikov and Easter 2009), respectively. None
of these idealized multi-tracer tests have been extended
to two dimensions or been applied in highly deforma-
tional/divergent flows, and the numerical mixing has not
been systematically categorized nor quantified. The sys-
tematic and largely irreversible generation of small scales
in tracer fields by the deformational nature of the flow
is a ubiquitous feature of atmospheric transport, and is
crucial for controllingmixing and other processes in the real
atmosphere (Pierrehumbert 1991, 1995; Thuburn and Tan
1997; Balluch and Haynes 1997). We consider it crucial that
any practical transport scheme should be tested on flow
fields of realistic complexity, allowing assessment of the
scheme’s ability to handle the generation of small scales and
the resulting numerical mixing.

Three test case setups designed to quantify numerical
mixing for one, two and three tracers are proposed. For a
single tracer the numerical mixing is quantified in terms
of an entropy diagnostic. In the case of two tracers that
are nonlinearly correlated, mixing diagnostics to quantify
the mixing and to analyze how physically reasonable the
numerical mixing is are presented. This provides indicators
for excessive numerical mixing as well as unphysical
numerical unmixing. For three tracers we consider the
situation in which the three tracers add up to a constant.
Ideally the sum should be preserved, however, most
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shape-preserving transport operators will perturb the sum
when transporting the tracers individually. We argue that
the proposed mixing diagnostics are physically motivated
metrics for the issues of interest; they complement the
conventional error norms and may be more appropriate and
useful when choosing a transport scheme for chemical-
transport modelling.

Although these test cases do not require the knowledge
of the analytical solution for the transport problem, we
exercise the mixing diagnostics with a recently developed
idealized flow field which is highly deformational
(Nair and Lauritzen 2010, hereafter referred to as NL10)
and where the analytical solution is known (at the end of
the simulation). Using an analytical flow field and the fact
that the true solution is known facilitates the application
of the multi-tracer mixing diagnostics in transport
scheme development and allows for the computation
of conventional error norms alongside the new mixing
diagnostics. The proposed test cases are illustrated using the
cubed-sphere version of the CSLAM (Conservative Semi-
LAgrangian Multi-tracer) scheme (Lauritzen et al. 2010).
Obviously any global transport scheme on the sphere could
be used for this demonstration.

The paper is organized as follows. In section 2 we
introduce the transport equation and associated notation,
discuss preexisting functional relations and define the new
mixing diagnostics. The idealized test case setup using an
analytical wind field and spatial distributions is described
in section 3. Mixing diagnostics for the idealized test case
suite using the CSLAM scheme are presented in section 4
followed by a discussion on the mixing diagnostics and their
relevance to nonlinear chemistry parameterizations (section
5). Section 6 contains a discussion and conclusions.

2. Method

2.1. Continuous and discretized transport equations

Consider a transport scheme that approximates the solution
to the continuity equation for an inert (no sources or sinks)
and passive (tracer does not feed back on the flow) tracer,

∂(ρφ)
∂t

+ ∇ · (ρφV) = 0, φ = χ, ξ, ζ (1)

where ρ is the air density, V is the flow velocity vector,
and φ = χ, ξ, ζ is the tracer mixing ratio for the different
interrelated tracers considered in this paper. The continuity
equation (1) is written in flux-form; however, the transport
scheme may be based on the continuity equation in another
form (e.g., advective form). To ‘extract’ the mixing ratio φ
from (1) obviously requires the solution to the continuity
equation for air density ρ (see, e.g., NL10 for details). All
analysis in this test case suite is based on mixing ratio φ and
not tracer density ρ φ.

Assume that the spatial domain is discretized with N
points/cells so that each point/cell holds mixing ratios χk,
ξk, and ζk, k = 1, .., N . The range of values taken by χk,
k = 1, .., N at the initial time is denoted [χ(min),χ(max)]
and similarly for ξk and ζk.

Let T be the discrete transport operator that advances
the numerical solution for φ at grid point k in time

φn+1
k = T (φn

j ), j ∈ H, (2)

(min)

(min)

(max)

(max)

overshooting

unmixing

range
preserving

unmixing

range
preserving

�‘real�’ mixing
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Figure 1. A schematic of the classification of numerical mixing. The
thick solid line is the preexisting nonlinear functional curve (χ, ψ(χ)).
For each grid point k the numerical transport scheme generates a point
(χk, ξk) on the scatter plot. If (χk, ξk) is inside the ‘convex hull’ A
(light-shaded area) the numerical mixing resembles ‘real’ mixing in that
scatter points are shifted to the concave side of (χ, ψ(χ)). Any scatter
point outside A results in numerical unmixing that is classified into two
categories. If (χk, ξk) is located to the convex side of ψ or below the
convex hull but within the range of the initial data (dark-shaded areas
denoted B), the scheme produces umixing referred to as range-preserving
unmixing. Scatter points in neither A nor B produce unmixing referred to
as overshooting.

where n is the time-level index and H is the set of indices
defining the stencil required by T to update φk . A solution
to (2) requires an initial condition, a specified velocity
field and may also require the solution to the continuity
equation for air density ρ. In this paper the proposed test
cases are two-dimensional and the diagnostics are described
for the two-dimensional case; but note that the diagnostics
generalize straightforwardly to the three-dimensional case.

2.2. Mixing for a single tracer

Before discussing mixing between tracers, it is interesting
to note that single tracer mixing can be quantified using an
entropy measure

Sφ = −kB

N∑

k=1

φk log φk ρk ∆Ak, (3)

where kB is Boltzmann’s constant and∆Ak is the spherical
area of grid cell k. For simplicity we assume a unit sphere
(radius one) for the computation of Sφ.

If there are no numerical errors, the entropy is
conserved in time. Exact conservation of entropy may
be realized by a fully Lagrangian scheme that tracks
Lagrangian areas through-out the integration. In that case,
ρk ∆Ak is constant at all times for a given Lagrangian cell
k moving with the flow (there is no flux of mass across
the Lagrangian cell boundaries) and following fluid parcels
φk is conserved indefinitely. For other kinds of schemes
truncation errors will change the entropy. Real mixing can
only increase the entropy, and Sφ is maximized (for a given
total tracer mass) when φ is uniform. Typically, transport
schemes tend to smooth gradients in φ and there will be a
tendency for Sφ to increase due to numerical smoothing or
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spreading and it will reach its maximum if the numerical
diffusion reduces the distribution to a constant. However,
we note also the possibility for a transport scheme to reduce
entropy if dispersion errors lead to unmixing.

Define the entropy diagnostic as the relative change in
entropy

!s =
Sφ − S(init)

φ

S(init)
φ

, (4)

where S(init)
φ is the entropy of the initial condition. The

diagnostic (3) requires knowledge of the density ρ as well as
the tracer mixing ratio φ. The test case defined below uses
a non-divergent flow field; therefore we propose to use the
exact solution ρ = 1 for all t in computing this diagnostic,
so that it is a measure only of how well φ is handled.

The entropy diagnostic has a number of limitations.
First, as discussed above, a certain amount of numerical
mixing is inevitable at finite resolution. It is therefore not
immediately clear what constitutes a good result for the
entropy diagnostic. To address this, we propose to compute
a benchmark solution using a very high resolution solution
coarse-grained to the test resolution; this benchmark gives
an estimate of the best that could possibly be achieved at the
test resolution. More details are given in section 4. Also, net
change in entropy can result from a combination of local
increases (mixing, diffusion) and decreases (unmixing,
dispersion). Consequently there is the possibility of
cancellation of errors and the entropy diagnostic may
indicate favorable results for the wrong reasons. However,
schemes with a shape-preserving filter will usually be
dominated by real mixing rather than unmixing. Finally,
if the transport scheme produces negative mixing ratios ! s

will no longer be well-defined. An advantage of the entropy
diagnostic is that, contrary to standard error norms widely
used for assessing truncation errors in idealized single-
tracer test cases, it does not need the ‘true’ solution to the
transport problem

2.3. Preexisting functional relation between two tracers

2.3.1. Linear correlations

A transport scheme will preserve linear correlations
between two tracers if the transport operator T is semi-
linear, that is,

T (aφ + b) = aT (φ) + bT (1) = aT (φ) + b, (5)

for any constants a and b (Lin and Rood, 1996; TM97).
Hence predicting two species χ and ξ = aχ + b indepen-
dently will not disrupt the linear relation between the
two. Finite-volume schemes are, in general, semi-linear
if the reconstruction function they are based on is lin-
ear in the cell averaged values. For example, the widely
used reconstruction method called the piecewise parabolic
method (Colella and Woodward 1984) satisfies this con-
straint whereas the piecewise rational method (Xiao et al.
2002) does not. Some limiters/filters used to enforce shape-
preservation render the scheme nonlinear but still semi-
linear (e.g. Harris et al. 2011). While the preservation of
linear correlations has received some attention in the lit-
erature and schemes have been designed to preserve linear
functional relations between two tracers (e.g. Lin and Rood
1996), preservation of nonlinear functional relationships (or
the lack thereof) has received little attention.

2.3.2. Nonlinear correlations

No practical Eulerian or semi-Lagrangian scheme will
exactly preserve nonlinear preexisting functional relations
and will therefore distort such relationships in some way.
Suppose the mixing ratios of two tracers χ and ξ are
initially related by ξ = ψ(χ). In principle any ψ that is
a single-valued function in [χ(min),χ(max)] can be used.
For the mixing diagnostics that are defined below it is
convenient also to assume that the (χ,ψ(χ))-curve is
only concave or only convex in [χ (min),χ(max)]. If the
transport operator T distorts the preexisting functional
relationship, it essentially introduces numerical mixing or
numerical spreading. How the scatter points deviate from
ψ(χ) has consequences for the physical realizability of
the numerically computed solution. Real mixing in the
atmosphere can only move scatter points to the concave
side of the preexisting functional curve ψ along mixing
lines (e.g., TM97). More precisely, this area for which the
numerical mixing resembles real mixing is the convex hull
of the original scatter plot in the χ − ξ plane (A on Fig. 1).
Any scatter point outside the convex hull corresponds to
numerical unmixing and does not resemble real mixing. In
many cases the most problematic unmixing occurs if the
transport operator expands the range of the initial conditions
for the tracers, which we refer to as overshooting (see
Fig. 1). Overshooting may result in physically unrealizable
mixing ratios, such as negative values, causing problems for
sub-grid-scale parameterizations and chemistry schemes. If
scatter points move to the convex side of the preexisting
functional curve T produces spurious unmixing referred to
as range-preserving unmixing (‘upper’ area B on Fig. 1).
Scatter points within the range of the initial condition data
but below the straight line connecting the end points of the
pre-existing functional relation curve are also classified as
range-preserving unmixing (‘lower’ triangular area B on
Fig. 1).

TM97 showed that only schemes that are semi-
linear and monotone‡ as defined by Harten (1983) are
guaranteed to produce numerical mixing only within the
convex hull. Unfortunately only first-order schemes satisfy
these constraints (Godunov 1959) and therefore some
numerical unmixing must be accepted for most atmospheric
applications as first-order schemes are considered too
diffusive. Thus higher-order schemes that are shape-
preserving and thus do not overshoot may produce range-
preserving unmixing by shifting scatter points to the convex
side of ψ or below the convex hull. Below we introduce
mixing diagnostics that quantify numerical mixing in the
three categories discussed above.

2.4. Mixing diagnostics for two nonlinearly correlated
tracers

Assume that two tracers are related through a nonlinear
preexisting functional relation ψ at the initial time so that

(χk(t = 0), ξk(t = 0)) = (χk,ψ(χk)) , k = 1.., N,
(6)

and that ψ(χ) is either concave or convex in
[χ(min),χ(max)]. As the mixing diagnostics are only
based on deviations from the preexisting functional relation

‡Here ‘monotone’ means ∂φn+1
k /∂φn

j ≥ 0 for all k, j
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they do not involve the analytical solution to the transport
equation for the individual tracers.

2.4.1. Mixing that resembles ‘real’ mixingA

This diagnostic accounts for numerical mixing that
resembles ‘real’ mixing in that values are only shifted to the
concave side of the preexisting functional relation within
the convex hull (see Fig. 1)

!r =
1
A

N∑

k=1

{
dk ∆Ak, if (χk, ξk) ∈ A,

0, else,
(7)

where A is the total area of the domain, A =
∑N

k=1 ∆Ak.
The distance function dk is the normalized shortest distance
between the point (χk, ξk) and the (χ,ψ(χ))-curve where
χ is constrained to the initial condition interval χ ∈
[χ(min),χ(max)]. For the quadratic functional relation ψ
given in (21) with coefficients (22), the explicit formula
for dk is given in Appendix B. The domain A is the light-
shaded area (‘convex hull’) on Fig. 1 that mathematically
can be defined as

A =
{

(χ, ξ)
∣∣∣∣ χk ∈ [χ(min),χ(max)] and

F(χk) ≤ ξk ≤ ψ(χk)
}

, (8)

where F is the straight line that connects (χ(min), ξ(max))
and (χ(max), ξ(min)). Mixing that produces scatter points
not in A is numerical unmixing that is accounted for in two
distinct diagnostics.

2.4.2. ‘Range-preserving’ unmixing B

This diagnostic accounts for numerical unmixing within the
range of the initial data, that is, scatter points that are shifted
to the convex side of the preexisting functional relation or
below the convex hull but not outside the range of the initial
data

!u =
1
A

N∑

k=1

{
dk ∆Ak, if (χk, ξk) ∈ B,

0, else,
(9)

where B is the dark-shaded area in Fig. 1 defined by

B =
{

(χ, ξ)
∣∣∣∣ (χk, ξk) ∈ [χ(min),χ(max)]

× [ξ(min), ξ(max)] and (χk, ξk) /∈ A
}

, (10)

The shape-preservation constraint is not necessarily enough
to guarantee !u = 0. As mentioned above, a scheme must
be semi-linear and monotone as defined by Harten (1983)
to guarantee !u = 0 (TM97).

2.4.3. Overshooting

This diagnostic accounts for unmixing that is not accounted
for in the !u diagnostic and is referred to as overshooting or

range-expanding unmixing. It is defined as

!o =
1
A

N∑

k=1

{
dk ∆Ak, if (χk, ξk) /∈ (A ∪ B) ,

0, else.
(11)

A scheme that is shape-preserving will result in !o = 0.
It is noted that the diagnostics are ‘mutually exclusive’

in the sense that for a particular scatter point (χk, ξk) a non-
zero value of the distance function dk is added to only one
of the diagnostic functions. Hence

!r + !o + !u =
1
A

∑

k

dk ∆Ak. (12)

In general it is desirable that !o is zero and that the
amount of umixing, which has to be tolerated for higher-
order schemes, is much less than the numerical mixing
that resembles real mixing (!u ( !r). It is not necessarily
desirable that !r should be zero; as discussed in section
1, some numerical mixing is inevitable with an Eulerian
transport scheme, reflecting the finite resolution of the grid.
As with the entropy diagnostic, we define a benchmark
solution that gives an estimate of the best !r achievable at a
given test resolution. See section 4 for details.

2.5. Three or more tracers adding to a constant

As mentioned in the introduction multiple tracers may
have a complicated relation to each other but they may
add up to a constant or a smooth relation. A practical
example is total reactive chlorine in the stratosphere. With
just two tracers, preserving a constant sum reduces to
preserving linear correlations; however, with more than two
tracers it is, in general, more challenging for the scheme
to preserve a constant sum. It is common practice in the
modelling community that when the sum of tracers should
be preserved the sum is also transported as a tracer, and
then the individual tracers are adjusted to be consistent with
the transported sum at every time-step (e.g. Douglass et al.
2004).

Here we consider three tracers that add up to a constant
(for simplicity we assume that the constant is one)

χ + ξ + ζ = 1. (13)

This relation should be preserved throughout the integra-
tion. If the transport operator is linear in the sense that

T (χ) + T (ξ) + T (ζ) = T (χ + ξ + ζ) = T (1) = 1.
(14)

then it will preserve a constant sum. Note that this ‘sum-
requirement’ (14) is not equivalent to the semi-linear
property defined in (5). To quantify how nearly the scheme
can preserve the constant by transporting the individual
tracers χ, ξ, ζ, we use the standard error norms !1, !2

and !∞ for the difference between the sum χ + ξ + ζ and
the constant 1. As for the mixing diagnostics !r, !u and
!o used for two nonlinearly correlated tracers, the three-
tracer mixing diagnostics do not require knowledge of
the analytical solution to the transport problem for the
individual tracers.
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Figure 2. Contour plots of mixing ratio for the two correlated initial
conditions. (a) depicts the cosine bells initial condition which is C1 and (b)
is the initial condition which is nonlinearly correlated with (a) according
to ψ in (21).

3. Test case setup

3.1. Time-varying wind field

For the idealized test case setup we use a two-dimensional
non-divergent wind field from NL10 which is highly
deformational. The specific components of the velocity
vector V(λ, θ, t) and the stream function that we use here
are given by (case 4 in NL10)

u(λ, θ, t) = κ sin2(λ′) sin(2θ) cos(πt/T ), (15)
+2π cos(θ)/T

v(λ, θ, t) = κ sin(2λ′) cos(θ) cos(πt/T ), (16)
ψ(λ, θ, t) = κ sin2(λ′) cos2(θ) cos(πt/T ) (17)

−2π sin(θ)/T,

respectively, where λ is longitude, θ is latitude, T = 5,
κ = 2, and λ′ = λ − 2πt/T . The wind field is defined
in non-dimensional units, however, the problem can
easily be dimensionalized for Earth∗. Schemes based on
characteristics (typically Lagrangian schemes) may use the
algorithm given in NL10 for the computation of parcel
trajectories. Although we use a non-divergent wind field
((15) and (16)) to exercise the new mixing diagnostics in
this paper, one may equally well use a divergent wind field
(e.g., case 3 of NL10). In principle, any flow that develops

∗e.g., κ = 10 r/T and the last term on the right-hand side of (15) should
be 2π r cos(θ)/T , where r is 6.3172 × 106m and T = 12 days.

small-scale features in the tracer fields from larger-scale
initial conditions should be appropriate.

Since Lagrangian parcels do not follow great-circle
arcs the analytical solution at t = T/2 is not easily
accessible. Therefore NL10 chose a time-reversing flow
so that the deformed tracer fields at t = T/2 will return
to their initial position and shape at t = T . To avoid the
possibility of cancellation of errors when the flow reverses
the deformational part of the flow is overlaid on a zonal
background flow. The first half of the simulation t ∈
[0, T/2], in which tracer features are collapsing to smaller
scales, is typical of atmospheric flows. The second half
t ∈ [T/2, T ], in which the reverse occurs, is atypical of
atmospheric flows though very convenient for getting a
problem with a known exact solution. Since the mixing
diagnostics do not require an analytical solution and since
the first half of the simulation is more realistic than the
second half, we compute the mixing diagnostics half way
through the simulation. The computation of standard error
norms, which do require a ‘true’ solution, is performed at
t = T .

3.2. Initial conditions for one- and two-tracer tests

Two symmetrically located cosine bells are defined as
follows,

hi(λ, θ) =
hmax

2
[1 + cos(πri/r)] if ri < r, (18)

where hmax = 1, r = 1/2 is the base radius of the bells,
ri = ri(λ, θ) is the great-circle distance between (λ, θ) and
a specified center (λi, θi) of the cosine bell

ri(λ, θ) = arccos[sin θi sin θ + cos θi cos θ cos(λ − λi)].

The initial condition φ(cb) consists of a background
value g and two cosine bells with centers (λi, θi), i = 1, 2,
respectively, generated using (18)

φ(cb)(λ, θ) =






g + c h1(λ, θ) if r1 < r,
g + c h2(λ, θ) if r2 < r,
g otherwise,

(19)

where the parameters are g = 1/10 and c = 9/10 such
that the values of φ ∈ [1/10, 1], (λ1, θ1) = (5π/6, 0) and
(λ2, θ2) = (7π/6, 0) as in case 4 of NL10 (see Fig. 2a). The
initial condition nonlinearly correlated with φ(cb) is

φ(ccb) = ψ
(
φ(cb)

)
, (20)

where

ψ(χ) = a χ2 + b, χ ∈ [χ(min),χ(max)] (21)

with coefficients

a = − 8
10
and b =

9
10

, (22)

(Fig. 2b). Hence for the two-tracer test we use initial
conditions χ = φ(cb) and ξ = φ(ccb) for the first and second
tracer, respectively.
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Figure 3. The numerical solution at t = T/2 for the cosine bells and correlated cosine bells initial conditions (first and second column, respectively)
using CSLAM with and without a shape-preserving filter (first and second row, respectively).

Figure 4. Contour plots of the slotted-cylinder initial conditions (a) χ(t = 0), (b) ξ(t = 0) and (c) ζ(t = 0), respectively, and the corresponding
shape-preserving CSLAM solutions at t = T/2 (d,e,f), respectively, for the three-tracer test.

3.3. Initial conditions for the three-tracer test

Following the one-dimensional three-tracer test proposed in
Ovtchinnikov and Easter (2009) we use non-smooth initial
conditions; this is most likely to activate shape-preserving
filters in the transport scheme, and is relevant to the most
challenging cases met in practice such as the steep chemical
gradients seen near the terminator (e.g. Santillana et al.

2010). The double cosine-bells (19) are replaced by slotted-
cylinders (Zalesak 1979) defined as follows,

φ = φ(sc)(λ, θ) =






c if ri ≤ r and |λ − λi| ≥ r/6
for i = 1, 2,

c if r1 ≤ r and |λ − λ1| < r/6
and θ − θ1 < − 5

12r ,
c if r2 ≤ r and |λ − λ2| < r/6

and θ − θ2 > 5
12r ,

g otherwise,
(23)
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where r = 1/2 for all tracers whereas constants c and g
depend on the tracer. For the first tracer χ we choose
initial condition φ(sc) with (λ1, θ1) = (3π/4, 0), (λ2, θ2) =
(5π/4, 0), c = 1/3 and g = 1/10 (see Fig. 4a). Following
Ovtchinnikov and Easter (2009) the initial condition for the
second tracer ξ is displaced, in this case 10◦ in latitude, with
respect to χ so that (λ1, θ1) = (3π/4,π/18), (λ2, θ2) =
(5π/4,−π/18) and the amplitude is different (c = 2/3)
but the background value remains the same (g = 1/10)
(Fig. 4b). The initial condition for the third tracer is the
residual so that the tracers add up to one:

ζ(t = 0) = 1 − [χ(t = 0) + ξ(t = 0)] , (24)

(see Fig. 4c).

4. Results

The proposed test cases are demonstrated using the
CSLAM scheme (for a review of finite-volume schemes
used in meteorology see, e.g., Machenhauer et al. 2009;
Lauritzen et al. 2011). The coupling between the air density
and tracer mixing ratio used in CSLAM is described in
detail in Appendix B of NL10. Unless stated explicitly
otherwise we use an equi-angular cubed-sphere grid with
60×60 cells per panel which corresponds to a 1.5◦
resolution at the Equator. The time-step used for the
1.5◦ resolution is ∆t = T/120 which for the NL10 flow
(their case 4) will result in a maximum CFL number
in each coordinate direction locally on each panel of
approximately 5.5. For shape-preservation the simple filter
of Barth and Jespersen (1989) that scales the sub-grid scale
reconstruction function so that its extrema do not exceed the
cell-averages of the neighboring cells is used.

Fig. 3 shows the numerical solution half way through
the simulation at t = T/2 with and without the shape-
preserving filter (first and second row, respectively) for the
φ(cb) and φ(ccb) initial conditions (first and second column,
respectively). Similarly, Fig. 4d-f shows the numerical
solutions for the three tracers in the three-tracer test
at t = T/2 with the shape-preserving filter. The initial
distribution is stretched into thin filaments half way through
the simulation while being transported Eastward. This
flow was designed to challenge the transport operator
T by being highly deformational so that small-scale
features develop from large-scale initial conditions and
simultaneously the small-scale features must be translated
over significant distances. For schemes defined on grids that
have singularities away from the filaments that develop at
t = T/2modelers are encouraged to rotate the flow to direct
the distributions over ‘trouble’ points.

Note also that the cosine bell shapes and slotted-
cylinders are overlaid on a non-zero constant background
value to challenge the shape-preservation operator so
that simple negative filling algorithms will not alleviate
oscillations near the base of the deformed fields (e.g.,
Fig. 3a).

4.1. Entropy diagnostic for a single tracer: CSLAM
example

To exercise the entropy mixing diagnostic for a single tracer
(3), we show time-traces of !s for different configurations of
CSLAM on Fig. 5. The entropy diagnostic !s is a function of
the air density ρ, the entropy of the initial condition,S (init)

φ ,
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l s

time-step index

CSLAM, 1.5° resolution

1st-order
3rd-order

3rd-order, filter
reference

Figure 5. Entropy diagnostic *s (assuming a unit sphere) as a function of
time-step index for different configurations of CSLAM at approximately
1.5◦ resolution (upper three lines) using the cosine bells initial condition
χ = φ(cb). The thick solid black line is *s as a function of time-step
index of the high resolution reference solution (approximately 0.09375◦)
averaged to approximately 1.5◦.

and the mixing ratio φ. For simplicity and since the flow is
non-divergent we assume the exact solution for air density:
ρ = 1 for all t.

For the first half of the simulation, t ∈ [0, T/2], shown
on Fig. 5 the entropy increases with time due to numerical
spreading of the solution. Not surprisingly the higher-order
configuration of CSLAM produces much less mixing (much
less increase in entropy) compared to the first-order version.
Adding a shape-preserving filter increases the entropy due
to additional numerical diffusion. The diagnostics in the
next section suggest that it is not simply the case that the
filtered version produces more mixing than the unfiltered
version. In fact it produces less ‘real’ mixing, but also less
unmixing; since unmixing is associated with a decrease
in entropy, there are compensating effects associated with
the two processes. For the change in entropy production
compared to the unfiltered version, the decrease in unmixing
is the dominant effect.

To obtain a benchmark value for !s higher resolution
solutions have been computed and then averaged to the
1.5◦ reference resolution before the computation of ! s. For
example, the test case has been run at 0.75◦ so that four
high resolution grid cells span exactly one grid cell at
1.5◦ resolution. The high resolution solution is averaged
to 1.5◦ by summing the product between mixing ratio
and the respective grid cell areas, and then dividing this
sum by the area of the coarse grid cell. Similarly for
resolutions 0.375◦, 0.1875◦ and 0.09375◦ for which 16,
64, and 256 high resolution grid cells respectively span
exactly one coarse 1.5◦ grid cell. This averaging to the 1.5◦

reference resolution is here referred to as ‘coarse-graining’.
The results for !s using the native grid and coarse-grained
solutions are shown in Table I. As expected !s decreases as
the horizontal resolution increases and the coarse-grained
solution converges to a benchmark value ! (b)

s = 6.3×10−3.
This value !(b)

s indicates the lowest/best value of !s one
can expect at the 1.5◦ reference resolution. A scheme is
excessively diffusive/mixing if it produces an increase in
entropy much greater than the benchmark entropy value

!s * !(b)
s = 6.3 × 10−3. (25)
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Table I. Real mixing *r and entropy *s diagnostics for shape-preserving CSLAM (3rd-order) at resolutions 1.5◦ (∆t = T/120), 0.75◦ (∆t =
T/240), 0.375◦ (∆t = T/480), 0.1875◦ (∆t = T/960), 0.09375◦ (∆t = T/1920) corresponding to 60×60, 120×120, 240×240, 480×480, and
960×960 cells per panel, respectively. ‘coarse-grained’ refers to the diagnostic computed using the solution for φ averaged to the 1.5◦ reference
resolution.

resolution !r on native grid !r coarse-grained !s on native grid !s coarse-grained
1.5◦ 6.28×10−4 6.28×10−4 1.47×10−2 1.47×10−2

0.75◦ 1.05×10−4 2.72×10−4 1.93×10−3 6.65×10−3

0.375◦ 1.82×10−5 2.43×10−4 3.98×10−4 6.29×10−3

0.1875◦ 3.95×10−6 2.42×10−4 9.56×10−5 6.29×10−3

0.09375◦ 9.37×10−7 2.42×10−4 2.36×10−5 6.30×10−3

First-order CSLAM produces much greater entropy
increase than the benchmark value (!s * !(b)

s ), while
third-order CSLAM produces approximately 2.3 times the
entropy increase compared to the benchmark (! s ∼ !(b)

s ).

4.2. Mixing diagnostics for two nonlinearly related
tracers: CSLAM example

The mixing diagnostics for two nonlinearly related tracers
!r, !u, !o described in section 2.4 are computed half
way through the simulation (t = T/2) for the cosine bells
initial condition and correlated cosine bells initial condition
(χ, ξ) =

(
φ(cb),ψ(φ(cb))

)
, respectively.

Fig 6 shows scatter plots for different configurations
of CSLAM. The corresponding mixing diagnostics and
standard error norms are in Table II. For the first-
order version of CSLAM based on constant reconstruction
functions, the excessive numerical diffusion tends to move
scatter points toward the upper-left corner of the convex
hull (Fig 6a). As predicted by theory (TM97) the first-
order version of CSLAM produces no overshooting (! o =
0) because the scheme is inherently shape-preserving, and
produces no unmixing (!u = !o = 0) because the scheme
is linear (hence semi-linear) and monotone. The third-
order version of CSLAM visibly produces much less
clustering of the scatter points away from ψ which is
reflected in the approximately one order of magnitude lower
real mixing diagnostic !r (Fig 6b). Since the scheme is
not shape-preserving the range of the initial condition is
expanded (!o ,= 0; left of convex hull on Fig 6b) and
some range-preserving unmixing is introduced (!u ,= 0;
some scatter points on the convex side of ψ in Fig 6b).
By invoking the shape-preserving reconstruction function
filter no overshooting takes place !o = 0 and, perhaps
surprisingly, the level of unmixing in terms of !u is
less than half compared to the solution without a filter
and the level of real mixing !r is reduced by almost
20%. This is in contrast the entropy diagnostic !s which
implies more mixing for each individual tracer. Also the
ratio between real mixing and range-preserving unmixing
(!r/!u) is approximately 9.3 for the filtered version of
CSLAM compared to approximately 4.8 for the non-filtered
version. Hence more numerical mixing within the range
of the initial conditions resembles real mixing than non-
physical unmixing in the filtered version of CSLAM.

In all, the filtered version of third-order CSLAM is
superior to the unfiltered version in terms of the mixing
diagnostics !r, !u, and !o. This is in contrast to the
standard/conventional single tracer error norms that are
minimized for the unfiltered third-order CSLAM (Table II).
In terms of physical realizability and the non-existence of

spurious oscillations, however, only the third-order version
of CSLAM with a filter (and the first-order version) are
acceptable.

As for the entropy diagnostic one may ask: what is
best we can hope to achieve at the (finite) test resolution
of 1.5◦? An estimate for that is given in terms of high
resolution reference solutions coarse-grained to the 1.5 ◦

test resolution. Table I lists !r computed on high resolution
grids as well as those solutions coarse-grained to 1.5◦. As
expected !r tends to zero when increasing the resolution and
the coarse-grained solutions converge to a benchmark value

!(b)
r = 2.4 × 10−4. (26)

If !r * !(b)
r for a particular scheme at approximately 1.5◦

resolution the real mixing is most likely excessive.

4.3. Three tracers adding up to a constant: CSLAM
example

To trigger shape-preserving filters (that may introduce non-
linearities) in the transport operator we use discontinuous
initial conditions (slotted-cylinders) for this test. As
mentioned in section 3.3 the three initial conditions are
designed so that the sum of the tracers equals a constant,
χ + ξ + ζ = 1. Obviously their sum should be preserved
throughout the simulation. How nearly the discrete scheme
can preserve the constant by transporting the individual
tracers is a measure of some aspect of the non-linearity of
the scheme.

The CSLAM scheme exactly preserves the sum by
transporting the individual tracers when using the unfiltered
version where no shape-preserving filter is invoked (not
shown). However, the unfiltered version of CSLAM
produces unphysical distributions (overshoots and wiggles)
so a shape-preserving filter is needed for any practical
application of the scheme. The filter used in CSLAM
renders the scheme nonlinear in the sense that the sum is
not preserved by transporting the three tracers individually
(Fig. 7). Although the solution to the transport problem for
the individual tracers is shape-preserving, their sum is not.
At t = T/2 the standard error norms for the sum (a derived
quantity) are !1 = 0.0025, !2 = 0.0079 and !∞ = 0.0653.
The figure shows that the largest errors in the sum occur
along the sharp edges of the deformed slotted cylinders, as
might be expected.

5. Discussion: Mixing diagnostics and their relevance
to nonlinear chemistry parameterizations

The purpose of the mixing diagnostics proposed here is
to enable information from advection-only test cases to be
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Figure 6. Scatter plots at t = T/2 for two nonlinearly correlated species based on cosine hills initial conditions using (a) first-order version of CSLAM,
(b) standard CSLAM based on bi-parabolic reconstruction functions, and (c) standard CSLAM with a shape-preserving filter. The solid lines mark the
boundaries between the areas used to classify the numerical mixing.

Table II. Columns 2,3 and 4 list standard error norms *1, *2 and *∞, respectively, at t = T for a single tracer χ using initial condition φ(cb)

for different configurations of the CSLAM scheme. Second row is CSLAM based on constant reconstruction functions (1st-order), third row is
third-order reconstruction functions and in the fourth row a shape-preserving filter has been applied to the third-order reconstruction function.
The remaining columns (5,6,7) show mixing diagnostics *r, *u and *o at t = T/2 for the nonlinearly interrelated tracers χ and ξ initialized with
χ = φ(cb) and ξ = ψ

`
φ(cb)

´
. Contour plots of the CSLAM numerical solution at t = T/2 for χ and ξ are on Fig. 3.

scheme !1 !2 !∞ !r !u !o

1st-order CSLAM 1.93×10−1 3.82×10−1 4.57×10−1 6.02×10−3 0.0 0.0
3rd-order CSLAM 1.58×10−2 3.28×10−2 4.73×10−2 7.55×10−4 1.58×10−4 3.79×10−4

3rd-order CSLAM with filter 1.58×10−2 4.33×10−2 8.91×10−2 6.28×10−4 6.73×10−5 0.0

Figure 7. Contour plot at t = T/2 for the sum of the individually
transported tracers χ, ξ and ζ in the three-tracer test using the CSLAM
scheme with a shape-preserving filter. Initial conditions for χ, ξ and ζ
and CSLAM solution at t = T/2 are depicted on Fig. 4abc and Fig. 4def,
respectively.

used to make predictions about the likely behaviour and
possible problems when chemistry is included. To illustrate
their usefulness, we consider an idealized but typical
chemical reaction between two tracers with concentrations
(χ − 0.1) and ξ, where χ and ξ are the solution fields in
the two-tracer test. The reaction rate is assumed to be slow
enough that we can neglect its effects on χ and ξ. We
subtract the background value for χ so that the reaction rate
is zero for the background distribution.

The rate at which product is formed at time t is
proportional to the domain integrated reaction rate

R(t) =
N∑

k=1

(χk − 0.1) ξk ∆Ak. (27)

For a non-divergent flow and in continuous space the
instantaneous domain integrated reaction rate

∫∫
(χ −

0.1) ξ dA is invariant in time.
The domain integrated reaction rate R(t) may be

partitioned into contributions from scatter points associated
with ‘real mixing’ (A), range-preserving unmixing (B),
and overshooting. Reaction rates associated with these
three domains on the scatter plot are referred to as Rr,
Ru and Ro, respectively. Obviously, R = Rr + Ru + Ro.
Since numerical mixing is inevitable for practical semi-
Lagrangian or Eulerian schemes the mixing introduced by
the transport scheme should ideally manifest itself through
‘real mixing’ only and not unmixing. In terms of R(t) the
scheme providing the most physically realizable solutions
should produce reaction rates dominated by R r.

Results for reaction rates for different configurations
of CSLAM are shown in Table III. Not surprisingly the
first-order version of CSLAM overestimates the reaction
rate at t = T/2 due to excessive numerical diffusion. The
domain integrated reaction rate R(t = T/2) for the non-
shape-preserving version of third-order CSLAM is closer
to the initial condition reaction rate than when applying a
shape-preserving filter (similarly to what is observed for
conventional error norms). However, the partitioning of the
reaction rate into Rr, Ru, and Ro reveals that a larger
fraction of the reaction rate is associated with ‘real mixing’
for the shape-preserving scheme than for the unlimited
scheme. Moreover, Ru is less for the shape-preserving
scheme than for the unlimited scheme. The reaction rate
associated with overshooting in the unlimited scheme Ro

is negative so for this particular reaction, Ro cancels errors
in that it reduces the magnitude of R(t = T/2) and thereby
R(t = T/2) is closer to R(t = 0).

These results illustrate that even though the unlimited
scheme is superior in terms of the total reaction rate R(t =
T/2), it is superior for unphysical reasons. The fraction
of the reaction rate associated with unmixing fluid parcels
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Table III. Domain integrated reaction rates R at the initial time t = 0 (second column) and half time t = T/2 (third column) as well as the
partitioning of the reaction rate at t = T/2 into parts associated with ‘real’ mixing (Rr), range-preserving unmixing (Ru) and overshooting (Ro;
fourth, fifth and sixth column, respectively) for different configurations of the CSLAM scheme.

scheme R(t = 0) R(t = T/2) Rr(t/T/2) Ru(t/T/2) Ro(t/T/2)

1st-order CSLAM 2.26×10−1 2.91×10−1 2.91×10−1 0.0 0.0
3rd-order CSLAM 2.26×10−1 2.30×10−1 1.59×10−1 7.25×10−2 -6.64×10−4

3rd-order CSLAM with filter 2.26×10−1 2.33×10−1 1.65×10−1 6.84×10−2 0.0

is larger for the unlimited scheme than for the shape-
preserving scheme. Similarly the reaction rate associated
with ‘real mixing’ is larger for the shape-preserving scheme
than for the unlimited scheme. The partitioning of R(t)
into Rr, Ru and Ro, and the differences between the
partitioning for the three schemes, are consistent with the
mixing diagnostics lr, lu and lo for the three schemes.
Hence the mixing diagnostics lr, lu, and lo provide useful
information on mixing-related chemical reaction rates and
how physically realizable they are.

6. Summary and conclusions

In this paper we propose mixing diagnostics designed to
assess how transport schemes introduce mixing and perturb
preexisting functional relations between tracers. Three test
cases based on one, two and three tracers as well as
associated mixing diagnostics are proposed. Although the
mixing diagnostics do not require knowledge of the true
solution to the transport problem for each tracer, the mixing
diagnostics are exercised using an idealized wind field
(which is highly deformational) and for which the analytical
solution exists at the end of the simulation.

The three idealized test cases are:

1. A single tracer χ initialized with the cosine bells
initial condition is transported with the deformational
flow that deforms the initial condition into thin
filaments. Numerical mixing is quantified using an
entropy diagnostic !s.

2. Two tracers χ and ξ are nonlinearly related through
a preexisting functional relation ψ. The initial
condition for the first tracer is based on cosine
bells and the second tracer is related to the first
through a quadratic function. The numerical mixing
is quantified in terms of the normalized distances
of scatter points on a correlation plot from the
preexisting functional relation curve. The mixing
can be divided into mixing that resembles real
mixing as observed in the atmosphere (!r; scatter
points move along mixing lines) and spurious
unmixing. The unmixing is split into unmixing that
expands the range of the initial condition data (!o;
overshooting) and mixing that moves scatter points
to the convex side of the preexisting functional
relation curve or below the convex hull (!u; range-
preserving unmixing). Theoretically, overshooting
can be controlled with shape-preserving filters (!o =
0), but we cannot guarantee to avoid range-preserving
unmixing (!u ,= 0) for any scheme of higher than first
order. Obviously it is desirable that the numerical
mixing mostly resembles real mixing rather than
spurious unmixing (!u ( !r).

3. Three tracers χ, ξ, ζ, may have a complicated
relationship among each other but add up to a

constant (χ + ξ + ζ = 1). Obviously the constant is
preserved in the exact case; however, schemes with
shape-preserving filters will, in general, not be able
to preserve the sum when transporting the tracers
separately. The deviation of the sum from unity is
quantified using standard error norms. To trigger
nonlinearities in the transport scheme discontinuous
initial conditions (slotted-cylinders) are used for this
test case.

Example results using the CSLAM (Conservative Semi-
LAgrangian Multi-tracer) scheme on the cubed-sphere
are presented. Obviously any global transport scheme
could have been used. It is shown that only first-order
CSLAM will not produce unmixing (!u = !o = 0) and that
a shape-preserving filter for the higher-order version of
CSLAMwill eliminate overshooting (!o = 0) but not range-
preserving unmixing (!u ,= 0). Hence some unmixing must
be tolerated if a higher-order scheme is used. Although the
CSLAM scheme without filters performs better in terms of
standard error norms, CSLAM with shape-preserving filters
is superior in terms of the new mixing diagnostics.

For the particular test resolution used in this paper
(approximately 1.5◦) we define benchmark values for the
single-tracer entropy diagnostic (!(b)

s ) as well as two-tracer
‘real mixing’ diagnostic (!(b)

r ). This is done by computing
very high resolution solutions coarse-grained to the test
resolution; these benchmarks give estimates of the best
that could possibly be achieved at the test resolution. If
at approximately 1.5◦ resolution !s * !(b)

s and !r * !(b)
r

for a particular scheme, the numerical spreading/mixing
and real mixing, respectively, are most likely excessive.
Mixing benchmark values can easily be estimated at other
resolutions (if needed).

The usefulness of the proposed diagnostics is
demonstrated by computing an idealized reaction rate
between two transported species. The mixing diagnostics
give useful predictive information about the overall
reaction rate for different transport schemes, as well as
the partitioning of that reaction rate into contributions
associated with physically realizable ‘real mixing’ and
unphysical unmixing and overshooting.

The proposed mixing diagnostics are physically
motivated metrics designed to address issues of particular
relevance to chemistry-transport modelling. They are
intended to complement conventional error norms, not
replace them. (For example, a scheme that simply preserves
the initial data will produce favorable mixing diagnostics
even though the solution is highly inaccurate.) Applying
these diagnostics to state-of-the-art transport schemes could
provide a point of comparison for the future development
of new schemes (Lauritzen et al. 2011a,b). The proposed
test case methodology provides a simple setup for assessing
numerical mixing and it could potentially be used in the
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Figure 8. A schematic of dk (left-right arrows) for different correlation
points (χk, ξk) (filled circles) generated by the transport scheme. dk
is the ‘normalized Euclidean distance’ between (χk, ξk) and the point
on the preexisting functional relation (χ, ψ(χ)) (thick line), where ξ ∈
[χ(min), ξ(min)] (dashed lines), nearest to (χk, ξk). This nearest point
on (χ, ψ(χ)) is denoted (χ(root)

k , ψ(χ(root)
k ) (unfilled circle).

development of better filters/limiters in terms of minimizing
unphysical numerical mixing and producing mixing that
resembles true mixing as observed in the atmosphere.
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Appendix A: Conventional error norms

Conventional/standard errors norms for a numerically
computed solution φ are given by

!1 =
I(|φ − φT |)

I(|φT |)
,

!2 =
[
I[(φ − φT )2]

I[(φT )2]

]1/2

,

!∞ =
max∀λ,θ |φ − φT |

max∀λ,θ |φT |
,

where φT is the analytical solution. The global integral I is
defined as follows,

I(φ) =
1
4π

∫ 2π

0

∫ π/2

−π/2
φ(λ, θ, t) cos θdλdθ.

Appendix B: Denition of distance measure dk

For the mixing error norms the point on the (χ,ψ(χ))-
curve closest to (χk, ξk) needs to be computed. Define the

function,

Lk(χ) =

√(
χk − χ

Rχ

)2

+
(

ξk − ψ(χ)
Rξ

)2

, (28)

where χ ∈
[
χ(min),χ(max)

]
and

Rχ = χ(max) − χ(min), (29)
Rξ = ξ(max) − ξ(min), (30)

are the ranges of the initial data for χ and ξ, respectively.
Lk(χ) is the normalized Euclidean distance between the
correlation point (χk, ξk) and a point on the preexisting
functional relation curve (χ,ψ(χ)). (We use the normalized
distance so that, when a semi-linear transport scheme is
used, the error norms are invariant when either tracer mixing
ratio φ is replaced by Aφ + B for constants A and B.)

The point (χ,ψ(χ)) that is nearest to (χk, ξk) is
computed by solving

d

dχ
[Lk(χ)] = 0. (31)

For the specific coefficients (a = −8/10 and b = 9/10) and
ranges (Rχ and Rξ), the solution to (31) is given by

χ = χ(root)
k = ck +

1
ck

(
13
75

− 5
12

ξk

)
, (32)

where

ck =
1
60

[
65340 χk+

12
√

12 (125 ξk − 52)3 + 29648025 χ2
k

]1/3

. (33)

The point
(
χ(root)

k ,ψ(χ(root)
k )

)
is constrained to lie in

[χmin,χmax] since χ-values outside this interval are ‘non-
physical’. Hence we define the minimum distance function
dk as

dk = Lk(χ(ψ)
k ), (34)

where

χ(ψ)
k = min

[
max

(
χ(min),χ(root)

k

)
,χ(max)

]
. (35)
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