Chapter 8

Atmospheric Transport Schemes: Desirable
Properties and a Semi-Lagrangian View on
Finite-Volume Discretizations

Peter H. Lauritzen, Paul A. Ullrich and Ramachandran D. Nair

Abstract This chapter has twofold purpose. After a short introduction to the mass
continuity equations in atmospheric models, desirable properties for mass trans-
port schemes intended for meteorological applications are discussed in some detail.
This includes a discussion on the complications caused by the non-linearity of most
problems of interest that makes it hard to define accuracy and convergence as the
‘truth’ is not known. Thereafter, some finite-volume schemes from the atmospheric
literature are reviewed and discussed. To complement the large existing literature
on finite-volume schemes, a less frequently discussed semi-Lagrangian derivation
of the finite-volume method is given that focuses on ‘remap-type’ schemes where
the space and time discretizations are combined rather than separated. A discus-
sion on the challenges in deriving accurate schemes intended for global models and
non-traditional spherical grids is given as well.
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8.1 Introduction

To predict the evolution of air and tracers' we solve one of the fundamental laws

of physics namely the equation of mass continuity. This equation is intuitively very
simple to understand; perhaps the simplest statement of the equation is that mass of
air and tracers is conserved without the presence of sources or sinks. Hence mass in a
volume can only change if there is inflow and/or outflow through surfaces bounding
the closed volume or if there are parameterizised sources and/or sinks (e.g., for water
vapor, sources and sinks can be evaporation and condensation, respectively)

% (mass) = inflow — out flow + sources — sinks. (8.1)
The continuity equation is simple, in a strict mathematical sense, and it may appear
as a surprise that we use an entire chapter discussing it. However, despite its simplic-
ity finding an accurate and efficient numerical approximation to its solution remains
an active research subject and no scheme to date is ideal (and perhaps never will be
as long as computing power remains finite). Also, the continuity equation is coupled
to the other equations of motion, so a complete discussion of the challenges in air
and tracer transport must also consider this coupling. The purpose if this chapter is
to convey some of the many deliberations in transport scheme development and to
discuss some examples of transport schemes on the sphere.

In the literature there are numerous review articles and books on transport meth-
ods in general and specifically on the finite-volume method (e.g., Rood, 1987; Le V-
eque, 1996) and this chapter is not an attempt to supersede or replace these re-
views. Instead we shall limit the review to space-time (or remap) finite-volume
transport schemes used in meteorology. By space-time schemes we refer to schemes
where the temporal and spatial discretizations are combined rather than separated.
As will become clear one may also refer to space-time (or remap) schemes as cell-
integrated (or finite-volume) semi-Lagrangian schemes. Conservative grid-to-grid
interpolation (also referred to as remapping), which is usually an integral part of
finite-volume schemes, will also be discussed in some detail. Obviously this chapter
will only scratch the surface of the enormous literature on transport schemes and
we will emphasize the intuitive (and perhaps more physical) derivation of schemes
rather than mathematical rigor.

The chapter is organized as follows. Before diving into the nuts and bolts of
finite-volume schemes we begin by formulating the transport problem relevant to
atmospheric models (section 2) and discuss some desirable properties that transport
schemes intended for atmospheric applications ideally should possess (section 3).
In section 4 the mathematical foundation for space-time finite-volume schemes is
given in Eulerian and Lagrangian forms. The equivalence between the two forms
is rarely discussed but useful in gaining more understanding of Eulerian schemes.
In section 5 the spatial and temporal approximations needed for practical schemes

! a tracer in this context is any quantity that follows the flow of air such as chemical species and
water in the atmosphere
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are presented step by step. This includes upstream cell approximation, sub-grid-
cell reconstruction and practical integration over cells in space. Section 5 is mostly
limited to two-dimensional schemes on the Cartesian plane, however, a brief dis-
cussion on the extension to spherical geometry is given. In section 6 we discuss the
extension to three dimensions. Before the final remarks in section 8 some practi-
cal considerations for the coupling of transport schemes to the continuity equation
for air are discussed in section 7. This includes the inconsistencies that may arise
in the air mass and tracer mass coupling, techniques for sub-cycling the air mass
equation with respect to tracers, and coupling a semi-implicit air mass scheme with
an explicit tracer mass scheme (section 7). For brevity, section 6 and 7 are cursory
while more attention will be given to desirable properties and the space-time scheme
derivations on the plane.

8.2 The continuous equation

8.2.1 Representation of mass in atmospheric models

Most atmospheric models have at least a handful of continuity equations and, in
most cases, many more. From a dynamics point of view the continuity equation for
air is the most fundamental and important continuity equation since it is strongly
coupled to the momentum equations and the thermodynamic equation. For the rep-
resentation of moist processes most models have prognostic continuity equations for
three water species: Water vapor, cloud liquid water and cloud ice water. Some high
resolution models also have resolved-scale continuity equations for rain and snow
(if there is no resolved-scale continuity equation for rain and snow the assumption
is usually that rain and snow falls to the ground in one time-step). Modern micro-
physical parameterizations include prognostic continuity equations for four to eight
condensed species. For example, the Morrison and Gettelman (2008) micro-physics
package used in NCAR’s Community Atmosphere Model (CAM) version 5 has
continuity equations for mass and number concentrations for ice and liquid water.
Some microphysics parameterizations also have prognostic continuity equations for
mass and number concentrations for ice and liquid precipitation. Modal (and even
more for bin) aerosol schemes may have 20 or more prognostic continuity equations
for mass and number concentrations of aerosols such as particulate organic matter,
dust, sea salt, secondary organic aerosols, number concentrations for different sizes
of aerosols, etc. In addition, any prognostic representation of chemical species re-
quires the solution to one continuity equation per species e.g. MOZART (Model of
Ozone And Related Tracers, Brasseur et al 1998). So needless to say, the continuity
equations make up a dominant part in atmospheric models at least in terms of the

total computational cost of the dynamical core?.

2 roughly speaking the dynamical core is the part of the model that solves the governing fluid and
thermodynamic equations on resolved scales (Thuburn, 2008)



190 Lauritzen et al.

First, let us discuss the representation of air mass in atmospheric models as this
has fundamental influence on how all other species are treated. The density of well-
mixed moist air p,, can be separated into a dry and wet part

_ mg+my

Pn =" = Pg+ Pv = Pd + GvPm; (8.2)

where m; and m, are the masses of the dry air and water vapor, respectively, and V
is a small volume. The density of dry air and water vapor are denoted p 4 and p,,
respectively, and g, is the specific humidity,

my,

= . 83
qv g +my (8.3)

To a very good approximation the mass of dry air is the mass of the dominant well-
mixed gases: Nitrogen N, (ca. 78.0.8%), Oxygen O (ca. 20.95%), Argon Ar (ca.
0.93%) and Carbon dioxide CO;, (at present ca. 0.038%). These gases make up over
99.998% of the volume of dry air and may therefore be considered permanent (al-
though argon and carbon-dioxide are slowly increasing). In addition, small amounts
of trace gases are mixed into the air (with sources and sinks varying in space and
time), however, the variation in these ‘non-permanent’ gases is very small compared
to the total mass of all the trace gases. Trenberth and Smith (2005) estimated that
the dry air mass of the atmosphere corresponds to a surface pressure of approxi-
mately 983.05 hPa and it varies less than 0.01 hPa based on changes in atmospheric
composition. So the variation in the dry air mass budget is on the order of 0.001%.
So to a very good approximation the continuity equation for dry air does not have
any source or sink terms, and thus reads

3pa

SV (pav) =0, 84)

where v is the velocity field and ‘V-’ is the divergence operator. The mass of dry air
accounts for approximately 99% of the total mass of atmosphere and the remaining
1% is approximately the mass of water vapor. The continuity equation for humidity
(water vapor) is given by

d
91 (Pmqv) +V - (Pmqvv) = Py (8.5)

where Py, p,, represents sources and sinks (in this case condensation and evaporation
processes). Moisture g, varies significantly (relatively speaking) with values near
zero for cold dry air and a few percent in warm moist air. The continuty equation
for moist air can be obtained by adding (8.4) and (8.5), and using (8.2) to simplify.
The result is

9Pm

at

This equation is similar to the equation for dry air (8.4) except for the humidity
forcing terms.

+V-(pmv) = Pp,. (8.6)
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The prognostic variables used for tracers are usually defined in terms of mixing
ratios. If moist density is prognosed, the mixing ratios for tracers are most conve-
niently defined in terms of the specific concentration

- , 8.7
pepa— (8.7)

where m(!) is the mass of constituent (/). So the density of the constituent is p (/) =
qﬁ,ll) Pm, Where q,(,i) is the ‘moist’ mixing ratio. However, one may also solve the
continuity equation for tracers in terms of the ‘dry’ mixing ratio ¢ g) , defined by
(1)
1 m
gy ==L (8.8)
mg

As discussed in Collins et al (2004) the advantage of using (8.7) is that the mass
of species (/) is obtained by simply multiplying the moist mixing ratio with the
moist air density q%)pm. However, this approach has the disadvantage of implicitly
requiring a change in qﬁ,ll) whenever the water vapor g, changes. This disadvantage
does not exist if (8.8) is used.

8.2.2 Consistency in the mass equations

Herein we will respectively use p and g to denote air density and mixing ratio (which
can be either moist or dry) and we assume no sources or sinks (no forcing terms).
Then the two-dimensional continuity equation for air density p can be written as

J
0—‘;+V~(9V)=0, (8.9)

and similarly for a tracer density p g

d(pq)
at

+V-(pgv)=0, (8.10)

where v is the velocity vector. Note that (8.9) and (8.10) imply

dq d 4

It =0, 7 0t+V'V7 (8.11)
which states that ¢ is conserved along trajectories/characteristics of the flow. Note
that the continuity equations (8.9) and (8.10) are linked in the sense that p appears in
both equations. Hence, numerical error introduced in simulating the evolution of air
mass p may be reflected in the prognosed trace gas mixing ratios when converting
from tracer mass p ¢ to mixing ratio q.
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To solve any of the continuity equations given above the flow field v must be
given. The continuity equation for air (8.9) is coupled with the momentum equa-
tions and thermodynamic equations. Hence the thermodynamic variables and other
prognostic variables feed back on the velocity field which, in turn, feeds back on
the solution to the continuity equation. It follows that the continuity equation for air
cannot be solved in isolation and one must obey the maximum allowable time-step
restrictions imposed by the fastest waves in the system? (see chapter 1 and 6). The
passive tracer transport equation (8.10) or (8.11) can be solved in isolation given
prescribed winds and air densities, and is therefore not susceptible to the stricter
time-step restrictions imposed by the fastest waves in the system but ‘only’ to the
less restrictive advective velocities*. Hence, if for stability relatively short time-steps
must be used for the continuity equation for air, one does not necessarily need to use
short time-steps for the tracers (at least not for stability reasons). That is, one can
solve the tracer transport equations with time-steps longer than what are allowed
for stability in (8.9). This technique is referred to as sub-cycling, that is, multiple
cycles of dynamics (air continuity equation) are performed within one time-step of
the tracers. In doing so care must be taken to retain the consistency between trac-
ers and air. For example, if ¢ = 1 then (8.10) reduces to (8.9) and additional care
must be taken to ensure consistency between these equations in the discretization.
Specific examples and details on sub-cycling are given later (section 8.7.2). First,
let us consider important design objectives for tracer transport schemes intended for
atmospheric applications.

8.3 Desirable properties

When developing a new transport (or any other) algorithm one is usually striving
for a scheme that ensures simulation veracity. In other words, a numerical method
should be designed so that simulations using it are as truthful as possible. In math-
ematical literature simulation veracity is often synonymous with accuracy which is
associated with the absolute truth. Convergence, truncation error and error norms
are all associated with quantitative measures of conformity to the truth. In most
realistic atmospheric model settings, however, the truth is unknown in an absolute
sense (the exact solution is not known). For instance, in most atmospheric applica-
tions an increase in resolution will often resolve finer scales and new phenomena
appear making it problematic to define convergence in a strict mathematical sense.
Adding to the complexity is the fact that the system is chaotic and therefore not de-
terministic beyond 10 days or so (Lorenz, 1982), so any attempt to assess absolute
accuracy in simulations beyond the predictability limit must be based on statistical
approaches.

3 assuming that explicit time-stepping is used

# although there is a weak coupling between humidity and the thermodynamic/momentum equation
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In all, simulation veracity in an atmospheric modeling context is more than ac-
curacy in a strict mathematical sense. Perhaps because there is little quantitative
knowledge of the true solution a lot of emphasis is placed on physical properties of
the solution method. For example, we do know that the numerical solution should
ideally obey discretized equivalents of properties we can derive from the contin-
uous set of equations such as conservation® of mass and higher moments, shape-
preservation (including monotonicity, positivity and non-oscillatory property), cor-
relation preservation, and so on. Also, sub-grid-scale parameterizations usually re-
quire physical realizable atmospheric states from the resolved scale dynamics. From
a computational point of view properties such as parallel efficiency, geometric flex-
ibility, etc. are also very important properties of the final numerical algorithm.

What follows is a list of desirable properties for tracer transport schemes that are
all (apart from the properties related to efficiency) essential ingredients of simulation
veracity:

8.3.1 Accuracy (error norms)

Accuracy describes the degree of closeness of the simulated (numerically computed)
solution to its true (exact) state specified in terms of error norms (numeric values).
The error measures can either be assessed at a fixed resolution (absolute error) or as
a function of resolution (convergence). For linearized equations and approximations
a proxy for convergence can be sought by computing the formal order of accuracy
of the numerical method through Taylor series expansions. Note that formal order
of accuracy does not necessarily guarantee accurate solutions for distributions/flows
with near discontinuities (shocks and fronts) nor does it guarantee accuracy at a par-
ticular resolution. For many global weather and climate applications absolute accu-
racy at a particular range of resolutions is perhaps more important than high-order
convergence rates. Below is a list of some idealized test cases used to quantitatively
assess simulation veracity:

8.3.1.1 Linear test cases

Error norms are well defined when the exact solution is known which is usually only
the case for linear problems. Commonly used linear test cases, where the analytical
solution is known at all times #, can be divided into two categories: Translational
and deformational. Here we focus only on global test cases in spherical geometry.
Most test cases are formulated with non-divergent flow fields for which the ad-
vective form of the continuity equation for a tracer (8.11), that uses mixing ratio g as
the prognostic equation, is equivalent to the flux-form version (8.10) based on tracer
mass pg.Thatis, g or pq is set equal to the same spatial distribution and the modeler

5 for a discussion on conservation in the context of the full equation set for the atmosphere see
chapter 11
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Fig. 8.1 Exact solutions for the (a) solid body advection of a cosine bell test case at t = 0 (center
of plot) and = 44h (for a ‘flow rotation angle’ of 45°), and (b) the static vortex test case at day 6.

is implicitly assuming that p is one everywhere and since the flow is non-divergent
p will remain one through-out the simulation at least in the analytical case. Hence
the modeler is not forced to distinguish between tracer mass pg and mixing ratio g.
However, for a divergent/convergent flow only ¢ is constant along parcel trajectories
whereas tracer mass pg will increase/decrease in areas of convergence/divergence.
For a fuller discussion see Nair and Lauritzen (2010).

Translational. Probably the most commonly used idealized test case in the me-
teorological literature is the solid body rotation of a cosine bell (Figure 8.1a) (e.g.,
test case one of the widely used two-dimensional test suite of Williamson et al 1992
for the shallow-water equations). The exact solution is simply the translation of the
initial condition and standard error norms can be computed at every time-step. This
two-dimensional test case has been extended to three dimensions in Jablonowski
et al (2010). Another three dimensional test case on the sphere where the analytic
solution is known was proposed by Zubov et al (1999).

For convergence studies used to assess the formal order of accuracy of a scheme
the translated distribution should be sufficiently smooth. For example, the cosine
bell distribution may appear smooth but it is only C! at the base of the bell. Con-
sequently, schemes that are high-order accurate in terms of a Taylor Series analysis
may not show this high-order formal convergence rate when using the cosine bell
initial condition. To assess ‘ideal’ convergence rates it is advised to use C* func-
tions such as Gaussian surfaces (Levy et al, 2007).

Deformational. The translational test case described above has a large degree
of symmetry and perhaps is not challenging enough to thoroughly test a numeri-
cal algorithm. Real world flows also have deformational, convergent/divergent and
rotational components that deform, expand and rotate the initial distribution. A pop-
ular purely deformational test case (non-divergent) is the cyclogenesis test case in-
troduced in meteorology by Doswell (1984) and used as a test case for transport
schemes by numerious authors (e.g., Ran¢i¢ 1992, Nair and Machenhauer 2002).
The exact solution at day 6 is shown on Fig. 8.1b°. As can been seen in the Fig-

% the dimensionalization of the vortex problem used here follows Nair and Jablonowski (2008)
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Fig. 8.2 Exact solutions for the moving vortex test case with a flow orientation of 45° at zero
(left; day 0), half (middle; day 6) and one (right; day 12) revolution. The continents are shown for
reference purposes only.

ure the vortex ‘curls up’ and generates long thin filaments in the process. These, in
general, are quite challenging to represent for any numerical scheme.

Another useful application of this test case is to use its velocity field but instead
of transporting an initial condition such as shown on Fig. 8.2 in the cyclogenesis
test case, instead transport a constant mass field p = pg. Since the flow is non-
divergent any numerical scheme should ideally preserve a constant mass field. Also
the solid-body rotation flow field is non-divergent and so for this wind field a con-
stant mass-field should remain constant throughout the simulation. However, the
cyclogenesis wind field is much more challenging as a preservation of constancy
test since it is deformational (unless the stream function for the velocity field is used
to makes sure that the divergence that the scheme ‘sees’ is zero). Some schemes
might preserve a constant mass field for solid body advection but fail to preserve
a constant mass field for the deformational wind field. Unfortunately results from
such tests are rarely presented in the literature.

Translational and deformational. Although the idealized cyclogenesis test
case described above is challenging it lacks a translational component. Nair and
Jablonowski (2008) combined the cyclogenesis wind field with the solid body ad-
vection wind field on the sphere which makes up the ‘moving vortices’ test case.
Instead of a stationary ‘curl up’ of the vortex, it is transported as a solid body as it
deforms (Fig. 8.2). Obviously such a test case is more challenging and might there-
fore be more useful to discriminate between schemes than simpler test cases. For
example, in the idealized tests of the finite-volume transport scheme in Lauritzen
et al (2010) it was found that the moving vortices test case was more discriminat-
ing than the pure translational and stationary cyclogenesis test cases (at least when
applied and compared to the Putman and Lin (2007) scheme).

Recently, Nair and Lauritzen (2010) extended LeVeque’s test case (LeVeque,
1996) to a class of test cases on the sphere. Unlike all the test cases considered so
far the wind fields in this test case are time varying. In these cases the wind fields are
periodic and reverse so that after one period the initial distribution has returned to
its initial position and shape. Hence the analytic solution is known after one period
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Fig. 8.3 The recently proposed test case by Nair and Lauritzen (2010). (a) The initial wind field
and (b) initial condition and analytical solution after one period. (c) and (d) show a numerically
computed solution after half and full period, respectively. The grid-scale noise in (c) and (d) are
due to the numerical scheme not being monotone/shape-preserving.

but not throughout the simulation. The flow is swirling (deformational) so the initial
condition is highly deformed half way through the simulation. This challenges the
numerical scheme since grid-scale features develop from well-resolved initial con-
ditions (Fig. 8.3). And perhaps more importantly, one of the test cases in Nair and
Lauritzen (2010) is divergent contrary to most idealized test cases for transport on
the sphere which are non-divergent. By introducing divergence the modeler is forced
to distinguish between mixing ratio and air mass which is not strictly necessary for
non-divergent test cases.

8.3.1.2 Non-linear test cases

In linear test cases for smooth flows the accuracy in terms of error norms is usually
improved when the resolution is increased and when the formal order of the numer-
ical method is increased. However, such idealized experiments do not truly quantify
the error in realistic atmospheric applications that are far from linear. In general, for
non-linear problems the quantification of error is problematic except in very simple
cases’ and, as discussed in Prather et al (2008), we usually design models with the
expectation that a correct solution (truth) exists and that with adequate physical ap-

7 e.g., the one-dimensional Burgers’ equation that has an exact solution although it is non-linear
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Fig. 8.4 The ETEX sampling stations distribution (filled black circles) and 0.1 ngm > contour of
measured cloud at 75+12 hours (red) ,+24 hours (blue), +36 hours (purple), +48 hours (green), +60
hours (black). Figure courtesy of Stefano Galmarini.

proximations and numerical methods our solutions will converge to a ‘true’ solution
as the resolution is increased.

In the context of passive tracer transport a non-exhaustive list of non-linear test
cases is given below. The examples are meant to give the reader an idea of the
‘world’ beyond idealized linear test cases that are usually reported on in transport
scheme development. All test cases do not have analytical solutions and involve
the solution to the entire system of dynamical equations (not just prescribed winds
and mass-fields) as well as parameterizations of sub-grid-scale processes making it
harder to distinguish numerical errors of the transport scheme from other sources of
error.

The ETEX forecast experiment. The worst nuclear power plant disaster in his-
tory (the Chernobyl power plant explosion in 1986) generated a radioactive plume
that drifted over extensive parts of western Russia and Europe. This is a rude re-
minder of the importance of having models capable of forecasting long-range trans-
port accurately; at least for emergency management. As a consequence the European
Tracer Experiment (ETEX, see, e.g., Girardi et al 1998, van Dop et al 1998 and the
more recent study of Galmarini et al 2004) was established in 1994 to evaluate the
validity of long-range transport models and to assemble a database which would
allow the evaluation of long-range atmospheric dispersion models in general.

ETEX was a controlled experiment where two releases (under different weather
conditions) of perfluorocarbon tracers from Western France were tracked across Eu-
rope. Perfluorocarbon tracers are non-depositing, non-water-soluble and inert, and
therefore a passive tracer for all practical purposes. A large network of samplers
deployed eastward on the territory of Central and Eastern Europe collected tracer
samples that were later analyzed to determine the concentration levels. That set of
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measurements was then used to quantitatively evaluate the predictions of the mod-
els.

The ETEX experiment and data can be used to evaluate new transport schemes.
Obviously this test case indirectly tests more than the transport scheme itself but also
parameterizations (such as boundary layer parameterizations, parameterized verti-
cal diffusion etc.) and, in general, the models ability to produce accurate winds and

air densities for the tracer transport scheme®.

Mixing experiments. There are several experiments in the literature targeting
the mixing properties of the model. Probably the simplest was proposed by Rasch
et al (2006). The experiment is setup as follows. The mixing ratio for a tracer is set
to one everywhere in a model layer and zero elsewhere. Then the model is run from
some meteorological initial conditions for 30 days. The tracer is placed either near
the surface (near 800 hPa) and around 200 hPa. The low tracer test serves as an indi-
cator of transport in a region dominated by sub-grid scale transport processes such
as convection and turbulence. The high tracer is much more dominated by resolved-
scale dynamics at least at middle and high latitudes. The test case also indicates
the tropospheric-stratospheric mixing in the model (generally, in the polar and mid-
latitude regions stratospheric air is mixed into tropospheric air and in the Equatorial
regions deep convection results in a large scale ascent of tropospheric air). For mod-
els based on an isentropic vertical coordinate, this test when run adiabatically and
with non-zero tracer values in an isentropic layer instead of pressure levels, can be
used to indicate the amount of spurious vertical diffusion in the transport scheme
since ideally the mixing ratio should remain one in the isentrophic layer for all time
(and zero elsewhere).

Another experiment that is probably more widely used is the age-of-air exper-
iment (see, e.g., Waugh and Hall 2002 and references herein). The age of air is
the mean transport time from some reference location. For example, stratospheric
age of air is the mean transport time from the tropical tropopause to a location in
the stratosphere. Monitoring the age of air for species with long lifetimes provides a
proxy for the diffusivity (often spurious) of the tracer transport in a particular model.
In general, schemes that are too diffusive tend to produce too ‘young’ air while less
diffusive schemes simulate ‘older’ age of air. Eluszkiewicz et al (2000) found a large
dependency on the choice of advection scheme in age-of-air experiments in addition
to the simulated large scale simulation. Even for short-lived tracers with sources and
sinks Rasch et al (2006) found a large dependency on the numerical solution tech-
nique. These studies demonstrate that the choice of transport scheme (and driving
model) can easily influence the simulation at a level that can strongly modulate the
physical signal of interest.

8 there have been other controlled tracer transport experiments before ETEX, e.g., ANATEX (The
Across north America Tracer Experiment) and CAPTEX (Cross-Appalachian Tracer Experiment)
and also more recent experiments such as MEGAPOLI (Emissions, urban, regional and Global
Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation;
http://megapoli.info).
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Dynamics/tracer consistency. This test was proposed by D. Johnson (University
of Wisconsin) and published in Rasch et al (2006). It targets the model’s ability to
simulate transport of conserved tracers consistently and the model’s ability to main-
tain non-linear relationships between six different conserved and non-conserved
tracers. It can be shown from the second law of thermodynamics that two points
separated in space and time connected by a trajectory should satisfy a non-linear
relationship in terms of temperature T, potential temperature 0 and pressure p (see
Appendix of Rasch et al 2006):

R/C,
0, = (@> T (@> : (8.12)
Ty D1

where the subscript 0 and 1 refer to the two points, and R and C , are the gas constant
and specific heat constant at constant pressure, respectively. The test case consists
of predicting 6, T and pR/ C» separately and then check how well they obey (8.12).
The level of agreement between these two ways of computing potential temperature
yields a measure of the degree of consistency in the model. See Rasch et al (2006)
for details. It is probably impossible to construct a scheme that will exactly fulfill
this consistency test, however, it is desirable that schemes strive to be as consistent
as possible.

8.3.2 Conservation of mass

As discussed in section 8.2.1 one of the most fundamental budgets of the global
atmosphere is that for the mass of dry air. Since the physical variation in the dry air
mass budget is on the order of 0.001% (and usually not modeled) even minor drifts
in the dry air mass budget due do numerical errors would be larger than the physical
variation in the dry air mass budget (Moorthi et al, 1995).

For the trace gases any spurious non-conservation of mass will effectively corre-
spond to a spurious source or sink for the gas in question. In particular for long-lived
trace species such as stratospheric ozone it is paramount that their mass-budgets are
well maintained in the models. Even for highly reactive tracers such as reactive chlo-
rine compounds, mass-conservation is important since the sum of all the compounds
should be conserved although individual compounds have large sources and sinks
(one compound is converted into another).

There are two ways of obtaining mass-conservation in numerical schemes. Either
an inherently conservative numerical method is used or mass-fixers (see chapter 13)
can be employed. For the mass of dry air mass-fixers usually operate by increasing
or decreasing the mean of the pressure field (mass) by an amount corresponding to
the spuriously lost or gained mass caused by the lack of conservation of the numeri-
cal method. Note that such a procedure can be done so that it does not alter gradients
in the pressure field and was shown by Williamson and Olson (1994) to have mini-
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mal effect on the simulation. Mass-fixers are applied in numerious non-conservative
models, e.g., the spectral transform versions of NCAR’s Community Atmosphere
Model (CAM, Collins et al 2004). Although mass-fixers for the pressure field seem
to not adversely affect simulations it is far more problematic to apply mass-fixers
for tracers. For example, altering mixing ratios to obtain tracer mass-conservation
can lead to unphysical large or small mixing ratios. If that is the case the mass-
fixer must do a local adjustment and thereby it might introduce new extrema in
the tracer mass fields and gradients are no longer preserved. This may also dis-
rupt tracer correlations (tracer correlations are discussed in section 8.3.7 below) and
consistency between tracer and air mass (see section 8.3.4 below). Therefore finite-
volume methods that are inherently conservative, have become a popular numerical
method in climate and chemistry modeling since ad-hoc adjustments are, in theory,
not necessaryg.

The continuous equations of motion conserve all moments not just mass. How-
ever, Thuburn (2008) argued (see also chapter 11) it might not be desirable that the
advection scheme also preserves higher-order moments.

8.3.3 Optimal diffusion and dispersion properties

The linear diffusion and dispersion properties of a linearized scheme can be assessed
by performing a von Neumann stability analysis (also known as a Fourier stability
analysis). It is a standard analytic analysis technique and is described in many text-
books in the context of grid-point methods (see, e.g., Durran 1999, Haltiner and
Williams 1980) and in the context of finite-volume methods in Lauritzen (2007).
The analysis consists of assessing analytically how a single Fourier mode is damped
and accelerated/decelerated by the numerical scheme during one time-step assum-
ing a constant wind field.
In one dimension the von Neumann analysis is performed by assuming a solution
in the form
Y"(x) =9I exp(ikx), (8.13)

where 7 is the imaginary unit, ¥° the initial amplitude, and k = 2s/L is the
wavenumber (L is the wavelength), and » is the time-level index. The damping and
phase properties of a scheme are assessed by substituting the solution (8.13) into
the forecast formula for the finite-volume scheme in question, and subsequently an-
alyzing the complex amplification factor I'. The stability of a numerical method
is governed by the modulus of the complex amplification factor, that is, a particu-
lar wave with wavenumber K is stable if |I'| < 1. Following Bates and McDonald
(1982) the dispersion properties of a scheme is assessed by writing the complex
amplification factor as

I'=|I'|exp(—iw* At), (8.14)

9 we write ‘in theory” since if a transport scheme is not strictly monotone local ‘ad hoc’ adjustments

might be necessary even for finite-volume methods
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where w* is the numerical frequency. Define the relative frequency as R = o */w
where o is the exact frequency given by kK u and uy is the constant wind. If R > 1 the
numerical scheme is accelerating and if R < 1 the scheme is decelerating compared
to the exact solution.

The Von Neumann analysis provides useful information about the stability prop-
erties of a scheme and may provide new insight into schemes. The limitation of
the von Neumann stability analysis is that it is linear. Hence any non-linear opera-
tors such as limiters and filters cannot be included in the basic analysis as well as
non-linear flows. Usually the spurious numerical diffusion and dispersion decrease
rapidly with the formal order of the scheme. So each scheme probably has an op-
timal order for which the extra computational cost associated with increasing the
order of the scheme simply does not pay off in terms of linear diffusion and disper-
sion properties. For example, Leonard (1991) argued that the reduction in diffusion
becomes trivial soon after the order is larger than third.

8.3.4 Tracer and air mass consistency

Tracer and air mass consistency is a stricter concept than simple mass conservation
of the individual quantities. It basically states that the discretized tracer transport
scheme should reduce to the discretized continuity equation for air when g = 1
as is the case for the continuous equations: (8.10) reduces to (8.9) when setting
q = 1. Tracer-air mass consistency can, for example, be violated if using a numerical
method for tracer transport that is different from the scheme used for predicting the
evolution of the air density '°. To achieve a high level of consistency it is usually
necessary that the same numerical algorithm is used for the dynamics as well as
for tracer transport. For more discussion see Machenhauer et al (2009); Lee et al
(2004); Jockel et al (2001); Zhang et al (2008).

8.3.5 Divergence preservation

The transport operator should not be a spurious source of divergence. Usually this
property is discussed within the context of non-divergent flow fields. For exam-
ple, a constant initial mass distribution should remain constant at all time in a
non-divergent flow (preservation of mass-constancy). The subject has received con-
siderable attention in the magnetohydrodynamics literature since the magnetic flux
density is non-divergent and the numerical scheme should ideally retain that prop-

10 This discussion applies to online applications where tracer transport is performed in conjunction

with the governing fluid and thermodynamic equations. A similar inconsistency appears when
driving the tracer transport equation in an offline mode (prescribed winds and mass fields from
reanalysis, observations or a different model) in which case the tracer transport scheme with g = 1
will not equal the prescribed mass-field unless ad-hoc fixers are applied.
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erty (e.g., Artebrant and Torrilhon (2008) and references therein). A prerequisite
for controlling spurious generation of divergence is preservation of mass-constancy
as formulated above (see test case suggestion in section 8.3.1.1) for non-divergent
flows.

Note that the preservation of constant mixing ratio (and not constant tracer mass
field) is trivial in most cases. If the advective form of the advection equation (8.11)
is used it is trivial to maintain a constant mixing ratio since ¢ is the prognostic
variable and the divergence does not appear explicitly. If the air and tracer equations
are solved on flux-form (equations (8.9) and (8.10), respectively) using the same
numerical method, it is usually trivial to preserve a constant mixing ratio field since
the mixing ratio ¢ is recovered from (8.10) by dividing the prognosed tracer mass
field pg by p from (8.9). So even if the numerical scheme is unable to preserve a
constant mass field p, it is usually possible to design schemes so that a constant g
field is recovered when dividing p g by the (potentially) non-divergence preserving
forecast of p.

8.3.6 Physical realizability (monotone, positive-definite,
non-oscillatory, shape-preserving)

In the absence of sources and sinks the mixing ratio of a Lagrangian parcel be-
ing transported by the flow is invariant (8.11). If the numerical solution fulfills this
property it is monotonicity'! preserving; no new local extrema are generated and the
absolute values of pre-existing local extrema is non-increasing. Strict monotonicity
preservation can be hard to achieve and enforcing it in numerical schemes is often
found to be at the cost of overall accuracy wherefore it is often relaxed somewhat.

The zero-th order shape-preservation property is that the numerical scheme gen-
erates physically realizable solutions. Since mixing ratios cannot physically take
negative values they should remain non-negative. Schemes that cannot generate neg-
ative values are termed positive definite and schemes that do not generate wiggles
(spurious grid-scale waves as the ones on Fig.8.3c and d) typically associated with
large gradients are referred to as non-oscillatory. Obviously a scheme that is mono-
tone is automatically positive-definite and non-oscillatory but not necessarily vice
versa. It should be stressed that it is ¢ that should remain monotone and not p g.
For convergent flows p g can physically take values outside the range of the initial
condition whereas g should not. See Nair and Lauritzen (2010) for a discussion and
simple illustration of the latter for an idealized flow field.

Note that shape-preservation can be enforced in finite-volume schemes based on
(8.9) and (8.10) if these schemes imply some discretized version of (8.11). Schemes
that retain such a property are termed compatible (Schir and Smolarkiewicz, 1996).

T atmospheric modelers tend to be a bit loose with the term ‘monotone’ and normally they do not
refer to the careful definition given by Harten (1983)
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8.3.7 Preservation of pre-existing functional relations between
species (correlations)

As described in Plumb (2007): “Relationships between long-lived stratospheric trac-
ers, manifested in similar spatial structures on scales ranging from a few to several
thousand kilometers, are displayed most strikingly if the mixing ratio of one is plot-
ted against another, when the data collapse onto remarkably compact curves.” In
other words, different longlived trace constituents (such as nitrous oxide N,O and
‘total odd nitrogen’ NOy) seem to be related through rather simple functional re-
lationships in, for example, the polar stratospheric vortex. Such relationships can
arise from different reasons (Plumb and Ko, 1992), however, it is well-known that
transport can establish such relations (e.g. Thuburn and Mclntyre, 1997).

In order to accurately simulate such relationships in numerical models, the trans-
port operator should, at least, be able to preserve linear correlations (Lin and Rood,
1996; Thuburn and Mclntyre, 1997). That is, the transport operator should maintain
the relationship in (8.15) throughout the simulation

g1 =79 +yWg,, (8.15)

where y(i) ,i=0,1, are constants, and g;, i = 1,2, are mixing ratios of two linearly
interrelated species. A transport scheme will preserve linear pre-existing functional
relations if the transport operator .7 , that updates ¢;,i = 1,2, in time, is ‘semi-linear’

T =7 (Y(O)+Y(l)6]2) =70 71)+yV 7 (g2) = vV +yV 7 (g2), (8.16)

(Lin and Rood, 1996; Thuburn and Mclntyre, 1997). As noted by Thuburn and
Mclntyre (1997) the successful preservation of linear correlations by a transport
operator does not necessarily gurantee an accurate solution since shaping two tracer
fields the same way does not necessarily imply shaping them the right way. On the
other hand, if a model significantly violates the preservation of linear correlations
between chemical constituents, the model is most likely not going to provide truthful
simulations of the relation between those constituents.

Since interrelated tracers can also be related non-linearly, it is also of interest to
investigate how a transport operator distorts such non-linear relation. For example,
consider two tracers that are initially correlated by a fourth-order polynomial

g1 =70+ v (g2)4, (8.17)

(Thuburn and Mclntyre, 1997) where the constants y(o) and y(l) should be cho-
sen so that the functional relation is either convex or concave in the range of the
initial condition values of ¢g; and ¢g,. Except for fully Lagrangian transport opera-
tors, schemes are usually unable to maintain non-linear functional relationships and
their degree of non-preservation of correlations effectively translates into numeri-
cal mixing of the constituents. Initializing two tracers that are, for example, related
through (8.17) and letting the tracers be transported by a challenging flow that de-
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velops features that collapse to the near grid-scale, provides physical insight into
the numerical mixing that the transport operator introduces (Thuburn and Mclntyre,
1997). No practical Eulerian and semi-Lagrangian scheme can preserve (8.17) and
will therefore produce scatter points that deviate from the pre-existing functional
relationship (8.17). When scatter points deviate from the pre-existing functional re-
lation curve the transport operator is introducing numerical mixing. The numerical
mixing can either be spurious or resemble ‘real’ mixing. If the scatter values are
on the concave side of the pre-existing functional relation, the numerical mixing is
similar to ‘real mixing’ that is observed in the atmosphere (see Fig. 8.5). Mixing in
the atmosphere occurs, for example, when the polar stratospheric vortex breaks up
(e.g. Waugh et al, 1997). If scatter values appear outside the ‘convex hull’ (either by
producing scatter points on the convex side of the pre-existing functional relation-
ship curve and/or outside the range of the initial condition for g ;,i = 1,2), the model
produces numerical unmixing which is unlike ‘real mixing’. Thuburn and Mclntyre
(1997) proved that in order to guarantee only ‘real’ numerical mixing, the transport
operator should be ‘semi-linear’ and monotone according to Harten (1983). Un-
fortunately only first-order schemes will meet these requirements. Since first-order
schemes are too diffusive for most atmospheric applications, one must accept some
level of unmixing. For a more complete discussion of this topic the reader is referred
to Thuburn and Mclntyre (1997). Recently, Lauritzen and Thuburn (2010) proposed
mixing diagnostics that quantifies the amount of numerical mixing that the transport
operator introduces for interrelated species.

Another situation relevant to the transport of chemical species is the situation in
which more than two species are related through some complicated relation but they
add up to a constant (or a smooth spatial field '?). With just two species this reduces
to preserving a linear correlation but with more than two species it is very challeng-
ing to guarantee that the total mixing ratio remains constant, except by transport-
ing the total or using a fully Lagrangian scheme. The transport operators ability to
maintain the constant sum is another measure for numerical mixing and has been
explored in one dimension by Ovtchinnikov and Easter (2009). Note that main-
taining or only perturbing pre-existing functional relations in a ‘physical way’ is
not only important for long-lived stratospheric tracers but also for other parts and
processes in the atmosphere such as cloud-aerosol interactions (Ovtchinnikov and
Easter, 2009). In all, single-tracer testing that has traditionally been used to evalu-
ate transport operators in idealized settings does not provide insight into how well
tracer interrelations are maintained although it is important for many atmospheric
applications.

12 for example, total reactive chlorine in the stratosphere
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Fig. 8.5 Schematic view of the effect of mixing on a scatter plot where mixing ratio for tracer 1,
q1. is plotted against tracer 2, ¢». The two tracers are initially non-linearly correlated, that is, the

scatter points (g1,¢2) are on the pre-existing functional relation curve (solid thick line curve). The

initial ranges for the two tracers are [q(I'"i”>,q§"’ax)] and [q(zmm,qgmm)], respectively. Partial mixing

of two air masses (two filled circles - scatter points) will tend to move the two scatter points towards
each other along the straight (red) line (also referred to as a ‘mixing line’). Hence ‘real mixing’
occurring in the atmosphere will tend to move points on the scatter plot to the concave side of the
pre-existing functional relation curve (also referred to as the ‘convex hull’ - shaded area).

8.3.8 Robustness

The numerical method should remain stable and retain simulation veracity through-
out the integration. Robustness can be assessed by testing the algorithm for many
different flow fields, temporal and spatial resolutions.

8.3.9 Parallel computational efficiency

Performance improvements are largely due to increased parallelism rather than
improved microprocessor clock frequency. Hence the numerical algorithm should
be amenable for execution on massively parallel computing platforms. A way to
achieve this is to use local methods with minimal global dependence (for more dis-
cussion see chapter 16).
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It is worth noting that although computing power has increased dramatically in
the last 20 years or so, these extra computational resources have largely been used
to satisfy demands for higher resolution, more advanced physical parameterizations
and coupling the atmospheric component to ocean, land, and ice components (i.e.
coupled models). Hence it is still desirable to develop efficient dynamical core algo-
rithms, in particular, schemes for efficient tracer transport (see paragraph on Multi-
tracer efficiency below) even though computing power is increasing.

8.3.10 Multi-tracer efficiency

In modern atmospheric models the number of tracers required to be advected con-
tinue to increase. For example, the chemistry version of NCAR’s CAM model trans-
ports over 100 tracers (Lamarque et al, 2008). Given that the dynamical core typ-
ically has less than 10 prognostic variables defining the state of the fluid flow and
thermodynamics, the computational cost of running the dynamical core can primar-
ily be attributed to the transport of tracers. Needless to say, it is highly desirable
that the numerical algorithm used for tracer transport be efficient and adaptable
for a large number of tracers. A way to achieve multi-tracer efficiency is to design
schemes that can reuse information for each additional tracer (Barth and Frederick-
son, 1990; Dukowicz and Baumgardner, 2000) and/or transport tracers with longer
time-steps than used for the continuity equation for air in the dynamical core (also
referred to as ‘super-cycling’ of tracers with respect to air or, more commonly, ‘sub-
cycling’ of air with respect to tracers; see section 8.7.2).

8.3.11 Geometric flexibility

It is generally useful to develop numerical methods that can be used on a wide range
of spherical grids. Next generation dynamical cores are being developed on spheri-
cal grids based on triangles, quadrilateral, pentagonal and/or hexagonal control vol-
umes. It is therefore desirable that a scheme can handle any spherical polygon-based
grid. Also models using static or adaptive mesh-refinement benefit from geometri-
cally flexible methods. An example of a geometrically flexible advection scheme is
MPDATA (Multidimensional Positive Definite Advection Transport Algorithm); for
an overview see Smolarkiewicz (2006).

8.4 Problem formulation: Discrete schemes

Finite-volume methods are numerical methods where each prognostic variable is
stored as an average quantity over a certain finitely large control volume (also
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referred to as cell-integrated methods). This choice differs from methods that are
based on grid-point values (used in, e.g., finite-difference methods) or weights for
expansion functions (e.g., finite-element or spectral method). In order to derive
finite-volume discretization schemes the equations of motion, in this case the con-
tinuity equation, are integrated over a control volume. This allows for discretiza-
tions that keep track exactly of the local mass-budgets and thus provides mass-
conservation to machine precision. Note that although finite-volume schemes are
designed to conserve mass locally through explicitly tracking mass, conservation of
mass can also be achieved in non finite-volume methods (e.g., compatible methods,
see chapter 12). Conservative methods that are not finite-volume methods usually
do not conserve mass locally.

Typically finite-volume schemes come in two flavors corresponding to two forms
of deriving the equations of motion from first principles: Eulerian and Lagrangian 3.
In most textbooks the equations of motion are derived in Eulerian form, that is, as
observed from a fixed volume in the atmosphere (stationary to the Earth’s surface).
Hence there is a flux of mass through the volume boundaries unless the local wind
is zero. One may also derive the equations of motion as viewed by a volume not
just rotating with the Earth’s rotation axis but also moving with the local flow; a.k.a.
Lagrangian form. In Lagrangian form there is no flux of mass through the ‘walls’ of
the volume. Both of these forms of the finite-volume discretization of the continuity
equation are presented next after the introduction of some notation. For simplic-
ity we consider the two-dimensional problem in Cartesian geometry and defer the
discussion of the extension to spherical geometry and three-dimensions to section
8.5.3.3 and 8.6, respectively.

Let the domain of integration be denoted €2 (a Cartesian plane with periodic
boundary conditions or no flux through the domain boundaries). The domain € is
partitioned into N non-overlapping grid cells, Ay, k = 1,..,N, so that Uivzl Ay span
Q. The area of cell Ay is denoted AAy. For now we shall assume a quadrilateral
mesh in Cartesian geometry, however, the discussion can trivially be extended to
other meshes such as triangular or hexagonal meshes in Cartesian geometry.

As mentioned above the prognostic variable considered is the cell averaged value

_ 1
wka—Ak/Akw(x,y)dA, W =porpg, (8.18)

where 1 (x,y) is the exact solution. In time we discretize in terms at equidistant
time-levels, i.e. superscript n refers to the quantity at time ¢+ = nAr where At is the
time-step. So the state of a tracer in cell Ay at time-level n is denoted Y.

13 the Eulerian and Lagrangian forms are limits of the more general arbitrary Lagrangian-Eulerian
(ALE) form (Hirt et al, 1974)
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8.4.1 (Semi-)Lagrangian schemes

Consider an arbitrary Lagrangian area A(r). By definition the area A(t) moves with
the flow without any flux of mass through its sides and hence it always contains the
same material particles. Since there is no flux of mass through the boundaries of
A(t), the mass in the area is conserved. In mathematical terms this can be written as

d
el A = = . 1
dt/A(,)wd 0, y=porpg (8.19)

Equation (8.19) is referred to as the Lagrangian finite-volume form of the continuity
equation. A temporal discretization of (8.19) reads

/ YdA = / Y dA. (8.20)
A(t+Ar) A(t)

If the same Lagrangian cell A(z) is tracked throughout the simulation the resulting
scheme is referred to as fully Lagrangian. The challenge in such schemes is that for
non-trivial flows the areas quickly deform into thin filaments so that the resolution
is no longer uniform (see Figure 2 in chapter 7).

Instead one may consider a different set of areas/parcels at every time-step, for
example, enforcing that either A(z + Ar) or A(t) is a regular static grid cell. Such an
approach is referred to as semi-Lagrangian since it only tracks the same Lagrangian
parcels/area for one time-step. The advantage of the semi-Lagrangian approach, as
compared to a fully Lagrangian method, is that it retains a quasi uniform resolution
as the mesh only deforms for one time-step. However, the grid uniformity is intro-
duced at the expense of having to interpolate variables from a regular static grid to
a deformed Lagrangian grid (or vice versa) at every time-step. How this interpola-
tion can be done is discussed in great detail below but for now more mathematical
notation is needed.

Assume that A(f + Ar) is a regular grid cell resulting in a method referred as
upstream semi-Lagrangian'#. If we consider cell & in the discretized domain then
the regular grid cell (A(z + At)) is exactly Ay with area AAy. The corresponding up-
stream Lagrangian area (A(r)) is referred to as a; with area Aa, (see Fig. 8.6a). We
assume that A is chosen such that all the deformed areas a are simply connected.

Note that there exists a one-to-one correspondence between A ; and a; such that
the a;’s span €2 without gaps or overlaps between them

N
Jax=Q, andaynay =0k # (. (8.21)
k=1

Assume that the evolution of the Lagrangian grid is known analytically so we know
the characteristics or trajectories for each fluid parcel at all times. The computation

14 note that one might equally well consider downstream schemes where one considers Eulerian
(regular) grid cells at time-level n and let them be transported with the flow for one time-step.



8 Finite-Volume Transport Schemes 209

(a) (b)

Fig. 8.6 A graphical illustration of the upstream semi-Lagrangian nomenclature. (a) The static
Eulerian cell A; (light shading) and the corresponding upstream Lagrangian area ¢ (dark shading)
that ends up at Ay after one time-step. For illustration the trajectories of the vertices (filled circles)
of Ay are depicted with arrows. The corresponding upstream vertices (departure points) are shown
with open circles. (b) The notation used to define overlap areas between Eulerian cell 4 and
upstream Lagrangian area ¢ is agy = Ay Nay (dark shaded area)

of fluid parcel trajectories is well developed in the semi-Lagrangian literature (e.g.,
Staniforth and Coté 1991, Staniforth et al 2003, Hortal 2002) and in the interest of
brevity it is not discussed further in this chapter, although accurate trajectories are
vital for the accuracy of any Lagrangian method.

With the notation introduced above the forecast equation (8.20) can be written as

P AA =T} Ay (8.22)
where 7, is the average tracer density over the upstream area a

1
Pl =— [ y"(xy)dA 2
V= g [, V') dA (8.23)

and EZH is the cell averaged value of y over the regular area A, at time-level n+ 1.
The function ¥” (x,y) is the continuous distribution of v at time-level n. Obviously,
since the prognostic variables are cell averages i we do not know the variation
of v at the sub-grid scale and " (x,y) must be reconstructed from the prognostic
cell averages'>. This procedure is referred to as sub-grid-scale reconstruction. In
finite-volume schemes the reconstruction is usually local rather than global. So each
cell k will have an associated sub-grid-scale reconstruction function ¥ (x,y) rather
than one global reconstruction function over all cells such as the spherical harmonic
functions used in spectral transform models.

Hence the global reconstruction function is a collection of local reconstruction
functions

N
www=;awmw, (8.24)
=1

15 unless variables such as gradients are also carried as prognostic variables (e.g. Yabe et al, 2001)
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where 14, is the indicator function

1a (xvy) € Ak;
Iy, = (8.25)
07 ('x7y) %Ak'

Commonly used methods for computing 14 (x,y) from i, are discussed in section
8.5.2.

First, we note that 1 (x,y) is not necessary continuous or differentiable across
cell boundaries. So if the upstream area a; covers several Eulerian cells (e.g., Fig.
8.6), the integral on the right-hand side of (8.23) must be broken up into overlap
areas between Eulerian cells and ay. The discretized semi-Lagrangian finite-volume
continuity equation (8.22) then reads

Ly

P AA = ; Yi(x,y) dA. (8.26)

=17 are

The number of non-empty overlap areas between the upstream cell (departure cell)
ay. and the Eulerian grid cells is denoted L. Note that L; depends on the flow and
time-step size, and for time-varying flows it is not necessarily constant. The area a ;¢
is the non-empty overlap area between the upstream cell a; and the Eulerian grid
cell Ay (see Fig. 8.6b)

ap=ayNAy, ay#0, £=1,....L,and1 <L <N, (8.27)

where N is the number of cells in the domain.

Two conditions must be fulfilled to get conservation of mass in Lagrangian finite-
volume schemes: Firstly, the upstream cells a; must be simply connected domains
and they must span Q without gaps or overlaps (equation 8.21). Secondly, the re-
construction function in cell k, y,(x,y), must be conservative in the sense that the
integral of vy (x,y) over A; must yield the cell-average value that is used as prog-
nostic variable,

1 _
A—Ak/Ak Yi(x,y) dA = T,. (8.28)

Equation (8.26) is the basic finite-volume form of the continuity equation when
using an upstream finite-volume semi-Lagrangian approach. Obviously we do not
know the exact Lagrangian trajectory of every parcel in the domain so some ap-
proximation to ay is necessary for the derivation of any practical scheme. This is
discussed in section 8.5.1.

In the discussion above 1 generically refers to both p and p g. In the reconstruc-
tion of p g one may chose to reconstruct p and g separately and combine them to
provide a reconstruction for the product p g. There are several reasons for choosing
this approach. First, it is ¢ and not p g that is conserved along parcel trajectories (see
equation 8.11) and g should therefore obey monotonicity requirements. Hence one
can argue that monotone reconstruction function filters (discussed in section 8.5.2)
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should be applied to g and not p g. Second, the consistent coupling of tracers and air
density equations in cell-integrated semi-Lagrangian schemes as well as ensuring
monotone forecasts of ¢, is perhaps easier when choosing this approach (Nair and
Lauritzen, 2010).

The reconstructions for p and g can be combined to provide a reconstruction
for p g by simply multiplying the reconstruction functions for p and ¢ as done in
Dukowicz and Baumgardner (2000). However, in doing so mass-correction terms
may be needed to satisfy (8.28) for higher-order reconstructions. The downside of
this approach is that if, for example, the reconstruction function for p and ¢ are poly-
nomials of ith and jth order the product will be polynomials of (i + j)th order which
may be computationally intensive to integrate. One may simplify by removing some
terms from the product as done in Nair and Lauritzen (2010). The latter also facili-
tates rendering schemes monotone in ¢. In Eulerian schemes, discussed next, tracer
mixing ratio and air density are usually reconstructed separately for sub-cycling (see
section 8.7.2)

8.4.2 Eulerian scheme

Contrary to the Lagrangian derivations in the previous section, the equations of
motion are typically derived in Eulerian form. In the context of the finite-volume
form of the continuity equation the Eulerian approach keeps track of the flux of
mass through the Eulerian cell walls rather than tracking the mass in a cell moving
with the flow. A more formal derivation is given below.
First, integrate (8.9) or (8.10) in space over a grid cell A
Iy

—dA+ | V-(yv)dA=0, where y =p,pgq. (8.29)
A, Ot Ay

On integrating the first term on the left-hand side of (8.29) to get the area average
and applying the divergence theorem to the second term we get
d _
4 (kaAk)+7§ (yv)-ndS=0, (8.30)
dt dA,
where dAy is the boundary of A; and n the outward normal vector to dA;. The
second-term on the left-hand side of (8.29) represents the instantaneous flux of mass

through the boundaries of Aj. Temporal integration of (8.30) over one time-step

yields
(n+1) At

WZHAAk:szAk—/AI MA (wv)-ndS] dt, (8.31)
n k

after re-arranging terms. The second term on the right-hand side of (8.31) is the flux
of mass through the walls of A; during one time-step. A graphical illustration of the
fluxes is given in Figure 8.7 and discussed in the next paragraph.
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Fig. 8.7 A graphical illustration of the ‘flux-areas’ associated with Eulerian cell A, (area in the
upper right corner of each plot bounded by thick lines). For each vertex of cell 4 (filled circles)
the upstream trajectories are shown (curved arrows departing from open circles). The shaded areas
show the flux-areas for the (a) east aZ:' , (b) north azzz, (c) west aZ:3 and (d) south a,f:“ face,
respectively, using standard compass orientation. These areas are swept through each face during
one time-step. See text for details.

Let 7 denote the face number and N/ the number of faces of the cells. For simplic-
ity we assume a quadrilateral mesh N I = 4, however, the method can accommodate
any kind of mesh (for example, for a triangular and hexagonal mesh N/ would be 3
and 6, respectively). A graphical illustration of the fluxes through the cell walls for
Eulerian cell k are shown on Fig. 8.7. As will become clear, the Figure also shows
the upstream Lagrangian cell although it is not explicitly needed for flux computa-
tions. The sides of the Eulerian control volume are numbered counter-clockwise so
that sides T = 1,2, 3,4 correspond to the east, north, west and south walls, respec-
tively (using standard compass notation). The flux of mass through the side T = 1
corresponds to the mass over the shaded area on Fig. 8.7a that is ‘swept’ through
the wall during one time step. The shaded area, referred to as a]le, is bounded by
the face T = 1, the two upstream trajectories for the end points of face T = 1, and
the upstream translation of the side T = 1. We will refer to azzl as the ‘flux-area’
for face T = 1. Similarly, the fluxes through the remaining cell sides are illustrated
in Fig. 8.7b-d.

Using the notation introduced above (8.31) can be written as

NS
P AAL =P AA— 2 F7, (8.32)
=1

where F7 is the flux of mass through face T during one time-step
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Fr = / y(xy)dA. (8.33)
a

The ‘flow-direction’ function s is used to indicate inflow and outflow
s; =sgn(v-n), (8.34)

where sgn(-) is the sign-function. Hence s7 is 1 for outflow and -1 for inflow '. In
Figure 8.7 the flow-direction function s is 1 for T = 1,2 and -1 for T = 3,4.

Note that the flux of mass through one cell wall is identical, but with opposite
sign, to the flux of mass through the neighboring cell that it shares a face with. For
the example on Figure 8.7d

4

ait=aj77, (8.35)

where the cell located immediately to the south of the Eulerian cell Ay is A;_;. So
in a practical implementation of a scheme based on (8.32) only two fluxes per cell
are computed if N/ = 4.

Although the scheme outlined above is termed ‘Eulerian’ it is not Eulerian in the
classical sense where the space and time dimensions are separated. In other words,
the scheme outlined above could also be termed flux-form semi-Lagrangian since
flux-areas that move with the flow are tracked (‘remap-type’ scheme). It is Eulerian
in the sense that we consider the flux of mass through the (stationary or Eulerian)
cell walls. When separating the temporal and spatial dimensions, as done in classical
Eulerian schemes, there are no trajectory calculations and fluxes are computed using
local information and partial derivatives along the coordinate directions at specific
times. The temporal discretization is usually based on Runga-Kutta methods (see
chapter 6). One may argue that the classical Eulerian schemes are an approximation
of the general Eulerian-Lagrangian concept presented in this chapter where true
(along the trajectories) fluxes are approximated with partial fluxes (i.e., the particle
path vector can be decomposed into vector components along the coordinate axes).

8.4.3 Equivalence between the Lagrangian and Eulerian
discretizations

It is interesting to note the equivalence between the Lagrangian finite-volume conti-
nuity equation (8.26) and the Eulerian version (8.32): If taking the sum of the flux-
areas a; with weight 1 for outflow and weight -1 for inflow as well as A; with weight
1 (all areas involved on the right-hand side of (8.32)), the upstream Lagrangian area
ay results (see example on Fig. 8.7). That is, the right-hand side of (8.32) written in
terms of areas is

16 for simplicity we do not consider the situation where s is multi-valued along a particular face.
For more details on such a situation see Harris et al (2010)
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NS
AA, — 2 (st Aaf) = Aay. (8.36)
T=1
So the Lagrangian and Eulerian schemes are identical, as expected, since no approx-
imations have been made so far (even if approximations are made and the resulting
schemes are applied to the Euler equations, Eulerian and semi-Lagrangian schemes
may produce very similar results as shown in Leslie and Dietachmayer, 1997). In-
sights into schemes can be obtained in the light of the equivalence described above.
Any Eulerian flux-form scheme should ideally and effectively have an associated
upstream cell from which information is fetched (a.k.a. domain of dependence) to
produce the forecast. A more detailed discussion is given in section 8.5.1.2.

A significant difference between the Lagrangian and Eulerian formulation is the
necessary conditions for mass conservation. Given a mass-conservative reconstruc-
tion function (8.28), a necessary condition for the Lagrangian scheme to be conser-
vative is that the upstream areas a; span the domain Q without overlap and gaps be-
tween them (8.21) and that the reconstruction function is mass-conservative (8.23).
For the Eulerian scheme, however, the flux-areas a;, need not necessarily to span the
domain  and the reconstruction function does not need to satisfy (8.23) to pro-
duce a mass-conservative scheme. In fact any estimation of the flux will provide an
inherently mass-conservative scheme since the flux computed for a particular cell
wall is subtracted in the neighboring cell with which it shares that particular face.
So the Lagrangian scheme has, in the sense described above, a stricter requirement
for mass-conservation than the Eulerian flux-form formulation.

Another significant difference between the Eulerian and Lagrangian formula-
tions is that the Lagrangian formulation requires the upstream areas to be simply-
connected domains. The Eulerian formulation does not require that, in fact, even for
relatively simple flows the flux-areas can be non-simply connected (see, e.g., Fig.2
in Harris et al 2010). The Eulerian formulation is therefore more robust in the sense
that it can handle non-simply connected flux-areas (and conserve mass simultane-
ously) whereas the Lagrangian scheme will break down if an upstream area is not
simply connected. This difference could be important for an operational application
of the scheme.

8.5 Discrete schemes: Approximations

The Lagrangian and Eulerian finite-volume schemes, given in (8.26) and (8.32) re-
spectively, are exact. Hence we assume the trajectory of every parcel is known ex-
actly (the exact upstream area and flux-areas are known), the sub-grid-cell recon-
struction is exact and the integration of the sub-grid-cell reconstruction function
over the upstream areas and flux-areas can be done analytically. Now we start to
discuss some of the approximations that can be made in order to derive practical
numerical schemes that only have a finite number of degrees of freedom. The ap-
proximations can be divided into four steps: Computation of parcel trajectories, area
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Fig. 8.8 A schematic illustration of the (a) geometric error and (b) reconstruction (gradient) error,
respectively, for a cell in two dimensions. (a) The geometric error occurs due to the exact region
of integration (shaded area) being approximated by, for example, straight line segments (dashed
lines). (b) The reconstruction error refers to the numerical methods inability to reconstruct the
exact sub-grid-scale variation (black line surface). The grey lines contour the reconstructed sub-
grid-scale distribution (in this case a linear approximation).

approximation (either upstream Lagrangian areas or Eulerian flux-areas), sub-grid-
cell reconstruction and integration of ¢ " (x,y) over deformed areas. As already men-
tioned we will not discuss the computation of trajectories here and therefore simply
assume that they are given.

Firstly, the approximation to areas are discussed. Once the areas have been de-
fined, the transport problem has been reduced to a remapping problem, that is, a
conservative grid-to-grid interpolation problem. This requires a reconstruction of
the sub-grid-cell distribution and an integration over overlap areas. These three steps
(area approximation, reconstruction, integration over overlap areas) are discussed
separately below.

8.5.1 Approximation to areas

With only a finite-number of degrees of freedom and therefore only having the ca-
pability of tracking a finite number of parcels (typically the same number as cells N)
some approximation must be made to the exact upstream Lagrangian area or Eule-
rian flux-area. The inability of the scheme to approximate the exact areas is referred
to as the geometric error (Lauritzen and Nair, 2008) and is illustrated graphically
on Fig. 8.8a. Obviously the geometric error may lead to local mass errors. Another
error is due to inexact sub-grid-cell reconstruction. This error, referred to as the re-
construction error, is illustrated on Fig. 8.8b and discussed further in section 8.5.2.
Strategies for area approximations are the subject of this section.
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(a) (b)

Fig. 8.9 Graphical illustration of approximations to the upstream Lagrangian cell ¢ ak.a. the
departure cell. Assume the departure points corresponding to the vertices of the Eulerian grid cell
are known (open circles). (a) Exact departure cell (shaded area) with sides depicted with thick
lines. (b) Sides of the departure cell approximated with straight lines by connecting the departure
points. (c) Departure cell approximation used in Nair and Machenhauer (2002) where the east and
west sides are straight lines parallel to the Eulerian longitudes (y-axis on the plot) and the north
and south sides are approximated with ‘step functions’. (d) The Lagrangian cell used in the cascade
schemes that are based on intersections (crosses) between the Lagrangian latitudes (dashed/solid
curved lines) and the Eulerian longitudes. The ‘step’ in the step functions used in the cascade
schemes always coincides with the Eulerian longitudes (x-isolines on the Figure).

8.5.1.1 Lagrangian area approximations
Fully two-dimensional Lagrangian area approximations
Probably the most rigorous approximation to the exact upstream cell a ., Figure 8 .9a,

is to follow the trajectories of the vertices of A, upstream and then connect the up-
stream vertices with straight lines (Fig. 8.9b); (Ranci¢ 1992, Lauritzen et al 2010).
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All other approximations involve approximating a; with line segments parallel to
the coordinates axis which, in general, simplifies the overlap-area integration algo-
rithm. Some examples are given on Fig. 8.9. For more details on Lagrangian cell
approximations for orthogonal meshes see the comprehensive review by Lauritzen
et al (2006) and Machenhauer et al (2009).

Flow-split Lagrangian area approximations

More recently the finite-volume cascade!” approach was suggested by Nair et al
(2002) and Zerroukat et al (2002) which uses a combination of Eulerian and La-
grangian operators, that is, the one-dimensional operators are successively applied
along a coordinate line and a Lagrangian line, respectively. An example is given
in Fig. 8.9d where the first one-dimensional operator is applied along the Eulerian
longitudinal direction and the second is applied along the deformed Lagrangian lat-
itude (curved solid/dash lines on Figure 8.9d). So rather than being a fixed direction
based splitting method it is flow-based (for a review see Machenhauer et al 2009).
The upstream Lagrangian cell for the cascade scheme is illustrated on Figure 8.9d.
The main difference between the fully two-dimensional area approximation used in
Nair and Machenhauer (2002), shown on Figure 8.9¢c, and the cascade scheme area
approximation, is the location of the ‘jump’ in the north and south sides of the de-
parture cell. Since the first cascade ‘sweep’ is along Eulerian longitudes the jump
in the north and south sides coincide with an Eulerian longitude. In the Nair and
Machenhauer (2002) the jump is located midway between the east and west cell
sides.

Approximating the Lagrangian cell with line-segments parallel to the coordinate
axis, either with fully two-dimensional or cascade methods, is attractive for orthog-
onal grids such as a Cartesian rectangular mesh (e.g., Zerroukat et al 2002) and a
regular latitude-longitude grid on the sphere (e.g., Nair and Machenhauer 2002, Nair
et al 2002, Zerroukat et al 2004). It is less obvious how to extend such approaches
to non-orthogonal grids such as triangular or hexagonal grids since the cell sides are
no longer orthogonal.

8.5.1.2 Eulerian flux area approximations

The approximation to flux-areas in Eulerian schemes can be divided into two cate-
gories: Fully two-dimensional approximations to the flux-areas and dimensionally
split area approximations. We remind the reader that only methods that have been
extended to global spherical domains are discussed here. We are thereby excluding
many transport schemes published in the meteorological literature.

17 the non-conservative cascade interpolation method in Cartesian geometry was introduced by
Purser and Leslie (1991)
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Fig. 8.10 A schematic illustration of different flux approximations, parallelogram (a,b,d.e) and
quadrilateral (g,h,j k) flux-areas, and the equivalent upstream Lagrangian areas (f,1). The equivalent
upstream areas are computed by taking the sum of all areas involved in the forecast (a,b,c.d.e)
or (g,h,i,j,k) with appropriate signs (see equation (8.36)). The velocity vectors used for the flux
computations are also shown. The exact upstream Lagrangian cell (open circles connected with
curved lines) is also shown although it is not explicitly used in the flux-form schemes.

Fully two-dimensional flux-area approximations

The fully two-dimensional flux-area approximations can be divided into two cate-
gories. Firstly, one in which one face-centered velocity vector per face is used to
trace back the flux-area and, secondly, the approach in which the vertices of the face
are traced upstream to compute the flux-area. The first approach only has one degree
of freedom for the flux-areas whereas the latter approach has two. Consequently the
resulting flux-areas are parallelograms and arbitrary quadrilaterals, respectively, for
the two approaches. An elaboration is given below.

Recently, Miura (2007) suggested to approximate the flux-areas from a face-
centered wind velocity. So the two vertices of the face would have identical up-
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stream displacements based on the same face-centered velocity vector. The trajecto-
ries are therefore parallel and have the exact same length. Hence the flux-areas a,
T = 1,2,3,4, are parallelograms (Fig. 8.10a,b.d.e, respectively). The fact that the
upstream area is a parallelogram may simplify the practical integration of overlap
areas at the expense of some potential loss of accuracy if the flow is highly defor-
mational. This is illustrated by computing the effective upstream Lagrangian area
for the Miura (2007) scheme using the method outlined in section 8.4.3. That is,
by taking the sum of the flux-areas (with signs) shown on Figure 8.10a,b,d,e and
the Eulerian area (Fig. 8.10c), the effective upstream area a results (Figure 8.10f).
The upstream area mostly coincides with the exact departure cell, however, there are
minor contributions tracing the Eulerian cell vertices that are non-local (not over-
lapping with the true departure cell). Also, the flux-areas for all cells do not span
the domain Q. If the flow is constant (no deformation) the non-local part of the
flux-areas disappear as all the face-centered velocity vectors would be aligned.

If this inability of representing the local flux-areas (geometric error) is a signif-
icant source of error has not been investigated (as far as the authors are aware) and
the error would only show for challenging test cases with strong deformation. For
example, the widely used solid body advection test on the sphere would most likely
not expose this potential deficiency. An illustrative example of a highly deforma-
tional flow is given on Figure 8.11 that shows the Lagrangian (upstream) grid for
each cubed-sphere panel for one of the test cases in Nair and Lauritzen (2010). Even
for a relative short time-step (resulting in a maximum CFL number in each coordi-
nate direction of approximately 0.8) the upstream cells are highly deformed and they
might be challenging to approximate accurately using simplified fluxes unless very
short time-steps are used. It should, however, be noted that the geometric discussed
above will only show if it is larger than the reconstruction error. Consquently, the
geometric error is most likely not significant when using low-order reconstruction
functions (constant or linear reconstructions).

The potential non-locality problem described above can be resolved by instead
of using one face-centered vector (for the trajectories) per face, to use trajectories
for the vertices of the cell A; (Ranci¢, 1992; Lipscomb and Ringler, 2005; Yeh,
2007). This extra degree of freedom allows the flux-areas to deform into arbitrary
quadrilaterals. The equivalent upstream area now equals the Lagrangian area re-
sulting from connecting the upstream points with straight lines. This can be shown
as above by taking the sum of the areas involved in the forecast equation (8.32),
Fig. 8.10g.h,j k,i, with appropriate weights (signs). As for the Eulerian-Lagrangian
equivalence in the continuous case, discussed in section 8.4.3, this approximate flux-
form scheme is exactly equivalent to the approximate Lagrangian scheme discussed
above where the departure points are connected with straight lines (Fig. 8.101 and
Fig. 8.9b, respectively).

Improving the effective approximation to the upstream area further would in-
volve the introduction of more parcels that are tracked (as suggested by Lauritzen
et al 2010) or some approximation to the sides with curved lines. A cursory study
addressing the potential benefits of approximating the upstream areas with higher-
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Fig. 8.11 The static Eulerian grid (thin lines aligned with coordinate lines) and departure grid
(deformed thin lines) at the first time-step shown on the gnomonic projection on each cubed-sphere
panel for test case 1 of Nair and Lauritzen (2010) illustrated on Fig. 8.3 (time-step was chosen such
that the maximum CFL number is approximately 0.8). The departure grid has been constructed by
computing trajectories for the cell vertices and then the vertices are connected with straight lines
(great-circle arcs on the sphere).

order polygons was performed in Harris et al (2010) within the context of a flux-
form semi-Lagrangian scheme.

Dimensionally split flux-areas

A popular approach not discussed so far is to use a sequence of one-dimensional
operators to approximate the two-dimensional fluxes thereby eliminating the need
for solving a fully two-dimensional remapping problem. These methods are also re-
ferred to as dimensionally split approaches. A popular scheme based on this strategy
is presented in Lin and Rood (1996) and Leonard et al (1996).

In the present discussion on effective upstream areas, this operator splitting ap-
proach was analyzed by Lauritzen (2007) and Machenhauer et al (2009). When us-
ing dimensionally split approaches the effective upstream area is approximated with
a combination of rectangles aligned with the grid lines and with different weights
(see Machenhauer et al 2009). One-dimensional operators cannot represent areas
skew to the face in question. As an example of an operator splitting approach the ef-
fective departure area for the Lin and Rood (1996) scheme is given on Fig. 8.12 for
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Fig. 8.12 A graphical illustration of the effective departure area ¢ for the Lin and Rood (1996)
scheme using an analytic wind field which is deformational, rotational and divergent. The exact
departure cell is shown with thick black lines (and open circles as vertices). Light shading shows
the parts of the departure area where mass is weighted with 1/2 and dark shaded areas are weighted
with 1. See Machenhauer et al (2009) for details.

a flow that has a translational, deformation and rotational component (see Machen-
hauer et al 2009 for details).

In dimensional split schemes one can obtain preservation of a constant density
field in a non-divergent flow field. This property is harder to obtain with fully
two-dimensional semi-Lagrangian schemes but it is possible with cascade semi-
Lagrangian schemes (Thuburn et al, 2010).

8.5.1.3 Comment on area approximations

One might argue that the errors associated with some of the simplified flux- and
upstream- area approximations are not significant at least for orthogonal meshes. For
example, for semi-Lagrangian finite-volume schemes Lauritzen et al (2010) found
little difference between the rigorous upstream area approximation and simpler area
approximations using line-segments parallel to the coordinate axis.

On non-traditional meshes simplified fluxes might introduce significant inaccu-
racies. For example, considering a solid-body rotation flow field on the sphere on
a non-traditional grid such as the cubed-sphere grid, some of the Lagrangian areas
are highly deformed even though the flow field is non-divergent, non-deformational
and non-rotational. This is illustrated on Fig. 8.13. The Lagrangian cells entering
a cubed-sphere panel from neighboring panels are highly skewed compared to the
Lagrangian areas staying within the panel in question. Therefore the need for fully
two-dimensional area approximations for non-traditional grid applications seems
more evident than for orthogonal quadrilateral grids such as the regular latitude-
longitude grid. All of the above is, of course, assuming that the reconstruction error
is smaller than the geometric error which will most likely not be the case for first-
and second-order methods.
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(b) —

Fig.8.13 (a) Cubed-sphere grid shown with light shaded lines and panel edges with black lines. (b)
The upstream/departure grid (dashed lines) shown on a local (gnomonic) projection for one of the
cubed-sphere panels using the solid-body advection flow field (time-step is so that one revolution
is completed in 72 time-steps. The solid lines show the Eulerian static grid. The skewed departure
cells are cells entering from neighboring panels during the time-step. The parts of the departure
cells outside the panel have been ‘chopped off’. For an introduction to the cubed-sphere grid see,
e.g., chapter 9.

Velocity staggering and flux-areas

For the different flux-area approximations described above the velocity components
are needed at the center of cell faces (for parallelogram flux areas), cell vertices
(for the quadrilateral flux areas) or at multiple locations along the cell sides (for
higher-order polygon fluxes). To avoid any interpolation of velocity components
Arakawa B and E grid staggering (see chapter 3) should be used for quadrilateral
and parallelogram flux areas, respectively, whereas the higher-order polygon flux
inevitably will require interpolation of the velocity components (at least at a subset
of the points along the cell sides). The interpolation of velocity components can
potentially degrade the overall accuracy of the scheme (McGregor, 2005) and the
choice of variable staggering impacts wave propagation (when solving the air mass
continuity equation with the momentum equations) as discussed in chapter 3. Hence
the choice of flux-area approximation and variable staggering are ‘intertwined’ and
the choices impact not only the accuracy of the transport operator but also wave
propagation properties in full models as well as other properties such as the need
for filtering etc. (see, e.g., chapter 13 and 14). A exhaustive discussion of optimal
variable staggering and flux-area approximation is beyond the scope of this chapter.

8.5.2 Sub-grid-scale reconstruction

In the previous sections the geometrical approximation to the upstream areas and
flux-areas have been discussed. Next comes the actual integration of y(x,y) over
these areas, for which a sub-grid-scale reconstruction of the tracer field is needed.
We start by discussing reconstruction methods in one spatial dimension and then
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briefly discuss two dimensional extensions before covering the integration of v (x, y)
over overlap areas.

8.5.2.1 One-dimensional reconstruction functions

The sub-grid-scale reconstruction is vital for the overall accuracy and efficiency of
a scheme, and a thorough discussion is beyond the scope of this chapter. We will,
however, discuss some of the most widely used methods. In principle any function
could be used for reconstructions, however, the choice of reconstruction function
has consequences for any finite-volume scheme. Here are some desirable properties
for reconstruction functions that should be considered:

e Locality. Locality is generally desirable to maximize parallel efficiency; that is,
the stencil (or halo) used for the reconstruction in any cell should use only a
limited number of neighboring grid cells. The cells used in the reconstruction of
a given cell are referred to as the stencil of that cell.

e [ntegrability. The reconstruction function must later be integrated over overlap
areas and it is convenient to use functions that can be integrated exactly. If poly-
nomials are used, polynomials of successively higher degree will lead to more
computationally expensive schemes.

e Conservation. For Lagrangian finite-volume schemes mass-conservation of the
final algorithm requires the reconstruction function to satisfy the so-called cell-
averaged property; namely, integration of the reconstruction over the cell (8.28)
yields the known cell-average (for each prognostic variable). This requirement
is not strictly necessary for Eulerian flux-form schemes but, in general, leads to
more accurate reconstructions (Skamarock 2009; personal communication).

e Filterable. A scheme can be rendered monotone in the reconstruction step by
filtering the reconstruction function so that it is monotone. It may therefore be
desirable to use reconstruction functions that are amiable for such filtering. One
thing to consider, for example, is that higher-degree polynomial reconstructions
are more difficult to filter, since the number of possible extrema increases with
the degree of the polynomial. For flux-form Eulerian schemes one may also ren-
der the solution monotone a posteriori by adequately ‘mixing’ the (usually low-
order) monotone flux with the (usually higher-order) non-monotone flux (Zale-
sak, 1979). In the literature the a posteriori filtering is often referred to as limit-
ing. An excellent review on limiting is given in Durran (1999), and we make no
effort to try and reproduce it here. Certain reconstructions can also be used that
are inherently non-oscillatory by design, such as the class of (W)ENO schemes
((Weighted) Essentially Non-Oscillatory schemes), which generally do not re-
quire filtering or limiting.

e FExactness. A reconstruction algorithm is referred to as p-exact if it exactly repro-
duces a global polynomial of degree p (Barth and Frederickson, 1990). Generally
speaking, strict exactness constraints will lead to an increase in accuracy of the
reconstruction function.
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Polynomial reconstruction functions, mentioned a couple of times above, are a
popular choice in the literature and all properties discussed above can be conve-
niently dealt with using such a basis. Some work has been done on nonpolynomial-
based reconstruction functions (e.g. Norman and Nair, 2008; Xiao et al, 2002),
however, we will focus on the former here. A comparison of various reconstruc-
tion functions in the context of conservative cascade interpolation was tackled by
Norman et al (2009).

Reconstruction problem formulation (one dimension)

The one-dimensional reconstruction problem for a finite-volume scheme utilizing a
polynomial basis can be stated as follows: Given discrete cell-averaged values 9,

(@)

over cells Ay (here Ay refers to a 1D cell), determine coefficients ¢, ”,i=1,...,p, so
that o | )
lpk(x):clg)—i—c,({)x—i—c,({)xz—i—...—l—c,({p)x”, (8.37)

is an approximation to the underlying field ¢ in cell A;. As mentioned previously,
it is desirable that the reconstruction satisfies the cell-averaged property,

A Y (x)dx =P, Axy, (8.38)
k

where Ax; is the width of cell A;. In the context of semi-Lagrangian advection
schemes, this property is also referred to as the mass-conservation property.

In the cell-integrated continuity equation (8.18) 1 refers to either cell-averaged
air density p or tracer density p g, however, in the context of reconstructions it can
be desirable to reconstruction p and ¢ separately (as mentioned in section 8.4.1).
In particular when enforcing shape-preservation it may be convenient to apply the
filters/limiters to g and not p g (e.g. Nair and Lauritzen, 2010). Hence, for the dis-
cussion on reconstructions 1 can either refer to p, pg or q.

The Piecewise Constant Method (PCoM)

Perhaps the simplest sub-grid-scale representation is the so-called piecewise con-
stant method (PCoM), which simply uses

Y (x) =y (8.39)

This approach is attributed to Godunov (1959) and trivially satisfies (8.38), does
not need a halo, and is also inherently monotone since it cannot lead to new ex-
trema. This approach is also formally first-order accurate and highly diffusive when
used with any scheme over smooth flows and distributions. As a consequence, this
choice of reconstruction is considered too diffusive for atmospheric transport prob-
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lems (unless the flow is ‘rough’), and so we must turn our attention to higher-order
reconstructions.

Higher-order reconstructions

Note that by appropriately shifting the polynomial (8.37), we can always map A
onto the normalized interval x € [—Axy /2, Ax; /2] with centerpoint x = 0. By doing
so, the math behind the reconstruction is dramatically simplified, and so we will
hereafter assume that we are working over this domain. Further, we will assume
that the grid is uniform so that Ax; = Ax for all j. Reconstructions based on non-
uniform grids are generally a straightforward extension of the uniform case.

Perhaps the most intuitive method for determining the coefficients of (8.37) is to
use a Taylor series expansion about the center of the cell (x = 0),

a0 L (o Gl
I»Uk(x):wk|x:0+ (W)‘ _OX+§( 92 ) _0x2+...+ ( IxP )‘ _Oxl’

1
p!
+0[(Ax)PT] . (8.40)

By pairing terms of equal order, we obtain the association

P L
0 = 4, (0), c$=f< W)

il \ oxt

(8.41)

x=0

Since we do not know the exact value of vy or its derivatives, we must approxi-
mate these values using, for example, interpolated polynomials through known cell-
averaged values.

Note that one must be careful in choosing the correct approximations to these
derivatives to preserve high-order accuracy. Specifically, for (8.40) to be formally
O [(Ax)P] accurate, each of the derivatives d "1/ dx" must be approximated to order
O [(Ax)P~"], and ¢ (0) must be approximated to order &'[(Ax)?]. The rationale
behind this claim is as follows: When evaluating the reconstruction (8.40), each
of the derivatives 9”1y /dx" is multiplied by x”, which must satisfy |x|? < (Ax)P.
Hence, if 9"y /dx" is approximated to & [(Ax)" 7] then each term in the series
(8.40) is approximated to & [(Ax)?]. However, since ¥ (0) is not multiplied by any
power of x, it must be approximated to full order-of-accuracy.

Finite-difference approximations

On averaging the Taylor series (8.40) over a cell Ay, we obtain

1 Ax/2 _ 1 &2wk
= [ = w0+ 5 (S4)

(Ax)*+ 0 [(Ax)*].  (842)
x=0
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The left-hand-side of this expression is simply the cell average 1, which is known
in a finite-volume context. The first term on the right-hand-side is the value of vy (x)
evaluated at the cell-centerpoint and it is followed by higher-order terms. Hence, we
can conclude that o, is a & [(Ax)?] approximation to the value of 1 (x) evaluated at
the centerpoint. This result implies that if we utilize finite-difference approximations
to approximate derivatives of any order at x = 0, such approximations will only be
valid up to & [(Ax)?] in a finite-volume context.

The simplest finite-difference approximation is the piecewise-linear method

(PLM), given by
- Yk
Ye(x) =P+ | —— X, (8.43)

x=0

ox

(van Leer, 1977) where dv;/dx is at least a first-order-accurate approximation to
the derivative at x = 0. Some choices include an upwind discretization,

Ik W P
( % ) = Ax + O (Ax), (8.44)
x=0
or a centered discretization
Yy _ Wke1 — Wi 2
( o > T + 0 [(Ax)7]. (8.45)

Either choice will lead to a scheme which is formally second-order accurate. Larger
stencils can be chosen for the approximations to these derivatives, but they can
only lead to reconstructions that are at most second-order-accurate. Nonetheless,
with larger stencils total accuracy may improve significantly even though the for-
mal order-of-accuracy will not.

The linear reconstruction drastically improves the error measures of finite-volume
schemes, when compared to PCoM. This result is illustrated in Fig. 8.14 in terms
of a von Neumann stability analysis of a finite-volume scheme based on PCoM and
PLM (using the centered approximation (8.45)). In many large-scale atmospheric
models PLM is still considered too diffusive and therefore even higher-order recon-
structions are often considered.

Finite-difference schemes can also be utilized to obtain a third-order reconstruc-
tion, even in a finite-volume context. Rearranging (8.42), we can obtain an expres-
sion for the centerpoint value 14 (0),

2 /92
Y (0) =9 — (A24) <aa;ﬁ">

+0[(Ax)*], (8.46)
x=0

which is a fourth-order-accurate approximation to the pointwise value of ¥4 (0), as
long as 9?1 /dx* is approximated to at least & [(Ax)?|. Combining this approxi-
mation with (8.40), we obtain a third-order (parabolic) reconstruction
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Fig. 8.14 The stability properties (see section 8.3.3 and/or Lauritzen 2007) of a one-dimensional
finite-volume scheme based on PCoM (grey line) and PLM (black line), respectively. Note that
in one dimension all finite-volume schemes discussed in this chapter are identical when using the
same reconstruction method. (a) Squared modulus of the amplification factor (|I"P) as a function of
Courant number (x-axis) and wavelength L (y-axis). Hence (a) shows how much each wavelength
is damped in one time-step as a function of Courant number. For a fixed Courant number u the
damping decreases monotonically as a function of wavelength L and limy, .o [I’ \2 = 1. For Courant
number 0 or 1 the scheme is exact and hence |I” \2 = 1. (b) Same as (a) but for the relative phase
speed (R), that is, how much each Fourier mode is accelerated or decelerated as a function of
Courant number.

Wk(x)=@k+<aw"> x+%<a2w") <x2_%>+ﬁ[mxm7
=0 =0

dx dx?
(8.47)
when combined with simple finite-difference approximations of the form (8.45) and

(02%) _ Vi1 =29+ Py

-3 (A2 +0[(Ax)?]. (8.48)

x=

In fact, it can be quickly verified that (8.47) also satisfies the cell-averaged property
(8.38). This method has the highest formal order of accuracy that can be obtained
by treating finite-volume methods in a finite-difference context. This choice of re-
construction was used by Laprise and Plante (1995).

Finite-volume approximations

To obtain approximations higher than third-order in accuracy, we must first take a
step back and understand how finite-volume methods are formulated. First, recall
that finite-volume methods use cell-averaged values, which implies that the under-
lying scalar field is not known point-by-point. Instead, it is cell-averaged values that

are known exactly
1 Ax/2

Y= / Yy (x)dx. (8.49)

Ax J-ax)2
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Hence, in the context of finite-volume methods, high-order sub-grid-scale recon-
structions cannot be interpolated through specific points (as with finite-difference
methods), but must instead satisfy certain cell-averaged properties.

To build a reconstruction that utilizes cell-averages, one generally defines a cu-
mulative mass function W (x) via

W(x) = / Wi (F)d, (8.50)
X—j—1/2

where x;_; 1/, denotes the left-side edge of cell A;_ ;. Now, observe

W(xi_j—1/2) =0,
W(xk—jy1/2) = Ax (kaj) ,

W(xx_jy32) = Ax (@7,*%7#1) ;

Over such a set of consecutive cells one can then define an interpolating polyno-
mial of degree m that approximates the exact cumulative mass function W (x). We
denote this approximation by W (x). Finally, we observe that in accordance with the
fundamental theorem of Calculus, differentiating (8.50) gives

) = Wil 8.51)
By evaluating the first derivative of W (x) at a given point, we actually obtain a
O [(Ax)™'] approximation to the underlying field ¥ (x) from its cell-averages.
This method can then be used to reconstruct ¥, (x) at any point and, by taking addi-
tional derivatives of W (x), its corresponding derivatives.

Alternatively, one can obtain an identical reconstruction by enforcing the cell-
averaged constraint on an interpolating polynomial in neighboring cells (Zerroukat
et al, 2002). That is, a polynomial 9 (x) of degree p that exactly satisfies the mass-
conservation constraint not only in cell k but also in p adjacent cells:

Xj+1/2 o . p p
dx =7 A =k—%) .. (k+% 8.52
/le/z B@dr=7ax, j=(k=2). (k+2), (852)
for p even and
RIARTEIPN — . +1 —1
/ a Ye(x)dx = ;Ax, j= (k—pT> . (k+ pT) (8.53)
Xj—1/2

for p odd.
Either method will yield an identical reconstruction (W (x) = §j(x)), although
the latter is more adaptable to two dimensions and beyond.
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If we utilize the aforementioned procedure over a 3-cell stencil (consisting of
cells k— 1,k and k+ 1), we will exactly obtain (8.45), (8.46) and (8.48). However,
beyond 3 cells, the finite-difference and finite-volume reconstructions will differ
substantially. For instance, over a centered 5-cell stencil, we obtain approximations

0P, ,— 116, | +2134y, — 116y, ., , + 99,
Pe(0) = Pk=2 k=1 1920k k-1 k+2+ﬁ[(Ax)6}7
_ Wy =34y 3Py — SWkin

(%)

High-order reconstructions of this type were adopted for a shallow-water model by
Ullrich et al (2010).

48 Ax ud {(Axﬂ ’

x=
etc.

Symmetric finite-volume schemes

In all the methods so far discussed, we have not touched on the issue of continuity
between cells. In fact, all of the methods we have described so far do not enforce
any sort of continuity between reconstructions in neighboring cells.

As we have seen so far, as the order of the reconstruction polynomial is increased,
more options for how to approximate the coefficients c,((’) are available. Continuity
at edges can be enforced (over an arbitrary scalar field) if we adopt a reconstruction

that is at least parabolic, i.e.
Yr(x) = c,io) + c](cl)x + c,(f)x2. (8.54)

Since we have three degrees of freedom in this polynomial, we can choose to en-
force Yy (—Ax/2) =yl and yy(Ax/2) = Y, where Y} and yf are reconstructed
values at the left- and right- edges, respectively. These are purposely chosen to be
consistent between neighboring cells, which gives us the desired continuity restric-
tion. With our remaining degree of freedom we enforce the cell-averaged condition
(8.38).

This scheme is the well-known piecewise-parabolic method (PPM) of Colella
and Woodward (1984). To obtain edgepoint values 1 kL and lplf, PPM makes use of
the finite-volume formulation discussed earlier, taken over four cells and evaluated
at the cell edgepoint, which gives

7 _ 1 _ _
W = @+ i) = 5 W W) +O[(A01], 859)

(also see Zerroukat et al (2002)) and v kL+1 = lp,f. In terms of the coefficients c](:),

this reconstruction can be written as
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Fig. 8.15 Reconstructions for the irregular signal of Smolarkiewicz and Grabowski (1990, blue
line) using the (a) piecewise-linear method (PLM) and (b) the piecewise parabolic method (PPM)
with reconstruction function filter (grey) and without (red). The filter for PLM is the MINMOD
limiter (see text) with theta=1 and the PPM limiter is the original filter presented in Colella and

Woodward (1984).

1 _ _ _ 1, _
c,(f) = 207 [—5% 3 + P y) — 3 (‘Pk+2+wk—2)} '
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Fig. 8.16 Same as Fig. 8.14 but for PPM using different estimates for the edge values (solid lines)
as well as PPM-s (dashed line). PPM-s is the sub-grid-cell reconstruction method based on the
method of Laprise and Plante (1995), that is, using (8.52) with p = 2 to determine the sub-grid-cell
reconstruction function.

All of the coefficients c,((l) in this case approximate yy(x) and its derivatives to
o [(Ax)*].

The approximation to ,f‘ in (8.55) and lp,f are fourth-order accurate for uniform
grids. Obviously, one could also derive second, third, fourth, fifth or sixth-order
accurate estimations by fitting a linear, parabolic, cubic, quartic and quintic poly-
nomial so that (8.50) or (8.52-8.53) is satisfied in 2, 3, 4, 5 and 6 adjacent cells,
respectively. We will refer to PPM based on second, third, fourth, fifth-order edge
value estimates as PPM2, PPM3, PPM4, PPMS5, respectively. In this context PPM
and PPM4 refer to the same reconstruction.

In terms of p-exactness the edge estimates must be at least third-order for the
PPM to exactly reconstruct a global parabola. Hence PPM2 is not p-exact (p=2)
whereas PPM3, PPM4, and PPMS5 are. It is noted that PPM4 is significantly more
accurate than PPM3 in terms of a Von Neuman stability analysis (Fig. 8.16) whereas
PPMS5 only gives modest increases in accuracy. Obviously PPM5 needs a larger halo
than PPM4. As a consequence, the potential increase in cost associated with the use
of larger stencils has likely been a significant factor in determining the widespread
adoption of PPM4 over these other schemes. More discussion on edge-value esti-
mates is given in White and Adcroft (2008).

One could naturally ask the question why should one not use the highest-order
polynomial that can be approximated with a given halo (stensil)? For example, the
cubic polynomial used to estimate the edge value in PPM4 could be used as the
reconstruction function, Y (x) = ¢y (x). While this might improve the accuracy of
the scheme, it will make filtering and integration over overlap-areas more cumber-
some and computationally expensive, as compared to sticking to a parabola with
high-order edge-value estimates (PPM4).

Reconstructions based on polynomials of degree higher than 2 have been pro-
posed in the literature but have not been widely adopted in transport schemes as of
the time of writing. Zerroukat et al (2002) introduced a symmetric piecewise-cubic
method (PCM), along with advanced filtering techniques (Zerroukat et al, 2005),
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Fig. 8.17 Same as Fig. 8.16 but for PQM.

and White and Adcroft (2008) proposed a symmetric piecewise-quartic method
(PQM) based on polynomials of degree 4. As for the PPM the edge-value estimate
is paramount for the accuracy of the scheme (see, e.g., Fig. 8.17). However, even
for the most accurate PQMG6 the increase in accuracy (in terms of a Von Neumann
analysis) is modest compared to PPM4 given the increase in the halo size. Also to
consider is that polynomials of degree 3 (PCM) and 4 (PQM) can have 2 and 3 ex-
trema within a grid cell making it harder to filter such polynomials compared to a
(relatively low-order) parabola.

Piecewise quadratic splines.

An interesting variant on the reconstruction methods discussed so far, and also based
on parabolas, is the piecewise quadratic spline method (Zerroukat et al 2006) and
higher-order extensions such as those presented in Zerroukat et al (2010). Instead
of only enforcing C° continuity across cell edges also the first derivative of the
reconstruction is constrained to be continuous, i.e. the reconstruction is C ! across
cell edges. Enforcing continuity in the derivatives of the reconstruction functions at
cell boundaries results in an implicit system of equations for the polynomial coeffi-
cients. When written in matrix form, however, the matrix that needs to be inverted
has a tri-diagonal form.

In idealized test cases using the scheme of Zerroukat et al (2002) the piecewise
spline reconstruction method is superior to PPM while being 40% more efficient in
terms of number of operations (Zerroukat et al, 2007). The price to pay, in terms of
a parallel computational environment, is that splines are inherently global since the
inversion of a global tri-diagonal matrix is necessary.

Essentially non-oscillatory (ENO) reconstructions.

Essentially non-oscillatory reconstructions were originally developed by Harten
et al (1987) for shock hydrodynamics problems. This approach is particularly in-
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teresting since it leads to a reconstruction that is (under most circumstances) mono-
tonic and positive. The ENO scheme works by applying either a finite-difference
or finite-volume approach (as discussed earlier) on a variety of stencils. The recon-
struction that satisfies some least-oscillatory property, among all possible stencils,
is then chosen to give the ‘true’ reconstruction. The main drawback of this approach
is that it requires a large stencil in order to obtain the same order of accuracy as
‘vanilla’ finite-difference or finite-volume methods.

Least-squares

The least-squares technique is one of the few approaches available for obtaining
approximate reconstructions on unstructured grids. Under this method, we intro-
duce some quantification of the misfit between the reconstruction (8.37) and the
known cell-averages, usually given by the square of the difference between the cell-
averages of the reconstruction and the known cell-averages. The misfit is then min-
imized over all possible reconstructions in order to give the “best possible” recon-
struction. An example of a Cartesian finite-volume scheme on an unstructured grid
based on the least-squares technique can be found in Barth and Frederickson (1990).

One-dimensional reconstruction limiters/filters

As discussed in section 8.3.6, it is desirable that a transport scheme utilizes phys-
ically realizable reconstructions. There are two ways to achieve this goal, either
a priori by filtering the sub-grid-cell reconstruction function so that it only takes
physically realizable values, or a posteriori by limiting prognosed cell averages or
by altering the fluxes individually. In the context of an upstream semi-Lagrangian
scheme flux-limiting is obviously not an option. For Eulerian schemes one may ap-
ply a priori filters or flux-limiters to provide physically realizable solutions. A priori
filters are also referred to as slope-limiters as they act directly on the sub-grid-scale
reconstruction function.

The PLM, usually based on (8.44) or (8.45), may violate monotonicity as illus-
trated in Fig. 8.15(a). Monotonicity can be enforced by replacing the reconstructed
derivative with some weighted average of the upwind and downwind approxima-
tions. Many such combinations exist, including MINMOD, Superbee (Roe, 1985),
and monotone central (van Leer, 1977),to name a few (see, for example, Toro 1999).
It is beyond the scope of this chapter to provide a comprehensive review of these
filters but they all seek to blend the derivative estimates, as hinted above, to obtain
the least diffusive monotone solution.

As illustrated on Fig. 8.15(b) PPM4 is also non-monotone without the applica-
tion of filters. The seminal paper of Colella and Woodward (1984) constrains the
reconstruction so that the entire sub-grid-scale reconstruction is bounded by the
cell-averages of the neighboring cells (or is reduced to a constant when the recon-
struction is a local extrema). See Figure 8.15(b) for an example. This technique for
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filtering the reconstruction has the tendency to “cut off” or flatten smooth, physi-
cal maxima and minima. Several approaches have been proposed to retain physical
extrema while filtering out spurious grid-scale noise (see, for example, van Albada
et al (1982),Zerroukat et al (2005), Liu et al (2007) and Colella and Sekora (2008)).
If miniscule over- and undershoots can be tolerated, less invasive filters can be de-
signed using (W)ENO-type methods where the user-specified filter is applied only
when a smoothness metric exceeds a certain threshold (Blossey and Durran, 2008).
Achieving high-order accuracy and physical realizable prognosed values (mono-
tonicity) is very challenging and deserves a chapter on its own for a comprehensive
discussion. We will not discuss reconstruction filtering further, although it has pro-
found impact on the diffusion and dispersion properties of a scheme at small scales.

8.5.2.2 Two-dimensional reconstruction functions

Two-dimensional reconstructions can be obtained using nearly direct generaliza-
tions of the methods presented in section 8.5.2.1. In fact, for second-order accurate
schemes that use a linear reconstruction the linear derivatives can be calculated in
each direction independently (dimension-splitting).

Reconstruction problem formulation

The two-dimensional reconstruction problem for a finite-volume scheme utilizing
a polynomial basis is analogous to the one-dimensional case: Given discrete cell-
averaged values 1, over cells Ay, determine coefficients cd) i+ Jj<p(iand jare
0 or positive integers), so that

wley) = 3 oy, (8.56)
i+J<p

is an approximation to the underlying field vy in cell A. The cell-averaged property
in two dimensions then reads,

| wileyda =T aa. (8.57)
k

Again we can choose to shift the reconstruction so that, for simplicity, A; has a
centroid located at (x,y) = (0,0).

Piecewise Constant Method (two dimensions)

The extension of the PCoM to two dimensions is trivial, given by

Yr(x,y) = ;. (8.58)
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This scheme suffers from the same deficiencies as discussed in the one-dimensional
case, and so is not discussed further here.

Piecewise Linear Method (two dimensions)

The two-dimensional piecewise linear reconstruction can be written as

0) (0,1

W) = P+l Vx4 Oy, (8.59)

Any choice of c,(: 9 and clgo’l) will yield a mass-conservative reconstruction and, as

with the one-dimensional PLM, c](cl’0> and clgo’l) correspond to the components of

the gradient along each coordinate direction at the cell centroid,

(10) (0%)

o ==
ax
0

0 — (ﬂ)
dy

For this method, the gradient can be limited as in the one-dimensional case (see,
e.g., Dukowicz and Baumgardner, 2000).

Y

(x.)=(0,0)

(x.)=(0,0)

High-order reconstructions (two dimensions)

True third-order and higher schemes require some method of incorporating cross-
derivatives in order to be formally third-order accurate. For example, a true third-
order parabolic reconstruction could make use of a reconstruction of the form

(1,0) (0,1)

Yr(x,y) =P+ xtey (8.60)
2 2
20 (2 (Ax) (L1) ©02) (2 (4y)
+cy (x D +cp Xyt y = D )
where c(l’0>, c](((“)’ c,(f’o), c(o,z)’ and c,((l’l) are obtained by again approximating the

derivatives of 1. Note that ¢09) does not equal the cell average P but includes
more terms to ensure the mass-conservation property. Extensions of this form are
described in Nair and Machenhauer (2002) and Ullrich et al (2010). It has been
shown that the loss of accuracy attributed to neglecting the cross-derivative term
Y can be large, but is less significant on grids of low resolution (Lauritzen et al,
2010).
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Piecewise Parabolic Method (two dimensions)

A rigorous extension of the PPM method introduced by Colella and Woodward
(1984) would require the fully two dimensional biparabolic polynomials to be con-
tinuous across cell-borders at selected points and/or in some average sense.

One such extension was developed by Ranci¢ (1992), who chose

P(x,y) = $2(y) x> + d1 () x + o (y), (8.61)
where
P (y) = d02y” + P01y + oo, (8.62)
$1(y) = ¢125” + d11y + duo, (8.63)
$(y) = ¢225” + 21y + $20. (8.64)

This reconstruction has nine degrees of freedom, which are restricted by satisfying
(i) the cell-averaged constraint (8.57) in cell k, (ii) equal average values along each
of the four edges of the quadrilateral cells, and (iii) continuity at the corner points
of each cell. These restrictions lead to 9 constraints, and hence define a unique
reconstruction. Note that the reconstruction is not globally continuous. We refer to
Ranci¢ (1992) for further details on this algorithm.

Extensions to irregular grids

All of the methods described above are tied to quadrilateral (orthogonal) meshes
and the extension to triangular, hexagonal and other grids where the cells do not
have exactly four vertices, is not obvious. The authors are not aware of any rigorous
extensions of PPM to such grids where continuity across cell borders is enforced.
In this case enforcement of the cell-average property is more difficult, and requires
special treatment of the parabolic terms. For instance, we must have

c/((o,o) _ wk_i_cl((z,o) {xz _m](cz,())} +c}((o,z) [yz _ m/((o,z)} NIPACRY {xy_ml((l,l)} | (8.65)

(Ullrich et al, 2009) where m](:’j ) are the area-averaged higher-order moments

m, A4, Akxy )

Approximation of the derivative terms may be difficult on irregular grids. For
grids where finite-difference approximations to the derivatives are not obvious to
compute, as is the case for completely unstructured grids, one might use a two-
dimensional extension of the Laprise and Plante (1995) method. That is, enforce the
mass-conservation constraint not only in cell £ but in a set of adjacent cells. For grids
in which cell k£ has a variable number of adjacent neighbors this approach may not
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be optimal. In such cases a least-squares approach might be a more natural choice
to avoid biases introduced by excluding some adjacent cells and not others. When
using a least squares method one may chose to optimize the approximation to the
coefficients not just to mass-conservation in adjacent cells but also to p-exactness
for example (see, e.g., Barth and Frederickson, 1990).

Two-dimensional limiters / filters

Reconstruction function filtering in two-dimensions is significantly more compli-
cated than in one dimension, simply because a two-dimensional polynomial of de-
gree 2 (a parabolic reconstruction) can possess an extrema within a cell, along a
cell boundary, or at a corner-point (all of which must be checked). Hence, filter-
ing comes in two flavors: Dimensionally split filtering and fully two-dimensional
approaches.

The dimensional split approach simply applies the one-dimensional filters pre-
sented in section 8.5.2.1 in each coordinate direction. However, by doing so the
entire reconstruction 1 is not guaranteed to be monotonic within A . Specifically,
there are no guarantees of monotonicity at cell corner-points where the reconstruc-
tion in each coordinate direction is additive (Lauritzen et al, 2006).

Strict monotonicity at all points within a cell can be guaranteed using the fully
two-dimensional approach of Barth and Jespersen (1989), which can also be applied
to unstructured grids. This filter guarantees strict monotonicity of linear reconstruc-
tions by first determining where a given linear reconstruction has extrema (this is
typically the cell corner-points), and then rescaling the linear derivatives so that
the linear reconstruction is monotonic with respect to its neighbors. This approach
was also extended to parabolic (third-order) reconstructions by Ullrich et al (2009),
which applies rescaling to both linear and high-order derivatives. If strict mono-
tonicity is not necessary, a WENO-type criterion can be used to identify places
in which a filter should be applied. An extension of the one-dimensional WENO-
filtering in Blossey and Durran (2008) can be found in Harris et al (2010).

For flux-limiting the most widely used method is flux-corrected transport (FCT)
introduced by Zalesak (1979). As in one dimension it seeks to find the optimal
“blending” of a monotone flux and a high-order non-monotone flux. FCT is de-
scribed in detail in Durran (1999) and hence not repeated here.

8.5.3 Practical integration over areas

For the approximation of the overlap integrals in (8.26) and (8.33) we have only dis-
cussed how to approximate the overlap areas and how to do reconstructions so far.
It remains to be shown how to go about integrating the sub-grid-scale reconstruc-
tion function over that area. If the sides of the overlap areas are aligned with the
coordinate lines, direct integration is usually straightforward since the integrals ef-
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fectively reduce to one dimension (see, for example, Nair and Machenhauer (2002)).
However, if the overlap area is allowed to be an arbitrary polygon the integration is
more involved. There are basically two approaches that exactly integrate polynomial
functions over polygons. Firstly, direct integration over overlap areas using Gaus-
sian quadrature. Secondly, the area-integrals can be converted into line-integrals via
Gauss-Green'’s theorem.

Both of these approaches are discussed below. We assume that the overlap cell
sides are straight lines with arbitrary orientation and that the overlap area ayy is
simply connected. This is the most general case. Mathematically the problem is
stated as follows: Given a reconstruction function in cell A, which is a polynomial,
say of order 3,

Py = 3 ey, (8.66)
<2

where cé” ) are reconstruction coefficients, compute the integral

/ Ye(x,y)dA. (8.67)
gy

8.5.3.1 Direct integration using Gaussian quadrature

For the direct integration using Gaussian quadrature it is often convenient to break
up ayy into triangles which is the case we will discuss here. So, for simplicity, sup-
pose the overlap area is already an arbitrary triangle '® with vertices located at x; ,,
Yien, h =1,2,3, and numbered counter-clockwise. Exact integration of the poly-
nomial (8.66) can be achieved using Gaussian quadrature which approximates the
integral in terms of a weighted sum of functional evaluations at quadrature points.
The quadrature points are

(X;EZ) 7}’;({2)) = & (4xk,1 + Xko 2 + Xk 3,400 + Yie 2 + Vie3) (8.68)
by (b

(x/((g) 7)’/(([)) = & (v + A%k + X3, Yke,1 + BV + Vie3) (8.69)

(xl(fé) %E?) = L (xke,1 X002 + 4%k 3, ko1 + ke +4Vke3) - (8.70)

(Dukowicz and Baumgardner, 2000) and the integral of v (x,y) over the overlap
triangle ayy is given by

Aa a a c c
| weteyraa= =2 Tl o)+ vl o) + el o] 1)
[

where Aayy is the area of ayy

1
Aay = 5 [(xke2 = xke,1) kes = Yeen) — ke — yeet) (ee3 —xken)] - (8.72)

18 note that any area with straight line sides can be broken up into triangles
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Note that the quadrature points only have to be computed once for each overlap
area and can then be re-used for each additional tracer (since all tracers follow the
same trajectories/areas). For flux-form transport schemes efficient algorithms can
be designed that decompose the overlap areas into triangles if the flux-areas are
confined to nearest neighbors (Dukowicz and Baumgardner,2000). For longer time-
steps where the flux-areas may span several Eulerian cells not sharing a face with the
flux-face, the decomposition into triangles is more complicated. In such situations
it may be more convenient to use the line-integral approach described next.

8.5.3.2 Converting area-integrals into line-integrals

This approach was originally introduced by Dukowicz (1984) and Dukowicz and
Kodis (1987) in numerical schemes: For the simply connected overlap area a 4 (not
necessarily a triangle but any polygon) the following integral equation holds,

] witey)daa=§ pav+oa, 8.73)
aky dagy

where dayy is the boundary of ay,. The potentials P = P(x,y) and Q = Q(x,y) are
chosen such that they satisfy

JP 90

0_y + ax Po(x,y).

The integral of the polynomial reconstruction function y,(x,y) in (8.66) can be
written as

/ wley)da= 3 oMl (8.74)
Gt <2
where cy’j ) are the reconstruction function coefficients and w,((iéj ) are weights given

by
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and
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00 _ 1 G 8.75
Wi —Eh (xké,h+xk[h—1)(ykl.h_yké,h—l)a (8.75)
=1
Ny
w(l’o) = l 2] (x2 + XpppX +x2 )( — ) (8.76)
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Ykt (Ko + 2%k 0%k n—1 + 3%k p1) ]

(Vke.h — Yrep—1) }, (8.80)

(Xke > Yien)s h=1,...,Ny (8.81)

are the coordinates for the sides of the overlap area a ;, numbered counter-clockwise.
So N, = 3 for triangular overlap areas, N, = 4 for quadrilateral ay,’s etc. Note that
Xkt h—1>Yke,n—1) and (Xge 1, Yie,n) are contiguous points (defining a line segment) and
the index £ is cyclic so that h = 0 equals & = Nj,.

(i.)

The weights w;,”’ given in equations (8.75-8.80) have been derived by using
(8.73) with the following pairs (P(i’f), Q(i*j))

( pOO _ ¢ 000) — x) 7
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The choice of P and Q is not unique and can often be chosen for convenience. Here
we haven chosen P and Q as in Bockman (1989). Note that the integration of the
polynomials is exact.

Using the line-integral approach the final discretized transport scheme in La-
grangian and Eulerian form can be written as

Lk Lk .. ..
T AA, = / we(x,y)dA = i) | (8.82)
k k 21 » e 21 E 14 kt

i+j<2
and
1 4 | L 4 | L ) (i)
— — — i i,
T AA =T AN [2 Fo| =WiAA+Y ; > w0 g
=1 [ =1 =1 | =1 [i+7<2
(8.83)

respectively, where the individual overlap fluxes are written as

Fo =S, / ilxy)dA. (8.84)

ke

For each overlap area the sign-function s, is +1 for inflow and —1 for outflow. The
subscript £ in s} is added to handle situations where there is both inflow and outflow
for a face (see Harris et al, 2010, for details).

It is worth noting the separation of the weights w(l/ ) from the reconstruction co-
efficients cé” ) in (8.82) and (8.83). In practice this separation implies that once the
weights have been computed they can be reused for the integral of each additional
tracer distribution. Hence the transport of additional tracers reduces to the multipli-
cation of precomputed weights and reconstruction coefficients.

8.5.3.3 Extension to spherical geometry

Extending the aforementioned approaches to spherical geometry generally com-
pounds the complexity of the problem, since extra care must be taken when metric
terms are present. So instead of having interpolate a polynomial a more complicated
function must be integrated

[ step)utapidadp, (885)
[0

where (o, 3) is the coordinate for the computational space chosen for the integra-
tion' and g(a, B) is the metric term. For example, if one chooses geographic co-
ordinates (a, ) = (A,0), where A is the longitude and 0 is latitude, and then the

19 for simplicity we only consider two-dimensional computational spaces although one may also
use three-dimensional Cartesian coordinates for horizontal problems on the sphere
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metric term is g = R” cos(0) where R is the radius of the Earth. So instead of hav-
ing to integrate a polynomial a much more complicated function must integrated.
In general, exact integration is no longer possible as was the case in Cartesian ge-
ometry. There are, however, some special cases where direct integration is possible
(discussed below).

The choice of coordinate system in which the integration is performed has impli-
cations on how the sides of a;, are approximated on the sphere and how accurate the
reconstruction is. Here we will focus on the former. In Cartesian geometry the most
general approximation to cell sides seems to be straight lines. The spherical exten-
sion of that is to approximate cell sides with great-circle arcs which seems the most
general and accurate approach (at least in the case where the Eulerian cells are con-
structed from great-circle arcs). Hence, in the following we assume that great-circle
arcs are the most accurate approximations to ay.

In the widely used Spherical Coordinate Remapping and Interpolation Pack-
age (SCRIP) proposed by Jones (1999) the sides of a;, are approximated with
straight line segments in latitude-longitude coordinates (i.e. line segments of the
form 6 = aA +b). So for sides that are parallel to longitudes (which are great-circle
arcs) and latitudes (which are small circle arcs) the representation of the cell sides
is exact. However, for any other orientation it is not. While the error in cell side
approximation is small near the Equator the errors may become significant in the
polar regions (see Fig. 9 in Lauritzen and Nair (2008)). A way to alleviate this prob-
lem is to rotate the overlap area to the Equator. Using Gauss-Green’s theorem the
integration here can be performed exactly whereas direct integration using Gaussian
quadrature will not be exact due to the metric term.

An alternative approach is to use the gnomonic coordinate as the computational
space. The gnomonic projection was designed so that connecting any two points
with a straight line in that computational space will mirror a great-circle arc on
the sphere. Another beneficial property of this computational space is that exact
integration of (8.85) is possible along coordinate lines in the gnomonic coordinate
system when applying the Gauss-Green’s theorem (Ullrich et al, 2009). For lines not
parallel to the coordinate lines the potentials that need to be integrated in the line-
integrals can be evaluated/approximated using one-dimensional Gaussian quadra-
ture (Lauritzen et al, 2010). Again, direct integration will always be inexact due to
the gnomonic metric terms.

8.6 Extension to three dimensions

The discussion so far has been limited to two spatial dimensions and we will only
briefly discuss three-dimensional schemes, as a more thorough discussion would
need at least a chapter on its own. There are basically three ways of extending
schemes to three dimensions which we will discuss separately below.
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Prop

Topography ) A

Fig. 8.18 A graphical illustration the floating Lagrangian coordinate. The vertical coordinate is
pressure. pg and py,)p is the pressure at the surface and model top, respectively. The dashed lines
is the reference Eulerian grid and solid lines are Lagrangian surfaces resulting from letting the
Eulerian levels evolve in time, and require a periodic remapping.

8.6.1 Floating Lagrangian vertical coordinate

The floating Lagrangian coordinate was introduced in a theoretical context by Starr
(1945) and first applied in discretized models over half a century later (e.g. Lin,
2004; Lauritzen et al, 2008; Nair et al, 2009). Instead of using vertical coordinates
based on height or pressure, a vertical coordinate C that is constant along three-
dimensional parcel trajectories is used

€ _o

= 8.86
7 (8.86)

(see Fig. 8.18). The benefit of using such a vertical coordinate is that the vertical ad-

vection terms in the equations of motion are eliminated and only two-dimensional
transport/advection operators are necessary. The downside, as with any other La-
grangian approach, is that the vertical coordinate deform as the flow evolves. In
order to avoid overly deformed vertical coordinates a remapping of the prognos-
tic variables in the vertical to some reference vertical coordinate is necessary. This
may be a source of vertical diffusion in the model. Note that isentropic vertical co-
ordinates are a subset of floating Lagrangian vertical coordinates as they are also
material surfaces for adiabatic flow.
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8.6.2 Operator splitting

Using a cascade finite-volume scheme (flow based splitting) or Eulerian opera-
tor splitting the extension to three dimensions can be made less costly than when
using fully three dimensional approaches simply because they require only one-
dimensional operators. Eulerian type operator splitting use a combination of oper-
ators applied along coordinate lines (see, e.g., Pietrzak 1998). In such approaches
errors due to the coordinate splitting (also referred to as splitting error) will appear
if care is not taken to alleviate them. Various methods for reducing the splitting error
have been proposed (e.g., Strang 1968, Lin and Rood 1996). The traditional Eule-
rian type operator splitting approach may be referred to as a fixed direction based
splitting method as opposed to the flow-based splitting approach discussed below.

More recently the finite-volume cascade approach was suggested by Nair et al
(2002) and Zerroukat et al (2002) which uses a combination of Eulerian and La-
grangian operators, that is, the operators are successively applied along coordinate
lines and Lagrangian lines, respectively. So rather than being a fixed direction based
splitting method it is flow-based (for a review see Machenhauer et al 2009). Since
the splitting is flow-based the splitting error is reduced. Note that one may use the
cascade approach to extend fully two-dimensional methods to three dimensions by
applying a cascade sweep in the vertical based on the horizontally transported val-
ues.

8.6.3 Rigorous three-dimensional approach

Fully three-dimensional schemes based on the space-time finite-volume approach
discussed in this chapter are rather complex. Instead of having to deal with overlap
areas (as discussed in this chapter) one has to compute overlap volumes which is
significantly complicating the problem. Examples of fully three-dimensional remap-
ping algorithms are given in, e.g., Garimella et al (2007) for Cartesian geometry.
The authors are not aware of any fully three-dimensional finite-volume remapping
schemes on the sphere.

8.7 Time-integration and tracer transport

If all models would use the same numerical method for tracer transport as used for
the continuity equation for air, and if those would always be solved by using the
same time-step, then this section would be irrelevant. Most models, however, use
one of the following three approaches: Either they use different schemes for air and
tracers, use different time-step size for air and tracers (but explicit time-stepping for
both) or semi-implicit time-stepping is used for air and explicit time-stepping for
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tracers (and both use the same time-step). All of these approaches potentially have
consistency problems as discussed separately for each approach below.

8.7.1 Different schemes air and tracers

If different schemes are used for air and tracers consistency cannot be achieved
other than with fixers that enforce consistency in a ‘ad hoc’ and somewhat arbitrary
manner. See section 8.3.4 and references therein.

8.7.2 Different time-steps for air and tracers (sub-cycling,
super-cycling)

Given the increase in the number of prognostic tracers in atmospheric models, sig-
nificant computational cost savings can be obtained by using a longer time-step for
tracers than for the solution of the air continuity equation. As discussed in section
8.2.2 the maximum allowable time-step that can be used for the solution of the equa-
tion for air density (when using explicit time-stepping) is determined by the fastest
wave in the system, since the continuity equation for air is directly coupled to the
other equations of motion. The continuity equations for tracers, however, are not di-
rectly coupled (at least in terms of stability) to the momentum and thermodynamic
equations and therefore have less restrictive time-step limitations. So a stable and
more efficient integration scheme can be designed by sub-cycling the solution of the
air density equation with respect to the tracer equations. In doing so it is important
to retain the consistency discussed in section 8.2.2, that is, for a constant mixing
ratio (¢ = 1) the tracer transport equation should yield the same solution as the con-
tinuity equation for air (ak.a. ‘free-stream preserving’). A scheme possessing the
‘free-stream preserving’ property can be designed as described below.

A conceptual explanation of sub-cycling is given with the aid of Fig. 8.19. For
simplicity assume one spatial dimension, flow from left to right and that the wind
at the right cell wall is zero (no mass flux through that boundary). The number of
times the integration of the air density equation is sub-cycled with respect to the
tracer equations is referred to as ksplit. In Fig. 8.19 ksplit is 4. At time ¢ = nAt the
mass in the cell is p”, where we have assumed that the cell width is one (grey area
on Fig. 8.19a). We then integrate the full dynamical system of equations (continuity
equation for air, momentum equations and thermodynamic equation) forward in
time to 1 = (n+ 1/ksplit)At. The flux of mass into the cell during this forward
integration corresponds to the red area ‘swept’ through the left cell wall, on Fig.
8.19a (left column) and hence the air mass in the cell increases by the red area in cell
k (Fig. 8.19a right column). This procedure is repeated three, or (ksplit — 1), more
time-steps during which the blue, yellow and green areas are ‘swept’ through the left
cell wall and adding to the total air mass in the cell (Fig. 8.19b.c.d, respectively).
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Fig. 8.19 A graphical illustration of sub-cycling the continuity for air mass with respect to tracers.
Details and explanations are given in the text.

The total flow of mass into the cell is the sum of all the areas on Fig. 8.19a,c,b,d
corresponding to an average flux into the cell given by the brown area on Fig. 8.19e.

Since we are updating tracers on the long time-step we use the transport scheme
to estimate the average mixing ratio over the full time-step Az, that is, the average
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of ¢" over the brown area in Fig. 8.19e denoted (¢"). Then the final forecast for the
tracer is given by the product between the background flow of mass and an estimate
of the mixing ratio over the long time-step

(pa)"™ = (pg)"+(q")

ksplit ) )
2 Apn-‘rl/k&‘pllt , (887)
i=1

where 0 p”*i/ ksplit jg the flux of air mass into the cell during one sub-cycled time-
step At /ksplit. If ¢ = 1 then (8.87) reduces to the equation for air mass and conse-
quently the scheme is free-stream preserving. Note that updating the tracers on the
short time-step will not yield the same result.

8.7.3 Semi-implicit time-stepping for air and explicit for tracers

If semi-implicit time-stepping is used (see chapter 6) then the prognostic equation
for air density can be written as

At =
P =pl e (D =D (8.88)

(e.g. Lauritzen et al, 2006) where p e”x*l;l is the explicit prediction, p”®/ is a constant
reference density, D is the divergence and D is the divergence extrapolated to time-
level n+ 1. The terms on the right-hand side of (8.88) involving D are referred to
as the semi-implicit correction terms and represent the implicit coupling to the mo-
mentum equations. If the tracer transport equation is solved explicitly, as is usually
done, then the scheme is not ‘free stream preserving’ because of the semi-implicit
correction terms (although they are usually small).
So for consistency, one should also solve the tracer transport equation semi-
implicitly
(pa)""" = (P9)exy + % (gp) (D1 = D), (8.89)

(e.g. Lauritzen et al, 2008), however, that seems problematic. For example, if ¢ is
zero in some area and the semi-implicit correction terms are non-zero in that area,
then tracer mass will be produced in an area where ¢ should be zero.

Thuburn et al (2010) present a method where they discretize an alternative form
of the semi-implicit continuity equation. Through a series of iterations the semi-
implicit correction terms cancel and consistency between air mass and tracer trans-
port is obtained. For more details see Thuburn et al (2010).
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8.8 Final Remarks

In this chapter a detailed discussion of desirable properties for transport schemes
intended for meteorological applications has been presented. The finite-volume
method for tracer transport (in two-dimensional Cartesian geometry) has been in-
troduced and discussed using a remap approach which conceptually introduces the
finite-volume method through following characteristics of the flow. This conceptual
framework has been used to explain and analyze several schemes from the liter-
ature. Practical considerations related to the coupling of air mass equations and
tracer mass equations has been discussed in some detail as well as brief introduc-
tions to extensions to spherical geometry and three dimensions. The authors hope
to have communicated some of the aspects that go into modeling transport accu-
rately in large modeling systems. Although physical parameterizations that repre-
sent sub-grid-scale processes are probably among the largest sources of uncertainty
in weather and climate models, the accurate representation of transport is very im-
portant. Errors in resolved-scale transport can change scientific results (e.g. Rasch
et al, 2006; Wild and Prather, 2006).
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