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' CAM-SE: NCAR-DOE Community Atmosphere™
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Model with Spectral Elements dynamical core

Continuous Galerkin finite-element method (Taylor et al., 1997) on a cubed-sphere:
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éé’ Discretization is mimetic => mass-conservation & total energy conservation on element
Conserves axial angular momentum very well (Lauritzen et al., 2014)
Support static mesh-refinement and retains formal order of accuracy!
Highly scalable to at least O(100K) processors (Dennis et al., 2012)
AMIP-climate similar to current workhorse CAM-FV (Evans et al., 2012)
@ Computational throughput for many-tracer applications
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9 A way to accelerate tracer transport: -
CSLaM scheme (Conservative Semi-Lagrangian Multi-tracer)
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Finite-volume Lagrangian form of continuity equation for 1\ = p, p ¢:
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where weights w](:;'j) are functions of the coordinates of the vertices of ay;,.

‘ w]((ie'j) can be re-used for each additional tracer (Dukowicz and Baumgardner, 2000)
computational cost for each additional tracer is the reconstruction and limiting/filtering.

CSLAM Is stable for Iong time'Steps (CFL>1) Lauritzen, Nair and Ulirich (J. Comput. Phys., 2010)
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A way to accelerate tracer transport:
CSLaM scheme (Conservative Semi-Lagrangian Multi-tracer)

Highly scalable (Erath et al., 2012)
= Inherently mass-conservative
Fully two-dimensional

-> accurate treatment of weak singularities, e.g., cube corners

-> can be implemented on various spherical grids (cubed-sphere, icosahedral, ...)
Shape-preserving (no negatives, no spurious grid-scale oscillations)
= Preserves linear correlations (even with shape-preservation) — see next slide!
Current version is 3"9-order accurate for smooth problems
Allows for long time-steps (limited by flow deformation not Courant number)
@ Multi-tracer efficient (high start-up cost but “cheaper” for each additional tracer):
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Performance: n=2048, ne30np4/nc3, 1 day baroclinic wave in HOMME
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" SEwlimit : :
Fr-CSLAN w er MPI communication

For every 30 minute physics time-step

- SE performs 6 tracer time-steps with 5 Runga-Kutta stages => 15 MPI calls
6 - CSLAM performs 2 tracer time-steps (CN<1) => 2 MPI calls

wallmax
®
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o/’ ; . :
CSLAM implemented in NCAR-DOE HOMME (High-Order Methods Modeling Environment)
by Erath et al., (2012); CAM-SE “pulls” SE dynamical core from HOMME

/ | CAM-Ch\i"/'J That said, CSLAM needs a larger halo than SE.




The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes

(Lauritzen et al, 2014, GMDD)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html
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Errors are due to non-conservation of linear correlations usually
caused by the limiter and/or physics-dynamics coupling!




The terminator ‘toy’-chemistry test: A simple tool to

assess errors in transport schemes

(Lauritzen et al, 2014, GMDD)
See: http://www.cgd.ucar.edu/cms/pel/terminator.html
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A way to accelerate tracer transport:
CSLaM scheme (Conservative Semi-Lagrangian Multi-tracer)

Highly scalable (Erath et al., 2012)
= Inherently mass-conservative
Fully two-dimensional

-> accurate treatment of weak singularities, e.g., cube corners

-> can be implemented on various spherical grids (cubed-sphere, icosahedral, ...)
Shape-preserving (no negatives, no spurious grid-scale oscillations)
= Preserves linear correlations (even with shape-preservation) — see next slide!
Current version is 3"9-order accurate for smooth problems
Allows for long time-steps (limited by flow deformation not Courant number)
@ Multi-tracer efficient (high start-up cost but “cheaper” for each additional tracer):
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A way to accelerate tracer transport:
CSLaM scheme (Conservative Semi-Lagrangian Multi-tracer)

@ Highly scalable (Erath et al., 2012) ‘\"Kg{”

© Inherently mass-conservative ;f
Fully two-dimensional al
-> accurate treatment of weak singularities, e.g., cube corners

-> can be implemented on various spherical grids (cubed-sphere, icosahedral, ...)
éé’ Shape-preserving (no negatives, no spurious grid-scale oscillations)
£ Preserves linear correlations (even with shape-preservation) — see next slide!
Current version is 3"9-order accurate for smooth problems
Allows for long time-steps (limited by flow deformation not Courant number)
£ Multi-tracer efficient (high start-up cost but “cheap” for each additional tracer)

CSLAM uses a “finite-volume”-type grid and SE uses a quadrature grid
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A way to acce/ at r trapsport:
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Atmospheric state passed to physics is at quadrature points:

® Leads to an-isotropic “sampling” of atmospheric state
® High-order basis functions can be oscillatory and are

Current physics-dynamics coupling

least smooth near element boundaries:
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% Current physics-dynamics coupling

Grid coupler
Atmospheric state passed to physics is at quadrature points:

® Leads to an-isotropic “sampling” of atmospheric state ry
® High-order basis functions can be oscillatory and are phe
least smooth near element boundaries:
Held-Suarez with topography

Vertical velocity at 500 mbar pressure surface Pa/s
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Integrate atmospheric state (basis functions) over control volumes using mass-conservative,
shape-preserving and consistent algorithm by Ullrich and Taylor (2014; submitted)

“Equal-area” physics grid

Note that physics grid averages/moves fields
away from boundary of element where the
solution is least smooth
(in element interior the polynomials are C*)
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CAM-SE-CSLAM

combining the best of two worlds: high-order spectral dynamics & finite-volume transport

IR

Finer physics grid

Lander and Hoskins (1997):
only pass “believable”
scales to physics!

Coarser physics grid




Lander and Hoskins (1997):
only pass “believable”
scales to physics!

Coarser physics grid




Held-Suarez with topograp

Vertical velocity at 500 mbar pressure surface Pa/s
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@ CAM4 Aqua-planet simulations

Idealized surface: no land (or mountains) + specified zonally symmetric sea surface temperatures => free motions, no forced component

Zonal-time averaged total precipitation rate PRECT (30 month simulation - 6h data)
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Last step towards CAM-SE-CSLAM: coupling mass

(a)

SE density flux (sub-cycled)

Conventional flux-form tracer-mass coupling: air sub-cycled with respect to tracers

CSLAM mixing ratio “flux”
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Spectral element fluxes across CSLAM control volumes are needed:

For CAM-SE it can be shown that the change in mass within each
element is given by a natural flux at each element edge (Taylor

and Fournier, 2010). Taylor and Ullrich have recently extended

this result to hold for CSLAM control volumes.

Implementation almost done .. (James Overfelt,SNL,DOE)




More information: http://www.cgd.ucar.edu/cms/pel
Email: pel@ucar.edu
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