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ConEnuous	
  Galerkin	
  finite-­‐element	
  method	
  (Taylor	
  et	
  al.,	
  1997)	
  on	
  a	
  cubed-­‐sphere:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  !  DiscreEzaEon	
  is	
  mimeEc	
  =>	
  mass-­‐conservaEon	
  &	
  total	
  energy	
  conservaEon	
  on	
  element	
  !  Conserves	
  axial	
  angular	
  momentum	
  very	
  well	
  (Lauritzen	
  et	
  al.,	
  2014)	
  !  Support	
  staEc	
  mesh-­‐refinement	
  and	
  retains	
  formal	
  order	
  of	
  accuracy!	
  	
  !  Highly	
  scalable	
  to	
  at	
  least	
  O(100K)	
  processors	
  (Dennis	
  et	
  al.,	
  2012)	
  !  AMIP-­‐climate	
  similar	
  to	
  current	
  workhorse	
  CAM-­‐FV	
  (Evans	
  et	
  al.,	
  2012)	
  
!  Computa(onal	
  throughput	
  for	
  many-­‐tracer	
  applica(ons	
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 Atmosphere	
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A	
 way	
 to	
 accelerate	
 tracer	
 transport:	
 ���
CSLaM	
 scheme	
 (Conservative	
 Semi-Lagrangian	
 Multi-tracer)���

	
 

Lauritzen, Nair and Ullrich (J. Comput. Phys., 2010)  



A	
 way	
 to	
 accelerate	
 tracer	
 transport:	
 ���
CSLaM	
 scheme	
 (Conservative	
 Semi-Lagrangian	
 Multi-tracer)���

	
 !  Highly	
  scalable	
  (Erath	
  et	
  al.,	
  2012)	
  !   Inherently	
  mass-­‐conservaEve	
  !  Fully	
  two-­‐dimensional	
  	
  
-­‐>	
  accurate	
  treatment	
  of	
  weak	
  singulariEes,	
  e.g.,	
  cube	
  corners	
  
-­‐>	
  can	
  be	
  implemented	
  on	
  various	
  spherical	
  grids	
  (cubed-­‐sphere,	
  icosahedral,	
  …)	
  !  Shape-­‐preserving	
  (no	
  negaEves,	
  no	
  spurious	
  grid-­‐scale	
  oscillaEons)	
  !  Preserves	
  linear	
  correlaEons	
  (even	
  with	
  shape-­‐preservaEon)	
  –	
  see	
  next	
  slide!	
  !  Current	
  version	
  is	
  3rd-­‐order	
  accurate	
  for	
  smooth	
  problems	
  !  Allows	
  for	
  long	
  Eme-­‐steps	
  (limited	
  by	
  flow	
  deformaEon	
  not	
  Courant	
  number)	
  !  MulE-­‐tracer	
  efficient	
  (high	
  start-­‐up	
  cost	
  but	
  “cheaper”	
  for	
  each	
  addiEonal	
  tracer):	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
CSLAM	
  implemented	
  in	
  NCAR-­‐DOE	
  HOMME	
  (High-­‐Order	
  Methods	
  Modeling	
  Environment)	
  
by	
  Erath	
  et	
  al.,	
  (2012);	
  CAM-­‐SE	
  “pulls”	
  SE	
  dynamical	
  core	
  from	
  HOMME	
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For	
  every	
  30	
  minute	
  physics	
  Eme-­‐step	
  
	
  
-­‐	
  SE	
  performs	
  6	
  tracer	
  Eme-­‐steps	
  with	
  5	
  Runga-­‐Kuka	
  stages	
  =>	
  15	
  MPI	
  calls	
  
-­‐	
  CSLAM	
  performs	
  2	
  tracer	
  Eme-­‐steps	
  (CN<1)	
  =>	
  2	
  MPI	
  calls	
  

That	
  said,	
  CSLAM	
  needs	
  a	
  larger	
  halo	
  than	
  SE.	
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The	
 terminator	
 ‘toy’-chemistry	
 test:	
 A	
 simple	
 tool	
 to	
 
assess	
 errors	
 in	
 transport	
 schemes���
(Lauritzen	
 et	
 al,	
 2014,	
 GMDD)	
 
See:	
 http://www.cgd.ucar.edu/cms/pel/terminator.html	
 	
 

Cl	
  

Non-­‐linear	
  	
  
Terminator	
  ‘toy’	
  	
  
chemistry:	
  

Exact	
  soluEon:	
  
Cl+2*Cl2	
  =	
  constant	
  

Errors	
  are	
  due	
  to	
  non-­‐conservaEon	
  of	
  linear	
  correlaEons	
  usually	
  
caused	
  by	
  the	
  limiter	
  and/or	
  physics-­‐dynamics	
  coupling!	
  

Wind	
  field:	
  	
  
Nair	
  and	
  
Lauritzen	
  

deformaEonal	
  
flow	
  

The  terminator  
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12 Lauritzen et al.

(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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(c)(b)(a)

Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.
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based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases
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contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to

JAMES-D

tracers	
   u,v,T,p	
  

ph
ys
ic
s	
  

tracers	
  

Lander	
  and	
  Hoskins	
  (1997):	
  
only	
  pass	
  “believable”	
  
scales	
  to	
  physics!	
  

Coarser	
  physics	
  grid	
  



Held-Suarez	
 with	
 topography	
 



CAM4	
 Aqua-planet	
 simulations	
 
Idealized	
  surface:	
  no	
  land	
  (or	
  mountains)	
  +	
  specified	
  zonally	
  symmetric	
  sea	
  surface	
  temperatures	
  =>	
  free	
  mo(ons,	
  no	
  forced	
  component	
  

Data	
 mapped	
 to	
 3o	
 	
 
regular	
 lat-lon	
 grid	
 	
 

Data	
 mapped	
 to	
 1o	
 	
 
regular	
 lat-lon	
 grid	
 	
 



Last	
 step	
 towards	
 CAM-SE-CSLAM:	
 coupling	
 mass	
 

Spectral	
  element	
  fluxes	
  across	
  CSLAM	
  control	
  volumes	
  are	
  needed:	
  

t6un+3/4

n+1l n+3/4

n+2/4u

l

6t

ln+2/4

n+1/4u 6t

l

tnu

n+1/4

6

l

n

flow direction

time

l

t6un+3/4

n+1l n+3/4

n+2/4u

l

6t

ln+2/4

n+1/4u 6t

l

tnu

n+1/4

6

l

n

flow direction

time

l

(b)(a)

Conventional	
 flux-form	
 tracer-mass	
 coupling:	
 air	
 sub-cycled	
 with	
 respect	
 to	
 tracers	
  

SE	
  density	
  flux	
  (sub-­‐cycled)	
   CSLAM	
  mixing	
  raEo	
  “flux”	
  

8 Finite-Volume Transport Schemes 247

of qn over the brown area in Fig. 8.19e denoted ⟨qn⟩. Then the nal forecast for the
tracer is given by the product between the background ow of mass and an estimate
of the mixing ratio over the long time-step

(� q)n+1 = (� q)n+ ⟨qn⟩
[
ksplit

�
i=1

��n+i/ksplit
]

, (8.87)

where ��n+i/ksplit is the ux of air mass into the cell during one sub-cycled time-
step � t/ksplit. If q= 1 then (8.87) reduces to the equation for air mass and conse-

quently the scheme is free-stream preserving. Note that updating the tracers on the

short time-step will not yield the same result.

8.7.3 Semi-implicit time-stepping for air and explicit for tracers

If semi-implicit time-stepping is used (see chapter 6) then the prognostic equation

for air density can be written as

�n+1 = �n+1exp +
� t
2
� re f

(
Dn+1− rDn+1) , (8.88)

(e.g. Lauritzen et al, 2006) where � n+1
exp is the explicit prediction, � re f is a constant

reference density, D is the divergence and rD is the divergence extrapolated to time-
level n+ 1. The terms on the right-hand side of (8.88) involving D are referred to
as the semi-implicit correction terms and represent the implicit coupling to the mo-

mentum equations. If the tracer transport equation is solved explicitly, as is usually

done, then the scheme is not `free stream preservingQ because of the semi-implicit

correction terms (although they are usually small).

So for consistency, one should also solve the tracer transport equation semi-

implicitly

(�q)n+1 = (�q)n+1exp +
� t
2

(q�)re f
(
Dn+1− rDn+1) , (8.89)

(e.g. Lauritzen et al, 2008), however, that seems problematic. For example, if q is
zero in some area and the semi-implicit correction terms are non-zero in that area,

then tracer mass will be produced in an area where q should be zero.
Thuburn et al (2010) present a method where they discretize an alternative form

of the semi-implicit continuity equation. Through a series of iterations the semi-

implicit correction terms cancel and consistency between air mass and tracer trans-

port is obtained. For more details see Thuburn et al (2010).

ImplementaEon	
  almost	
  done	
  …	
  (James	
  Overfelt,SNL,DOE)	
  

For	
  CAM-­‐SE	
  it	
  can	
  be	
  shown	
  that	
  the	
  change	
  in	
  mass	
  within	
  each	
  	
  
element	
  is	
  given	
  by	
  a	
  natural	
  flux	
  at	
  each	
  element	
  edge	
  (Taylor	
  
and	
  Fournier,	
  2010).	
  Taylor	
  and	
  Ullrich	
  have	
  recently	
  extended	
  
this	
  result	
  to	
  hold	
  for	
  CSLAM	
  control	
  volumes.	
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More information: http://www.cgd.ucar.edu/cms/pel  
Email: pel@ucar.edu  


