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ConEnuous	  Galerkin	  finite-‐element	  method	  (Taylor	  et	  al.,	  1997)	  on	  a	  cubed-‐sphere:	  
	  
	  
	  
	  
	  
	  
	  
	  
	  !  DiscreEzaEon	  is	  mimeEc	  =>	  mass-‐conservaEon	  &	  total	  energy	  conservaEon	  on	  element	  !  Conserves	  axial	  angular	  momentum	  very	  well	  (Lauritzen	  et	  al.,	  2014)	  !  Support	  staEc	  mesh-‐refinement	  and	  retains	  formal	  order	  of	  accuracy!	  	  !  Highly	  scalable	  to	  at	  least	  O(100K)	  processors	  (Dennis	  et	  al.,	  2012)	  !  AMIP-‐climate	  similar	  to	  current	  workhorse	  CAM-‐FV	  (Evans	  et	  al.,	  2012)	  
!  Computa(onal	  throughput	  for	  many-‐tracer	  applica(ons	  

Physical Domain Computational Domain 

�S
e

�

��

�

/4� � /4� +

x

x

1

2

� /4

�

�
�e

�

�

(-1,-1)

(+1,+1)(-1,+1)

(+1,-1)

Q

GLL Quadrature Grid

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

h0(j)
h1(j)

h2(j)
h3(j)

GLL points

N
ai
r	  e

t	  a
l.,
	  2
01
1	  

CAM-SE:	 NCAR-DOE	 Community	 Atmosphere	 
Model	 with	 Spectral	 Elements	 dynamical	 core	 



A	 way	 to	 accelerate	 tracer	 transport:	 ���
CSLaM	 scheme	 (Conservative	 Semi-Lagrangian	 Multi-tracer)���

	 

Lauritzen, Nair and Ullrich (J. Comput. Phys., 2010)  



A	 way	 to	 accelerate	 tracer	 transport:	 ���
CSLaM	 scheme	 (Conservative	 Semi-Lagrangian	 Multi-tracer)���

	 !  Highly	  scalable	  (Erath	  et	  al.,	  2012)	  !   Inherently	  mass-‐conservaEve	  !  Fully	  two-‐dimensional	  	  
-‐>	  accurate	  treatment	  of	  weak	  singulariEes,	  e.g.,	  cube	  corners	  
-‐>	  can	  be	  implemented	  on	  various	  spherical	  grids	  (cubed-‐sphere,	  icosahedral,	  …)	  !  Shape-‐preserving	  (no	  negaEves,	  no	  spurious	  grid-‐scale	  oscillaEons)	  !  Preserves	  linear	  correlaEons	  (even	  with	  shape-‐preservaEon)	  –	  see	  next	  slide!	  !  Current	  version	  is	  3rd-‐order	  accurate	  for	  smooth	  problems	  !  Allows	  for	  long	  Eme-‐steps	  (limited	  by	  flow	  deformaEon	  not	  Courant	  number)	  !  MulE-‐tracer	  efficient	  (high	  start-‐up	  cost	  but	  “cheaper”	  for	  each	  addiEonal	  tracer):	  

	  
	  
	  
	  
	  
	  
	  
	  
CSLAM	  implemented	  in	  NCAR-‐DOE	  HOMME	  (High-‐Order	  Methods	  Modeling	  Environment)	  
by	  Erath	  et	  al.,	  (2012);	  CAM-‐SE	  “pulls”	  SE	  dynamical	  core	  from	  HOMME	  
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For	  every	  30	  minute	  physics	  Eme-‐step	  
	  
-‐	  SE	  performs	  6	  tracer	  Eme-‐steps	  with	  5	  Runga-‐Kuka	  stages	  =>	  15	  MPI	  calls	  
-‐	  CSLAM	  performs	  2	  tracer	  Eme-‐steps	  (CN<1)	  =>	  2	  MPI	  calls	  

That	  said,	  CSLAM	  needs	  a	  larger	  halo	  than	  SE.	  	  
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The	 terminator	 ‘toy’-chemistry	 test:	 A	 simple	 tool	 to	 
assess	 errors	 in	 transport	 schemes���
(Lauritzen	 et	 al,	 2014,	 GMDD)	 
See:	 http://www.cgd.ucar.edu/cms/pel/terminator.html	 	 

Cl	  

Non-‐linear	  	  
Terminator	  ‘toy’	  	  
chemistry:	  

Exact	  soluEon:	  
Cl+2*Cl2	  =	  constant	  

Errors	  are	  due	  to	  non-‐conservaEon	  of	  linear	  correlaEons	  usually	  
caused	  by	  the	  limiter	  and/or	  physics-‐dynamics	  coupling!	  

Wind	  field:	  	  
Nair	  and	  
Lauritzen	  

deformaEonal	  
flow	  

The  terminator  
test 

CL2	  

Cl+2*Cl2	  =	  constant	  



CAM-‐SE	  
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The  terminator  
test 

The	 terminator	 ‘toy’-chemistry	 test:	 A	 simple	 tool	 to	 
assess	 errors	 in	 transport	 schemes���
(Lauritzen	 et	 al,	 2014,	 GMDD)	 
See:	 http://www.cgd.ucar.edu/cms/pel/terminator.html	 	 
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12 Lauritzen et al.
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases
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the polar regions and mid-latitudes. Nevertheless, an
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izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.
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2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Atmospheric	  state	  passed	  to	  physics	  is	  at	  quadrature	  points:	  
	  
•  Leads	  to	  an-‐isotropic	  “sampling”	  of	  atmospheric	  state	  
•  High-‐order	  basis	  funcEons	  can	  be	  oscillatory	  and	  are	  

least	  smooth	  near	  element	  boundaries:	  
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Current	 physics-dynamics	 coupling	 
	  
Atmospheric	  state	  passed	  to	  physics	  is	  at	  quadrature	  points:	  
	  
•  Leads	  to	  an-‐isotropic	  “sampling”	  of	  atmospheric	  state	  
•  High-‐order	  basis	  funcEons	  can	  be	  oscillatory	  and	  are	  

least	  smooth	  near	  element	  boundaries:	  
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“Equal-area”	 physics	 grid	 

Integrate	  atmospheric	  state	  (basis	  funcEons)	  over	  control	  volumes	  using	  mass-‐conservaEve,	  
shape-‐preserving	  and	  consistent	  algorithm	  by	  Ullrich	  and	  Taylor	  (2014;	  submiked)	  
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Note	  that	  physics	  grid	  averages/moves	  fields	  
away	  from	  boundary	  of	  element	  where	  the	  

soluEon	  is	  least	  smooth	  
(in	  element	  interior	  the	  polynomials	  are	  C∞)	  	  
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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Figure 3: (a) The latitude-longitude grid, (b) the cubed-sphere grid based on an equi-angular central projection and
(c) icosahedral grid based on hexagons and pentagons. The triangular grids used by models herein are the dual of the
hexagonal grid.

volume implementation (i.e., the Lin and Rood, 1996,
algorithm). An example of a two-dimensional extension
based on the PPM algorithm that is third-order is given
in, e.g., Ullrich et al. (2009).

CAM ISEN is an isentropic version of CAM FV. In-
stead of the hybrid sigma-pressure vertical coordinate
a hybrid sigma-θ vertical coordinate is used (Chen and
Rasch 2009). Apart from the vertical coordinate the
model design is identical to CAM FV.

3.2. Cubed-sphere grid models
The assessment includes two dynamical cores that are
defined on cubed-sphere grids. The finite-volume cubed-
sphere model (GEOS FV CUBED) is a cubed-sphere
version of CAM FV developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) and the NASA God-
dard Space Flight Center. The advection scheme is
based on the Lin and Rood (1996) method but adapted
to non-orthogonal cubed-sphere grids (Putman and Lin
2007,2009). Like CAM FV, the GEOS FV CUBED dy-
namical core is second-order accurate in two dimensions.
Both a weak second-order divergence damping mech-
anism and an additional fourth-order divergence damp-
ing scheme is used with coefficients 0.005×∆Amin/∆t
and [0.05 × ∆Amin]2 /∆t, respectively, where ∆Amin

is the smallest grid cell area in the domain.
The strength of the divergence damping increases

towards the model top to define a 3-layer sponge. In
contrast to CAM FV and CAM ISEN, the cubed-sphere
model does not apply any digital or FFT filtering in
the polar regions and mid-latitudes. Nevertheless, an

external-mode filter is implemented that damps the hor-
izontal momentum equations. This is accomplished
by subtracting the external-mode damping coefficient
(0.02×∆Amin/∆t) times the gradient of the vertically-
integrated horizontal divergence on the right-hand-side
of the vector momentum equation.

GEOS FV CUBED applies the same inner and outer
operators in the advection scheme (PPM) to avoid the
inconsistencies described in Lauritzen (2007) when us-
ing different orders of inner and outer operators. The
cubed-sphere grid is based on central angles. The angles
are chosen to form an equal-distance grid at the cubed-
sphere edges (undocumented). The equal-distance grid
is similar to an equidistant cubed-sphere grid that is ex-
plained in Nair et al. (2005). The resolution is specified
in terms of the number of cells along a panel side. As an
example, 90 cells along each side of a cubed-sphere face
yield a global grid spacing of about 1◦.

The second cubed-sphere dynamical core is NCAR’s
spectral element High-Order Method Modeling Environ-
ment (HOMME) (Thomas and Loft 2004, Nair et al.
2009). Spectral elements are a type of a continuous-
Galerkin h-p finite element method (Karniadakis and
Sherwin 1999, Canuto et al. 2007), where h is the num-
ber of elements and p the polynomial order. Rather
than using cell averages as prognostic variables as in
geos fv cubed, the finite element method uses p-order
polynomials to represent the prognostic variables inside
each element. The spectral element method is compat-
ible, meaning it has discrete analogs of the key integral
properties of the divergence, gradient and curl operators,
making the method elementwise mass-conservative (to
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CAM4	 Aqua-planet	 simulations	 
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Last	 step	 towards	 CAM-SE-CSLAM:	 coupling	 mass	 

Spectral	  element	  fluxes	  across	  CSLAM	  control	  volumes	  are	  needed:	  
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Conventional	 flux-form	 tracer-mass	 coupling:	 air	 sub-cycled	 with	 respect	 to	 tracers	  

SE	  density	  flux	  (sub-‐cycled)	   CSLAM	  mixing	  raEo	  “flux”	  
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of qn over the brown area in Fig. 8.19e denoted ⟨qn⟩. Then the nal forecast for the
tracer is given by the product between the background ow of mass and an estimate
of the mixing ratio over the long time-step

(� q)n+1 = (� q)n+ ⟨qn⟩
[
ksplit

�
i=1

��n+i/ksplit
]

, (8.87)

where ��n+i/ksplit is the ux of air mass into the cell during one sub-cycled time-
step � t/ksplit. If q= 1 then (8.87) reduces to the equation for air mass and conse-

quently the scheme is free-stream preserving. Note that updating the tracers on the

short time-step will not yield the same result.

8.7.3 Semi-implicit time-stepping for air and explicit for tracers

If semi-implicit time-stepping is used (see chapter 6) then the prognostic equation

for air density can be written as

�n+1 = �n+1exp +
� t
2
� re f

(
Dn+1− rDn+1) , (8.88)

(e.g. Lauritzen et al, 2006) where � n+1
exp is the explicit prediction, � re f is a constant

reference density, D is the divergence and rD is the divergence extrapolated to time-
level n+ 1. The terms on the right-hand side of (8.88) involving D are referred to
as the semi-implicit correction terms and represent the implicit coupling to the mo-

mentum equations. If the tracer transport equation is solved explicitly, as is usually

done, then the scheme is not `free stream preservingQ because of the semi-implicit

correction terms (although they are usually small).

So for consistency, one should also solve the tracer transport equation semi-

implicitly

(�q)n+1 = (�q)n+1exp +
� t
2

(q�)re f
(
Dn+1− rDn+1) , (8.89)

(e.g. Lauritzen et al, 2008), however, that seems problematic. For example, if q is
zero in some area and the semi-implicit correction terms are non-zero in that area,

then tracer mass will be produced in an area where q should be zero.
Thuburn et al (2010) present a method where they discretize an alternative form

of the semi-implicit continuity equation. Through a series of iterations the semi-

implicit correction terms cancel and consistency between air mass and tracer trans-

port is obtained. For more details see Thuburn et al (2010).

ImplementaEon	  almost	  done	  …	  (James	  Overfelt,SNL,DOE)	  

For	  CAM-‐SE	  it	  can	  be	  shown	  that	  the	  change	  in	  mass	  within	  each	  	  
element	  is	  given	  by	  a	  natural	  flux	  at	  each	  element	  edge	  (Taylor	  
and	  Fournier,	  2010).	  Taylor	  and	  Ullrich	  have	  recently	  extended	  
this	  result	  to	  hold	  for	  CSLAM	  control	  volumes.	  



√∫	  

More information: http://www.cgd.ucar.edu/cms/pel  
Email: pel@ucar.edu  


