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20TH ANNUAL CESM WORKSHOP June 15-18, 2015, Breckenridge, Colorado

Overview

A new model configuration based on CAM-SE:

SE: Spectral-element dynamical core solving for v⃗ , T , ps
(Dennis et al., 2012; Evans et al., 2012; Taylor and Fournier, 2010; Taylor et al., 1997)

CSLAM: Semi-Lagrangian finite-volume transport scheme for tracers
(Lauritzen et al., 2010; Erath et al., 2013, 2012; Harris et al., 2010)

Phys-grid: Separating physics and dynamics grids, i.e. ability to
compute physics tendencies based on cell-averaged values within each
element instead of quadrature points
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Back to the drawing board Basic algorithm development

Coupling spectral-element continuity equation for air with CSLAM turned
out to be much harder than I had anticipated ...

The ‘spectral-element part’ of this research would not have been possible
without the close collaboration with Mark Taylor (DOE),

James Overfelt (DOE) and Paul Ullrich (UCDavis).
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Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

Finite-volume Lagrangian form of continuity equation for air (pressure level
thickness, ∆p), and tracer (mixing ratio, q):

∫
Ak

ψn+1
k dA = ∫

ak
ψn
k dA =

Lk

∑
`=1

⎡⎢⎢⎢⎢⎣
∑
ı+≤2

c
(ı,)
` w

(ı,)
k`

⎤⎥⎥⎥⎥⎦
, ψ =∆p, ∆p q,

where n time-level, ak` overlap areas, Lk #overlap areas, c(ı,)

reconstruction coefficients for ψn
k , and w

(ı,)
k` weights.
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Basic formulation Lauritzen et al. (2010), Erath et al. (2013), Erath et al. (2012)

Conservative Semi-LAgrangian Multi-tracer (CSLAM)

(a) (b)

∫
Ak

ψn+1
k dA = ∫

ak
ψn
k dA =

Lk

∑
`=1

⎡⎢⎢⎢⎢⎣
∑
ı+≤2

c
(ı,)
` w

(ı,)
k`

⎤⎥⎥⎥⎥⎦
, ψ =∆p, ∆p q,

Multi-tracer efficient: w
(i ,j)
k` re-used for each additional tracer

(Dukowicz and Baumgardner, 2000).

Scheme allows for large time-steps (flow deformation limited).

Conserves mass, shape, linear correlations (Lauritzen et al., 2014).

Peter Hjort Lauritzen (NCAR) CAM-SE-CSLAM June 17, 2015 5 / 20



Basic formulation Harris et al. (2010)

Flux-form CSLAM ≡ Lagrangian CSLAM

a

ε=1

ε=4

ε=2

a
k

ε=1

ka

ak

ε=2

k
a ε=3

k

ε=4

ε=3

∫
Ak

ψn+1
k dA = ∫

Ak

ψn
k dA −

4

∑
ε=1

sεk`∫
aεk

ψ dA, ψ =∆p, ∆p q.

where

aεk = ‘flux-area’ (yellow area) = area swept through face ε

sεk` = 1 for outflow and -1 for inflow.

Flux-form and Lagrangian forms of CSLAM are equivalent
(Lauritzen et al., 2011).
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Basic formulation

Requirements for transport schemes

1. Global (and local) Mass-conservation

If ∆p is pressure-level thickness and q is mixing ratio, then the total mass

M(t) = ∫
Ω

∆p q dA,

is invariant in time: M(t) =M(t = 0)

2. Shape-preservation

Scheme does not produce new extrema (in particular negatives) in q

3. Consistency

If q = 1 then the transport scheme should reduce to the continuity
equation for air.
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Basic formulation

How does CSLAM fulfill requirements?

1. Global (and local) Mass-conservation

Upstream Lagrangian areas span domain Ω without cracks & overlaps

∫Ωk
ψk(x , y)dA =∆Ak ψk ,

where ψk(x, y) is reconstruction function in kth cell Ωk , ∆Ak is area of Ωk , ψk is cell averaged value

Figure: Filled blue circles are upstream departure points
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Basic formulation

How does CSLAM fulfill requirements?

2. Shape-preservation

Apply limiter to mixing ratio sub-grid cell distribution:

q(x , y) = ∑
ı+<3

c(ı,)x ıy ,

(Barth and Jespersen, 1989) so that extrema of q(x , y) are within range of
neighboring q.

And upstream areas span domain Ω without cracks & overlaps

Limiters and filters

In the literature: Many 1D limiters but few fully 2D limiters!

A priori (‘Monotone filtering’): Filter the reconstruction
f` (x,y) so that extreme values lie within the adjacent
cell-average values (Barth and Jespersen, 1989). no filter

monotone filter

A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema in

 
n+1

using flux-corrected transport (Zalesak, 1979).

Monotone filters/limiters tend to ‘clip’ physical extrema
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Basic formulation

How does CSLAM fulfill requirements?

3. Consistency

Solve continuity equations for air and tracer on the form:
(Nair and Lauritzen, 2010):

D

Dt ∫δA
∆p(x , y)dA = 0 (1)

D

Dt ∫δA
{∆p q(x , y) + q [∆p(x , y) −∆p]} dA = 0 (2)

→ if q = 1 then (2) reduces to (1).

Note also that limiter acts on q(x , y) and not q(x , y)∆p(x , y), i.e.
no reason to have a limiter on pressure level thickness.
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Basic formulation

Coupling problem formulation

We need to find a departure grid so that

∆p(CSLAM) =∆p(SE) (3)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

(a) (b)

Figure: Global iteration problem / and it is ill-conditioned since any
non-divergent perturbation of points yields the same solution ///
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Basic formulation

Solution

Cast problem in flux-form:

F(CSLAM) = F(SE) (4)

⇒ requirements 1-3 are fulfilled with existing CSLAM technology.

Spectral-element method does not operate with fluxes: Taylor et al.
have derived a method to compute fluxes, F(SE), through the
CSLAM control volume faces! presented at ICMS conference in March, 2015.
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Basic formulation

CSLAM fluxes

Given F(SE) find swept areas, δΩ, so that:

1

F(CSLAM) = ∫
δΩ

∆p(x , y)dA = F(SE) ∀ δΩ.

2 The sum of all the swept areas, δΩ, span the domain without cracks
or overlaps
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Basic formulation

Consistent SE-CSLAM algorithm: step-by-step example

perpendicular y−flux departure pointsperpendicular x−flux

SE consistent flux1st guess swept area 1st iteration swept area

(b) (c)(a)

(e)(d) (f)

Well-posed? As long as flow deformation ∣∂u
∂x

∣∆t ≲ 1 (Lipschitz criterion)
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Basic formulation

Consistent SE-CSLAM algorithm: flow cases

case 9case 7

case 1

case 4

case 8

case 6
case 5

case 2 case 3

(e)

(e)(e)

(f)

(e)

(e)

(d)

(e)

(e)
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Results Jablonowski and Williamson (2006) baroclinic wave

Ps for (left) SE and (right) CSLAM at day 0, 9, 60
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Results Jablonowski and Williamson (2006) baroclinic wave

Smooth zonally symmetric tracer:
(left) SE and (right) CSLAM at day 0, 13 and 60
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Results Jablonowski and Williamson (2006) baroclinic wave

Discontinuous tracer:
(left) SE and (right) CSLAM at day 0, 21 and 30
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Questions?
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