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Abstract
Recent developments in finite-volume methods provide the basis for new dynam-

ical cores that conserve exactly integral invariants, globally as well as locally, and,
especially, for the design of exact mass conserving tracer transport models. The new
technologies are reviewed and the perspectives for the future are discussed.

1. Introduction

Finite-volume (FV) methods are numerical methods where the fundamental prognostic
variable considered is an integrated quantity over a certain finite-control volume. Thus,
instead of grid-point values, finite elements or spectral components, cell-integrated mean
values are considered. In meteorology, FV methods are, therefore, frequently referred to
as cell-integrated methods. Some FV methods include additional prognostic variables
to enhance the numerical accuracy. These variables can be higher order moments or
point/face values between the control volumes.

In meteorological applications, so far, the control volumes adopted have generally
been the conventional grid cells used in most operational prediction models: i.e., quasi-
horizontal regular grid cells in cartesian coordinates on map projections of the sphere or
regular grid cells in spherical latitude-longitude coordinates. These grid cells are referred
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to as the Eulerian grid cells. In the cell-integrated methods, these are complemented by
Lagrangian control volumes, which move with the air flow, usually in a quasi-Lagrangian
sense, i.e., departing from or arriving at Eulerian grid cells.

Exceptions to the basis of conventional Eulerian grid cells are new operational
models based on grids, which are almost uniform on the sphere. Examples are the
Massachusetts Institute of Technology general circulation model (Adcroft, Campin,
Hill and Marshall [2004]) which is based on the conformal expanded spherical
cube, but still has orthogonal coordinates and quadri laterally shaped grid cells, and the
German NWP model (Majewski, Liermann, Prohl, Ritter, Buchhold, Hanisch,
Paul, Wergen and Baumgardner [2002]) that is based on a non-orthogonal
icosahedral-hexagonal grid on the sphere. For the sake of simplicity, we shall not go
into details with these new grids, which currently is a very active research topic. The
same limitation applies to nonuniform grids, such as the one introduced by Li and Chang
(1996). Thus we shall consider only FV methods in conventional grids.

The FV or cell-integrated methods are well suited for the numerical simulation of
conservation laws. Before the implementation of FV methods in meteorological mod-
eling, only conservative spatial discretization schemes were developed and used (e.g.,
Arakawa [2000],Arakawa and Lamb [1981], Burridge and Hasler [1977], Machen-
hauer [1979], Simmons and Burridge [1981]). With these schemes, just the globally
integrated discretized time derivative of the invariant quantity in question was zero.
Time truncation errors could still cause nonconservation globally. With the introduction
of the FV method, the possibility of a conservative full space-time discretization became
possible (e.g., Machenhauer [1994]). Previously, just global conservation was consid-
ered of importance, whereas with the FV methods, local conservation is considered even
more important (e.g., Machenhauer and Olk [1997]). Conservation laws for mass,
total energy, angular momentum, and entropy constitute the fundamental laws for the
dynamics and thermodynamics of the atmosphere. Also, potential vorticity is considered
a fundamental invariant which should be conserved in an adiabatic friction-free flow. In
general, a discretized cell-integrated prognostic equation for a conservative quantity is
obtained by integrating the differential flux form of the conservation law in question in
space over an Eulerian grid cell and in time over the time-step!t. The space integration
results in an equation stating that the time rate of change of the total quantity in the
grid cell is equal to the sum of fluxes through the cell boundaries. The time integration
determines the fluxes through the cell boundaries during the time-step. These fluxes are
exact if the integration is performed along exact trajectories ending at the boundaries
of the regular Eulerian grid cell (also called the arrival cell) at time t +!t and orig-
inating from the boundaries of an irregular so-called Lagrangian cell (also called the
departure cell) at time t. With such an exact integration, the integral of the conservative
quantity over the arrival cell at time t +!t is equal to the integral over the departure
cell at time t, plus changes due to sources and sinks, if any. We shall mainly concentrate
on conservation of mass, which is the simplest conservation law, as it has no sources
or sinks if precipitation and diffusion of mass is neglected. For this conservation law,
called the continuity equation, we shall derive the exact prognostic equation (Eq. (1.8)
in Section 1.1). Since exact integrations along exact trajectories will be assumed in
the derivation, and since no further approximations are being made, this equation is
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referred to as the exact discretized cell-integrated continuity equation. It implies exact
conservation of mass during a time step, both global conservation, i.e., conservation of
the total mass in the entire integration area and local conservation, i.e., conservation of
the mass in each individual departure cell. During the derivation of the exact discretized
cell-integrated continuity equation, it will be demonstrated that there is equivalence
between traditional flux-form FV approaches and newer semi-Lagrangian FV methods.
In both formulations, one attempts to approximate the same equation.

The general exact discretized cell-integrated continuity equation describes conserva-
tion of mass of “moist air,” which is the atmospheric air including all its constituents.
Corresponding exact continuity equations for the different constituents in the moist air,
for example, water vapor or any chemical constituent, are obtained by simply replacing
the density of moist air ρ with the density ρq = qρ of the constituent in question, where
q is its specific concentration1. In meteorological models, the solution to the continuity
equation for moist air is of special importance. The solution determines the flow of air
mass, which determines the pressure distribution and thus the dynamics of weather sys-
tems, especially the development and decay of weather systems. Spurious mass sources
due to local nonconservation of mass might thus influence the simulation of weather
systems (Machenhauer and Olk [1997]). The solution determines the flow of all con-
stituents in the moist air since they are transported with the air and thus share trajectories
with the air. This is important especially in chemical models as spurious changes in the
ratios between linearly correlated (in space) concentrations of reacting chemical con-
stituents are avoided (Lin and Rood [1996]). Thus, in meteorological models, a “correct”
simulation of the atmospheric dynamics and all kinds of interactions among constituents
depends heavily on the accuracy of the numerical solutions to the continuity equations.

In Section 2, the different mass conserving schemes that have been developed for
meteorological applications in two dimensions (2Ds) are described in detail. In the dif-
ferent schemes, different approximations are made in the determination of the trajectories
and in the integration along the trajectories over the time-step or in the integration over
the departure cell. The approximate schemes presented in Section 2 will be compared
with the exact solution. It will be shown that all the different schemes conserve mass
globally, simply because they are all constructed so that the mass that leaves a certain
face of an Eulerian arrival cell during a time-step is exactly gained in the neighboring
cell with which the cell face is shared. This, of course, does not guarantee a high level of
accuracy as the global conservation may be obtained even with rather inaccurate local
fluxes. However, the accuracy with which the local mass conservation is approximated
is a real measure of the accuracy of the local transports of the moist air and its con-
stituents. Section 2 will mainly focus on relatively new schemes, most of which are
based on (semi-) Lagrangian approaches. For completeness, a short introduction to the
more traditional flux-form schemes is presented as well.

Section 3 provides an overview over the general applicability of FV techniques
in meteorology. This section is initiated with an example of a complete set of FV

1The specific concentration of a constituent is the ratio between the mass of the constituent and the mass of
the moist air it is mixed into.
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prognostic equations that conserve mass, entropy, total energy, and angular momen-
tum in an adiabatic and friction-free atmosphere. Furthermore, Section 3 provides two
examples of pioneering mass conserving hydrostatic dynamical cores in spherical
geometry, which are based on FV techniques. By a dynamical core, we mean a computer
code for the numerical integration of the system of meteorological equations governing
the dynamics of the atmosphere. Roughly speaking, the dynamical core approximates
the solution to the meteorological equations on resolved scales, while parameterizations
represent subgrid-scale processes and other processes not included in the dynamical core
(Thuburn [2006]). However, in tests of dynamical cores, one includes those dissipa-
tion terms, which are needed for smooth and stable integrations. Furthermore, Section 3
includes a discussion of a few remaining issues, such as the so-called mass-wind incon-
sistency in in-line and off-line FV tracer transport applications, and possibilities of
extensions to non-hydrostatic models are briefly discussed. Finally, Section 4 includes
a brief summary of the main issues presented in this chapter.

1.1. The exact cell-integrated continuity equation

In this section, an “exact” discretized cell-integrated continuity equation is derived.
This is introduced as a pre-requisite and reference for the approximate 2D and three-
dimensional (3D) FV schemes to be presented in Sections 2 and 3, respectively. It is
exact in the sense explained above. It is derived from assumed exact integrals along
assumed exact trajectories, which are determined from given exact 3D fields of density
and velocity during a time interval !t from t to t +!t. No further assumptions are
made, apart from a simplifying one of no vertical shear of the horizontal velocity in each
discrete model layer.

Define Eulerian grid cells as the arrival cell indicated to the right in Fig. 1.1 in a
cartesian coordinate system (x, y, h) so that the grid length along the x-axis is !x, the
grid spacing along the y-axis is !y, and h is a terrain following height-based vertical
coordinate defined as h = z − zs, where z is the height above mean sea level and zs

is the height of the surface of the Earth. Surfaces with h equal to a constant hk+1/2
separate the grid-cell layers in the vertical. The “½” in the index refers to the Lorenz
vertical staggering of the variables (Lorenz [1960]). The “half-levels” are located in
between “full-levels” hk = 1/2 (hk+½ + hk−½) with integer index k, where point values
of mass and velocity variables traditionally have been located. Thus, the height difference
between the bottom and the top of the Eulerian grid cell centered at level k, which is
considered in Fig. 1.1, is !k h = hk+½ − hk−½.

To derive the FV version of the continuity equation, we need to integrate along exact
trajectories ending at the boundaries of the arrival cell at time t +!t and originating from
the boundaries of the corresponding departure cell at time t. In Fig. 1.1, the departure
cell is shown as the irregular cell to the left. Only four of the trajectories are shown in
the figure. The exact velocity fields, supposed to be given during the whole time interval
!t from t to t +!t, determine a trajectory ending at any of the points inside or at the
boundaries of the arrival cell. We now define an additional auxiliary vertical coordinate
ξ for a particle: a Lagrangian vertical coordinate (Starr [1945]), which per definition
is constant along its 3D trajectory. We choose the Lagrangian coordinate ξ of a particle,



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 7 1–120

Finite-Volume Methods in Meteorology 7

h

y

x

C1 D C

B
DA

A

B1
A1

!A

D1

Fig. 1.1 Conceptual sketch showing a cell that is moving with the flow in a Lagrangian model layer during
a time-step !t. To the left is shown the cell at time t (the so-called departure cell). The horizontal velocity
"V within the model layer is assumed independent of height so that the cell walls, which initially at time t are
vertical, remain vertical. The cell ends up at time t +!t as the horizontally regular Eulerian grid cell (the
so-called arrival cell) shown in the vertical column to the right. Just four trajectories are shown. The projections

on a horizontal plane are shown in more detail in Fig. 1.2. (See also color insert).

that is moving with the 3D flow during the time-step, to be equal to its h value in or
at the boundary of the arrival cell. Thus, the trajectories constitute a vertical coordinate
system, which is defined only in the time interval from t to t +!t. Obviously, in this
coordinate system, the vertical velocity of a particle is zero:

ξ̇ = dξ
dt

= 0. (1.1)

Here, a simplifying assumption is made, namely that the horizontal wind "V is independent
of height within the Lagrangian model layer, i.e., the layer enclosing all the trajectories
which are ending inside or at the boundary of the arrival cell. Thus, as indicated in
Fig. 1.1, vertical columns that move with the horizontal wind in the layer will remain
vertical. Mathematically, it implies a simplifying separation of the vertical and horizontal
integrations to be performed in the layer. A column may, of course, still change its
thickness δkh due to horizontal convergence or divergence. The trajectories in Fig. 1.2,
which are ending at the corners of the arrival cell, originate from the corner of the
departure cell. For simplicity of the sketch, it is assumed that the horizontal velocity
field is such that the trajectories and lines between neighboring corners in the departure
cell are straight, i.e., the vertical faces of the departure cell in Fig. 1.1 are plane. Note that
since trajectories ending at the boundaries of the arrival cells are shared by neighboring
cells, it follows that the departure cells, as does the arrival cells, fill out the entire
integration domain without any cracks in between.
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Fig. 1.2 Horizontal projections of the arrival cell (A, B, C, D) at time t +!t with area !A and the corre-
sponding upstream departure cell (A1, B1, C1, D1) at time t with area δA. This figure corresponds to a view

from above at the departure and arrival cells in Fig. 1.1.

The differential flux form of the continuity equation in the ξ-coordinate system
becomes

∂ρ

∂t
= −∇ξ · ρ "V − ∂ρξ̇

∂ξ
, (1.2)

where ρ is the density of moist air and "V is the horizontal velocity. To obtain the conti-
nuity equation for a regular vertical column, integrate Eq. (1.2) vertically over the
Lagrangian model layer. The result is

∂ρ̃k δkh

∂t
= −∇ξ · ρ̃k δkh "Vk, (1.3)

where Eq. (1.1) has been used and ρ̃ is the vertical mean density:

ρ̃k = 1
δkh

∫

δkh

ρ dz.

To obtain the cell-integrated continuity equation, integrate Eq. (1.3) horizontally over
the area of the arrival grid cell. After application of the Gauss’s divergence theorem,
we get

!A
∂
(
ρ̃k δkh

)

∂t
= −

4∑

i=1

(
<
(
ρ̃k δkh

) "Vk > · "n !l
)
i
, (1.4)

where !A = !x!y is the horizontal area of the grid cell and

(
ρ̃k δkh

)
= 1
!A

∫∫

!x!y

(
ρ̃k δkh

)
dxdy (1.5)

is the horizontal mean value of ρ̃k δkh in the Eulerian grid cell. In Eq. (1.4), "ni is a unit
vector normal to the ith face of the cell pointing outward, and !li is the length of the
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face equal to either !x or !y.
(
ρ̃k

)
i
, (δkh)i, and ( "Vk)i are instantaneous values at the

cell face i, and the angle brackets represent averages in the x- or y-direction over the cell
faces. The next step is to integrate over the time-step !t, between t and t +!t, which
results in

!A
((
ρ̃k δkh

)+ −
(
ρ̃k δkh

))
= −!t

4∑

i=1

(
<
(
ρ̃k δkh

) "Vk > · "n !l
)
i

(1.6)

Here, the plus-sign in superscript indicates the updated value and the double bar refers
to the time average over !t. Each term on the right-hand side of Eq. (1.6) represents
the mass transported through one of the four Eulerian cell faces into the cell during
the time-step. Each term involves integrals over the cell face in question and over the
time-step. The integral in time over the time-step may be performed in space along the
trajectories terminating on the Eulerian cell face in question, cell face AB for instance
(see Fig. 1.2). Thus, this term in Eq. (1.6) is computed as a surface integral of

(
ρ̃k δkh

)

over the area between the Eulerian cell face AB, the two backward trajectories, AA1
and BB1 originating from the two end points of the Eulerian cell face and the respective
face of the departure cell A1B1. That is, the mass inflow through the southern (or lower)
face in Fig. 1.2 is equal to the integral of

(
ρ̃ δkh

)
over the area marked A1ABB1 in the

figure. Writing this integral as
∫∫

A1B1BA

ρ̃k δkh dx dy, Eq. (1.6) may be rewritten as

(
ρ̃k δkh

)+
!A =

∫∫

ABCD

(
ρ̃k δkh

)
dx dy +

∫∫

A1B1BA

(
ρ̃k δkh

)
dx dy

+
∫∫

A1ADD1

(
ρ̃k δkh

)
dx dy +

∫∫

D1DCC1

(
ρ̃k δkh

)
dx dy −

∫∫

B1BCC1

(
ρ̃k δkh

)
dx dy

=
∫∫

A1B1C1D1

(
ρ̃k δkh

)
dx dy. (1.7)

Here, the mass inflows through the remaining three cell faces are included in the second
line by similar integrals. The first term on the right-hand side is

!A
(
ρ̃k δkh

)
=
∫∫

ABCD

(
ρ̃k δkh

)
dx dy,

i.e., the original mass in the Eulerian grid cell at time t. Thus, as illustrated in Fig. 1.2,
the sum of the first four terms on the right-hand side of Eq. (1.7), representing the
original mass in the Eulerian grid cell, the inflow through the southern, the western,
and the northern cell face is compensated partly by the outflow through the eastern cell
face, represented by the fifth negative term in Eq. (1.7). The result is the integral on the
second right-hand side of Eq. (1.7) that represents the mass in the Lagrangian departure
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cell A1B1C1D1. Denoting the departure cell area as δA (Fig. 1.2), the result may be
written as

∫∫

A1B1C1D1

(
ρ̃k δkh

)
dx dy = ρ̃k δkh δA,

and we obtain finally

(
ρ̃k !kh

)+
!A =

(
ρ̃k δkh

)
δA. (1.8)

This is a prognostic equation predicting the mass in the arrival area at t +!t,
(
ρ̃k δkh

)+
!A, from the mass in the departure area at time t,

(
ρ̃k δkh

)
δA. Note that

no information is needed between t and t +!t and recall that in the arrival area (exactly
in the center of the area) the Lagrangian model layer coincide with the Eulerian cell so that
δkh = !kh. Thus, the right-hand side of Eq. (1.8) can be determined by an integration
of
(
ρ̃k δkh

)
over the departure area and Eq. (1.8) becomes

(
ρ̃k

)+ = 1
!kh !A

∫∫

A1B1C1D1

(
ρ̃k δkh

)
dx dy = 1

!kV

∫∫∫

δkV

ρk dx dy dz, (1.9)

or
(
ρ̃k

)+
!kV =

∫∫∫

δkV

ρk dx dy dz. (1.10)

(
ρ̃k

)+
!kV is the updated mass in the Eulerian arrival grid cell at time t +!t. According

to Eq. (1.10) it is equal to the mass in the upstream departure cell at time t. Thus, the exact
discrete cell-integrated continuity equation (Eq. (1.8)) is simply a cell-integrated analog
to the well-known grid-point semi-Lagrangian continuity equation (Robert [1969, 1981,
1982]) that presently is used in most operational meteorological models. Contrary to the
grid-point version, the cell-integrated equation is inherently mass conservative. It fulfills
exactly our definition of a locally mass conserving scheme as the updated mass in an
Eulerian arrival grid cell is exactly the mass in the upstream departure cell. It is easily
shown by a summation of Eq. (1.8) over the entire integration domain, with assumed
periodic lateral boundary conditions, that it also implies global mass conservation. The
analogy to the grid-point semi-Lagrangian continuity equation shows that an alternative
way to derive Eq. (1.8) would be to set up the mass conservation law directly for FV on a
Lagrangian form and then integrate that form over!t. The mass in a FV δkV considered
at time t is

MδkV =
∫∫∫

δkV

ρk dx dy dz. (1.11)
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The mass conservation law for this FV, which is supposed to move with the flow without
any mass flux through its boundaries, is

d MδkV

dt
= 0. (1.12)

When integrated in time from t to t +!t, Eq. (1.12) gives Eq. (1.8), which as shown
above leads to Eq. (1.10). The reason for presenting the more complicated derivation
starting from the Eulerian flux form of the mass conservation law (1.2) is that some
numerical FV schemes, the so-called f lux-form schemes, are based on the flux form
(1.2), whereas others, the so-called Lagrangian schemes, are based on the Lagrangian
form (1.12). The purpose of the present derivation was to show that in the case of exact
trajectories and exact mass integrals over the relevant volumes, the flux-form Eq. (1.2)
is equivalent to the Lagrangian form (1.12). When, as it is usually the case, a flux-form
scheme becomes different from a Lagrangian scheme, it is due to different approxima-
tions to the trajectories defining the departure volume and different approximations to the
upstream mass integrals. A measure of accuracy for both types of schemes should there-
fore be how close they are to the ideal “exact” scheme. That is, how close the approximate
departure volume is to the real, exact one and how close the exact mass integral over
the exact departure volume is to the approximate mass integral over the approximate
departure volume. In other words, how accurate the local mass conservation is.

1.2. Longtime step schemes and combinations with semi-implicit time-stepping

The reason for the recent renewed interest in FV methods in meteorological model-
ing was the observation of a significant lack of global mass conservation in numerical
models using the grid-point version of the semi-Lagrangian scheme unless an unphys-
ical so-called mass-fixer, which restores the total mass globally after each time step, is
used. There is an arbitrariness in the way these mass-fixing algorithms repeatedly restore
global mass conservation without ensuring any local mass conservation, i.e., without ful-
filling a continuity equation for the mass that is transported locally between the Eulerian
grid cells of the model each time-step (Machenhauer and Olk [1997]). Without such a
mass-fix, a significant drift in the global mass was observed (Bates, Higgins and Moor-
thi [1995]), and even with a mass-fixer, it seems likely that significant local errors are
developed (Machenhauer and Olk [1997]). Nevertheless, the reason for the popularity
of the grid-point semi-Lagrangian schemes has been its almost unconditional absolute
stability, which in practice eliminates the advective Courant-Fredrichs-Levy (CFL) time-
step restriction. This property is utilized in most operational meteorological models in
combination with a semi-implicit treatment of the gravity wave terms in the primitive
equations, which eliminates the fast wave CFL time-step restriction. Then, in principle,
the length of the time-steps in a combined semi-implicit semi-Lagrangian model can be
chosen solely based on accuracy considerations. This is extremely important in meteo-
rological models where any gain by an increased time-step can be utilized to increase the
realism of parameterized physical processes and/or the spatial resolution of the model
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grid. According to general operational experience, such improvements have practically
always led to an increase in accuracy. As should be expected from the experience
with the grid-point semi-Lagrangian schemes, the recently developed cell-integrated
semi-Lagrangian schemes are also (almost) unconditionally stable (Lauritzen [2007]),
eliminating in practice the advective CFL time-step restriction. It has furthermore
recently been shown that fast waves in cell-integrated semi-Lagrangian models can
be stabilized by a combination with a semi-implicit time extrapolation scheme. This has
been demonstrated by Machenhauer and Olk [1997] for a simple one-dimensional
(1D) mass and momentum or mass and total energy conserving model and Lauritzen,
Kaas and Machenhauer [2006] for shallow water models and by Lauritzen, Kaas,
Machenhauer and Lindberg [2008] for a complete 3D mass conserving model. An
alternative method, which has been used in finite difference grid-point models to stabi-
lize the fast waves, is the so-called split-explicit time-stepping. However, this possibility
was abandoned by Machenhauer and Olk [1997] for FV models because when split-
ting the system of continuous equations into an advective part, which should use large
time-steps, and an adjustment gravity wave part, which should use short time-steps, it
was found that neither of the sub systems were conserving momentum or total energy.
Consequently, these invariants for the full system could not be conserved exactly in any
FV version.

As mentioned above, Section 3 describes two mass conserving quasi-hydrostatic
dynamical cores, both combined with comprehensive physical parameterization pack-
ages. One of these dynamical cores described in Lauritzen, Kaas, Machenhauer and
Lindberg [2008] is a semi-implicit version using large time steps for all variables, while
the other one described in Lin [2004] and Collins, Rasch, Boville, Hack, Mccaa,
Williamson, Kiehl, Briegleb, Bitz, Lin, Zhang and Dai [2004] uses an explicit
time-stepping scheme. The latter model uses explicit, relatively small time-steps for the
dynamical core but large time-steps for the transport of all tracer species (including water
vapor) and for physical parameterizations.

2. Transport schemes in one and two dimensions

In meteorological models, a FV method for the continuity is based on the exact cell-
integrated continuity equation and obviously it should be approximated as accurately as
possible.As discussed in Section 1, the vertical and horizontal problems can be separated
in a consistent way considering Lagrangian cells moving with vertical walls along three
dimensional trajectories. Consequently, only horizontal integrals of vertically integrated
mass distributions are needed in the solution of the continuity equation. So in case of
a flux-form Eulerian scheme, the fluxes through the four cell faces can be determined
by horizontal integrals (as described in connection with Eq. (1.6)), and for the departure
cell-integrated semi-lagrangian (DCISL) scheme, direct integrations over the horizontal
departure area approximating the true departure area can be performed (as indicated in
Eq. (1.8)). Hence, by using this approach, one can directly apply 2D FV schemes for
the 3D problem. Alternatively, flux-form schemes may be extended to 3Ds by including
vertical advection through the top and bottom surfaces of Eulerian grid cells. Similarly,
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the 3D DCISL scheme would perform a 3D integral over the Lagrangian departure cell.
However, following these fully 3D approaches would become very complicated if one
aims at a numerically efficient and mass conserving integration.

Because of the general applicability of 2D solutions to the continuity equation, this
section, beside basic 1D formulations, is devoted to the fully 2D schemes. Compared with
the large number of mass conserving transport schemes published in the general fluid
dynamical literature, there are many fewer schemes that have been used or are applicable
in real meteorological applications on the sphere. Here, we mostly concentrate on the
subset that is potentially applicable in a wide range of atmospheric models. Therefore,
descriptions of the vast majority of the hundreds of transport schemes developed in
computational fluid dynamics in general are excluded. For a more general review of FV
methods, see e.g., Leveque [2002] and Eumard, Gallouët and Herbin [2000].

Before discussing the different FV schemes used in the atmospheric sciences, it is
important to realize which properties a transport scheme ideally should possess. An
overview of these properties is provided in Section 2.1. The FV schemes presented in
this overview use sub grid representations at time t in order to make the forecast at
time t +!t. The most frequently used sub grid representations and associated filters
ensuring some of the properties listed in Section 2.1 are introduced in Section 2.2.
This is followed, in Section 2.3, by an overview of the different types of FV methods
applied in 2D problems. Section 2.4 briefly describes some – mostly recent – local mass
conservation fixers for semi-Lagrangian models which can be considered closely related
to FV semi-Lagrangian schemes. Aiming at enhanced accuracy, Section 2.5 discusses
the possibilities to include extra prognostic variables in addition to the cell-mean values.
The so-called flux-limiter methods have been popular approaches to maintain attractive
shape-preserving properties. A brief introduction to these methodologies, which are
complementary to the filtering methods mentioned in Section 2.2, is given in Section 2.6.
Finally, Section 2.7 provides some concluding remarks on the basic FV transport schemes
in 1 and 2Ds.

2.1. Desirable properties

The equation subject to the toughest requirements is probably the continuity equation for
tracers such as moisture, the spatial distribution of which includes sharp gradients. Rasch
and Williamson [1990] have defined seven desirable properties for transport schemes:
accuracy, stability, computational efficiency, transportivity, locality, conservation, and
shape-preservation. In addition to the seven desirable properties defined by Rasch and
Williamson [1990], even more desirable properties have emerged in the literature, e.g.,
consistency, compatibility, and preservation of constancy. The perfect scheme would
have all the desirable properties listed above under all conditions but, in practice, no
single method is advantageous under all conditions.

2.1.1. Accuracy
The high-accuracy property is, of course, the primary aim for any numerical method, and
all the desirable properties listed above, apart from the efficiency requirement, are part of
the overall accuracy. Note that for a flow with shocks or sharp gradients, the formal order



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 14 1–120

14 B. Machenhauer et al.

of accuracy in terms of Taylor series expansions does not necessarily guarantee a high
level of accuracy. Part of the accuracy is also the rate of convergence of the numerical
algorithm.

Widely used measures of accuracy in the meteorological community for idealized test
cases are the standard error measures l1, l2, and l∞ (e.g., Williamson, Drake, Hack,
Jakob, Swarztrauber, [1992]):

l1 = I (|ψ − ψE|)
I (|ψE|) , (2.1)

l2 =
{
I
[
(ψ − ψE)2]}1/2

{
I
[
(ψE)2]}1/2 , and (2.2)

l∞ = max [|ψ − ψE|]
max [|ψE|] , (2.3)

where I(·) denotes the integral over the entire domain, ψ is the numerical solution, and
ψE is the exact solution if it exists. In case an exact solution does not exist, ψE is a high-
resolution reference solution. l1 and l2 are the measures for the global “distance” between
ψ and ψE, and l∞ is the normalized maximum deviation of ψ from ψE over the entire
domain. In addition to these error measures, the normalized maximum and minimum
values of ψ are also used to indicate errors related to overshooting and undershooting.

To evaluate the accuracy of new schemes, several idealized advection test cases have
been formulated. The interscheme comparison, however, is often made difficult by the
fact that different authors use different test cases and/or different error measures. The
test problems can be divided into two categories. Firstly, translational passive advection
tests where distributions are transported by prescribed non-divergent winds that, ideally,
translate the initial distribution without distorting it; these test cases involve the entire
domain. Secondly, deformational test cases which focus on part of the domain such as
an initial distribution being deformed by a vortex. Recently, Nair and Jablonowski
[2007] combined these two types of test cases into one.

Probably, the most commonly used idealized test case in the meteorological literature
is the solid body rotation of a cosine cone and/or a slotted cylinder. In cartesian geometry,
the test case is described in, e.g., Zalesak [1979] and Bermejo and Staniforth [1992],
and the spherical version is test case 1 of the suite of test cases by Williamson, Drake,
Hack, Jakob and Swarztrauber [1992]. The analytic solution to this problem is simply
the translation of the initial distribution along a circle in cartesian geometry and a great
circle in the spherical case. It is an important part of accuracy that the advection schemes
can transport distributions across the singularities of the numerical grids without distor-
tion and imposing severe time-step limitations. Drake, Hack, Jakob, Swarztrauber
and Williamson [1992] suggested that the cosine bell is transported along the equator
and across the poles with a slight offset to avoid any symmetry. Note, however, that
away from the poles, advection along these great circles is almost along coordinate
axis for conventional latitude-longitude grids that, in general, favor the advection
scheme.
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Passive advection of scalars using the solid body rotation test case only addresses the
ability of the scheme to translate a distribution without distorting it. Other commonly
used test cases are based on a deformational flow, for example the swirling shear flow test
in cartesian geometry considered by Durran [1999, Section 5.7.4], which is specified in
terms of a periodically reversing time-dependent velocity field. Hence, after one period,
the exact solution is the initial distribution. It could, however, be speculated that some
errors introduced during the first half period are cancelled when the wind field reverses.
Other deformational flow test cases, to which the exact solution is known throughout
the time of integration, are defined in Smolarkiewicz [1982] (analytical solution is
given in Côté, Staniforth and Pudykjewicz [1987]) and Armengaud and Hourdin
[1999]. The idealized cyclogenesis problem described by Doswell [1984], to which the
analytic solution is known, has been used for scalar-advection tests by several authors.
For example, the non-smooth deformational flow vortex defined on a tangent plane
(e.g., Rančić [1992], Hólm [1995], Côté, Nair and Staniforth [1999a]). A version
was formulated for the sphere by Nair, Scroggs and Semazzi [2002] and Nair and
Machenhauer [2002]. It is a smooth deformational flow test case that consists of
two symmetric vortices, one over each pole. This test case has been combined with a
translational wind field in Nair and Jablonowski [2007] to form a test case (where the
analytical solution is known) that simultaneously challenges schemes with respect to
deformation and translation.

2.1.2. Stability
The stability property ensures that the solution does not “blow up” during the time of
integration. Usually, the stability of Eulerian methods is governed by the CFL condition,
which in 1D is given by

max
∣∣∣∣
u!t

!x

∣∣∣∣ ≤ 1, (2.4)

where u is the velocity and!x the grid interval. Hence, a fluid parcel may not travel more
than one grid interval during one time-step. This overly restrictive time-step limitation
is usually alleviated in semi-Lagrangian methods and can be replaced by the less severe
Lipschitz convergence criterion

∣∣∣∣
∂u

∂x

∣∣∣∣!t < 1, (2.5)

(Benoit, Pudykiewicz and Staniforth [1985]; Kuo and Williams [1990]), which
guarantees that parcel trajectories do not cross during one time-step and ensures the
convergence of the trajectory algorithm (a multi dimensional extension of Eq. (2.5) is
given in Benoit, Pudykiewicz and Staniforth [1985]). Hence, in semi-Lagrangian
models, the time-step can be chosen for accuracy and not for stability because of the
lenient stability condition.

For global models based on a conventional latitude-longitude grid, the efficiency and
stability of the advection schemes are often challenged by the convergence of the meridi-
ans near the poles, and special care must be taken in the vicinity of the poles.Alternatively,



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 16 1–120

16 B. Machenhauer et al.

the problem can be tackled by using other types of grids that do not have these singulari-
ties or at least reduce the effect of them, for example, the icosahedral-hexagonal grid used
operationally by the German Weather Service (e.g., Arakawa, Mintz and Sadourny
[1968], Williamson [1968], Thuburn [1997], Majewski, Liermann, Prohl, Ritter,
Buchhold, Hanisch, Paul,Wergen and Baumgardner [2002]), and the cubed sphere
approach originally introduced by Sadourny [1972] which, after having remained dor-
mant for many years, has become a very active research topic (e.g., Iacono, Paolucci
and Ronchi [1996], Mesinger and Rančić, Purser [1996], McGregor [1996], Iskan-
drani, Taylor and Tribbia [1997], Loft, Nair and Thomas [2005]). These grids are
more isotropic than conventional latitude-longitude grids, i.e., all cells have nearly the
same size, contrarily to latitude-longitude grids, where the areas decrease as aspect
ratios increase toward the poles (this effect can, however, be alleviated by using a
Gaussian-reduced grid in which the number of longitudes decrease toward the poles).

2.1.3. Computational efficiency
Computing resources are limited and, given the complexity of geophysical fluid
dynamics, the algorithms should be computationally efficient in order to allow for high-
resolution runs and/or a large number of prognostic variables. Efficiency is, however,
hard to measure objectively. One measure for the efficiency of an algorithm is the number
of elementary mathematical operations or the total number of floating-point operations
per second (FLOPS) used by the algorithm. The advantage of counting FLOPS is that
it can be done without using a computer and is, therefore, a machine-independent mea-
sure. But the number of FLOPS only captures one of several dimensions of the efficiency
issue. The actual program execution involves subscripting, memory traffic and count-
less other overheads. In addition, different computer architectures favor different kinds
of algorithms and compilers optimize code differently. Measuring efficiency in terms
of the execution time on a specific platform can be misleading for a user on another
computer platform. Weather prediction and climate models are often executed on mas-
sively parallel distributed memory computers where the efficiency is partly determined
by the amount of communication between the nodes. This becomes increasingly impor-
tant if the resolution is held fixed while the number of distributed memory processors
is increased. Hence, the parallel programmer is concerned about algorithms being local,
thus minimizing the need for communication between the nodes. Nevertheless, a very
important measure of efficiency is probably the level of simplicity of the algorithm.

Since models include an increasing number of tracers, an important aspect of the
efficiency is how much of the transport algorithm can be reused for additional tracers.
Obviously, if the entire transport algorithm must be repeated for each additional tracer,
such an algorithm would not be attractive in modern transport models that include hun-
dreds of tracers. In semi-Lagrangian models, for example, the computation of trajectories
need only be computed once and can be reused for all tracers (e.g., Dukowicz and
Baumgardner [2000]).

Thus, the computational cost of a given model depends not only on the number of
FLOPS involved in the production of say one model day; it depends also to a high degree
on the computer architecture on which the model is run. The optimization of a given
model intended for operational application on a given platform is often an extensive
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and complicated work for an experienced programmer, and the result will vary with the
ingenuity of the programmer. The new algorithms presented here are often developed on
an experimental basis by scientists who are not specialized programmers, and therefore,
they are usually far from an optimized code suited for operational applications. It is,
therefore, not fair to uncritically compare the computational cost of such new FV algo-
rithms with traditional well-optimized algorithms. For this reason, information on the
computational costs of the new algorithms are most often not available in the literature.
When they are available, they should be considered with the reservations stated here and
should only be considered as possible maximum computational costs, which most likely
could be reduced for operational applications.

It should be noted that it could be misleading to compare computational efficiency
and accuracy of two algorithms at the same spatial and temporal resolution. A scheme
might be computationally inefficient at a given resolution compared to other schemes
but have an accuracy that other schemes would need a much finer resolution in order
to achieve (the opposite situation is, of course, also possible). In other words, ideally
one should consider the ratio between computational cost and accuracy when comparing
numerical schemes. That would enable one to select the scheme where one pays as little
as possible computationally for the highest level of accuracy.

2.1.4. Transportivity and locality
The transportive and local property guarantee that information is transported with the
characteristics and that only adjacent grid values affect the forecast at a given point. For
FV schemes, one aspect of the local property is the degree of local mass-conservation
that we define as follows. Since the mass enclosed in an area moving with the flow is
conserved in the absence of sources and sinks, the degree to which the effective departure
area of the numerical scheme coincides with the exact departure area is a measure for the
local mass conservation of a given scheme. Another aspect of local mass conservation
is the degree to which the reconstruction of the subgrid-scale distribution is local. For
example, near sharp gradients, it is important that the gradient is not weakened during the
process of reconstructing the subgrid-scale distribution, i.e., the reconstruction should
be local.

2.1.5. Shape-preservation
The shape of a distribution undergoing pure advection should ideally be preserved in
the numerical solution. For general velocity fields, the shape of the distribution may
be altered in the form of new extrema. In such situations, the numerical scheme should
reproduce only the physical extrema without creating spurious numerical extrema. These
spurious numerical extrema especially cause problems in situations where the advection
scheme produces negative mixing ratios (or concentrations) or when the values are
above the maximum possible. Negative mixing ratios or mixing ratios above a physical
threshold value are unphysical and would most likely cause a breakdown in physical
parameterizations. If a numerical scheme inherently prevents negative undershoots in
mixing ratios (or concentrations), it is termed positive-definite (or positivity preserving),
if it preserves gradients, then the scheme is monotone, and if artificial oscillations are
prevented, it is termed nonoscillatory.All these properties are, of course, interrelated and,
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constitutes together the shape-preservation property. The very popular spectral methods
are well known for producing “wiggles” (also known as Gibb’s phenomena) near sharp
gradients and are, therefore, a typical example of a monotonicity-violating and oscillatory
numerical method.

2.1.6. Conservation
Ideally, all global integral invariants of the corresponding continuous problem should
be conserved for any kind of flow. For long simulations, the conservation properties
become increasingly important as numerical sources, and sinks can degrade the accuracy
and alter global balance budgets significantly over time. Hence, for climate models, the
FV methods are very attractive given their inherent conservation properties. However,
a numerical model can only maintain a small number of analogous invariant properties
constant, and some choice must be made as to which conserved quantities are to be
conserved in the numerical model. For a comprehensive discussion of this issue, see
Thuburn [2006]. Probably, the most important property to conserve for a continuity
equation is the first moment, i.e., mass.

2.1.7. Consistency
The consistency property is less frequently discussed in the literature. Notable exceptions
are Jöckel, Von Kuhlmann, Lawrence, Steil, Brenninkmeijer, Crutzen, Rasch
and Eaton [2001] and Byun [1999]. This property concerns the coupling between
the continuity equation for air as a whole and for individual tracer constituents. In
the continuous case, the flux-form continuity equation for a constituent with specific
concentration q,

∂

∂t
(qρ) + ∇ ·

(
"vqρ
)

= 0 (2.6)

degenerates to

∂

∂t
(ρ) + ∇ ·

(
"vρ
)

= 0 (2.7)

for q = 1. This should ideally be the case numerically as well. If the two equations are
solved using the same numerical method, on the same grid and using the same time-
step, the consistency is guaranteed. However, in reality, in practical applications of FV
transport schemes, the settings are often inconsistent in this sense. This is definitely the
case in offline tracer transport models. The consistency property, or rather the lack of it
(referred to as the mass-wind inconsistency), will be discussed in detail in Section 3.

2.1.8. Compatibility
The compatibility property was defined by Schär and Smolarkiewicz [1996] for
Eulerian schemes, and the definition is here extended also to include semi-Lagrangian
schemes. As the consistency property, it concerns the relationship between continuity
equations. Equations (2.6) and (2.7) imply

dq

dt
= 0, (2.8)
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which states that the constituent mixing ratio is conserved along the characteristics of the
flow. Compatible transport is when the discretization of Eq. (2.6) is consistent with the
advective form (Eq. (2.8)) so that the predicted mixing ratio qn+1, which in a flux-form
setting is recovered from (qρ)n+1, is limited by the mixing ratios in the Eulerian cells
from which the mass departs. The compatibility property is graphically illustrated in
Fig. 2.1.

2.1.9. Preservation of constancy
Another desirable property is the ability of the scheme to preserve a constant tracer field
for a non-divergent flow. For traditional semi-Lagrangian methods based on Eq. (2.8),
a constant distribution is trivially conserved since the divergence of the velocity field
does not appear in the prognostic equation (for a review of traditional semi-Lagrangian
methods, see, e.g., Staniforth and Coté [1991]). In fact, for any velocity field, the
traditional semi-Lagrangian method preserves a constant mixing ratio. For FV methods
where the divergence appears explicitly since tracer mass, and not mixing ratio, is the
prognostic variable, it is not automatic that a constant field is preserved for a nondivergent
velocity field. Non-conservation of constant fields may cause error problems and even
instability, see Section 3.3.2.

2.1.10. Preservation of linear correlations between constituents
Another desirable property identified by Lin and Rood [1996] is that a numerical scheme
should ideally preserve tracer correlations since correlations carry fundamental infor-
mation on atmospheric transport. This is particularly important in chemical atmospheric
models where the relative concentrations of constituents are crucial for the speed and

21

43

Fig. 2.1 A graphical illustration of the compatibility property. The arrows show the trajectories for the cell
vertices. The shaded area is the departure cell that, after one time-step, ends up at the regular grid as depicted

by the arrows. A finite-volume scheme predicts the change in total mass in the Eulerian cell (qρ)
n+1, which

is the mass enclosed in the departure cell (shaded area). Since the mixing ratios are preserved along parcel
trajectories, the mixing ratio in the arrival cell q n+1 should be within the range of the mixing ratios at the
departure points. For the situation depicted on the figure, the compatibility condition is min

(
q n

1 , q n
2 , q n

3 , q n
4
)

≤
q n+1 ≤ max

(
q n

1 , q n
2 , q n

3 , q n
4
)
, where qi denotes the average mixing ratio in the cell numbered i, i = 1.4, on

the figure.
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balances of chemical reactions. It is possible to construct transport schemes that maintain
spatially constant linear correlations between tracers exactly, see, e.g., Lin and Rood
[1996].

2.2. Subgrid-cell distributions of the prognostic variables

In all FV schemes presented here – flux based as well as Lagrangian types – it is necessary
to determine the subgrid-cell distribution from the surrounding cell averages in order to
make accurate estimates of the fluxes through the Eulerian cell walls or mass enclosed
in the upstream departure cell. Therefore, 1 and 2D reconstructions are discussed before
the actual schemes are introduced.

2.2.1. 1D subgrid-cell reconstructions
Several 1D methods for reconstructing the subgrid distribution have been published in the
literature. The simplest subgrid representation is a piecewise constant function followed,
in complexity, by a piecewise linear representation (Van Leer [1974]). Both methods
are computationally cheap, optionally monotonic, and positive-definite (the piecewise
constant method is shape-preserving by default) but, on the other hand, excessively
damping and therefore not suited for long runs at coarser resolutions. To reduce the
dissipation to a tolerable level, the subgrid-cell representation must be polynomials of at
least second degree. Requirements of computational efficiency put an upper limit to the
order of the polynomials used, which explains why the predominant choice is second
order.

Let the walls of the ith cell be located at xi and xi+1 and denote the cell width!xi =
xi+1 − xi. The coefficients of the subgrid-cell reconstruction polynomials are determined
by imposing constraints. Apart from the basic requirement of mass conservation within
each grid cell, the choice of constraints is not trivial. Probably the simplest parabolic fit
is obtained by requiring that the polynomial

pi(x) = (a0)i + (a1)i x + (a2)i x
2, x ∈ [xi, xi+1] (2.9)

not only conserves mass in the ith grid cell

xi+1∫

xi

pi(x)dx = !xiψi, ψ = ρ, ρq (2.10)

but also in the two adjacent cells:

xi+2∫

xi+1

pi(x)dx = !xi+1ψi+1, (2.11)

xi∫

xi−1

pi(x)dx = !xi−1ψi−1, (2.12)
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(Laprise and Plante [1995]). By substituting Eq. (2.9) into Eqs. (2.10), (2.11), and
(2.12) and by evaluating the analytic integrals, a linear system results that can easily be
solved for the three unknown coefficients (a0)i, (a1)i, and (a2)i (Laprise and Plante
[1995]). When performing this operation for all cells, a global piecewise-parabolic repre-
sentation is obtained. The method is only locally of second order since it is not necessarily
continuous across cell borders. This method is referred to as the piecewise parabolic
method 1 (PPM1).

An alternative way of constructing the parabolas, which ensures a globally continuous
distribution if no filters are applied, is the piecewise-parabolic method ofWoodward and
Colella [1984] (hereafter referred to as PPM2). PPM2 has been reviewed in the con-
text of meteorological modeling in Carpenter, Droegemeier, Hane and Woodward
[1990]. Instead of requiring that pi(x) conserves mass in adjacent cells, the constraint
is that the polynomial equals prescribed west and east cell-edge values, pW

i = pi(xi)

and pE
i = pi(xi+1), respectively, at the cell edges. pE

i is computed with a cubic polyno-
mial fit (see Woodward and Colella [1984] for details). For an equidistant grid, the
result is

pW
i = 7

12

(
ψi−1 + ψi

)
− 1

12

(
ψi+1 + ψi−2

)
, (2.13)

(for a nonequidistant grid, see Colella and Woodward [1984]). The east cell-border
value, pE

i , is simply an index shift of the formula for pW
i

pE
i = pW

i+1. (2.14)

It is convenient to use the cell average, ψi, and pW
i and pE

i to define the ith parabola,
instead of using (a0)i, (a1)i, and (a2)i. The equivalent formula for pi(x) is given by

pi

(
ξx
)

= ψi +
(
δpx
)
i
ξx +

(
px

6
)
i

[
1
12

−
(
ξx
)2
]
, (2.15)

where (δpx)i is the mean slope

(
δpx
)
i
= pE

i − pW
i , (2.16)

(
px

6

)
i

is the “curvature”

(
px

6
)
i
= 6ψi − 3

(
pW

i + pE
i

)
, (2.17)

and ξx is the nondimensional position defined by

ξx = x − xi

!xi
− 1

2
. (2.18)
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PPM2 uniquely defines the parabolas and Eq. (2.15) guarantees that the global subgrid
distribution is continuous across cell borders. Zerroukat, Wood and Staniforth
[2002] found in passive advection tests that using the PPM2 for the subgrid-cell recon-
structions (where the parabolas were continuous across cell borders) results in more
accurate solutions compared with PPM1 (in which the distribution is not necessarily
continuous across cell borders).

Instead of using the PPM1 or PPM2, Zerroukat, Wood and Staniforth [2002]
derived a piecewise cubic method for the reconstruction of the subgrid-cell distribu-
tions. PPM2 is a special case of the piecewise cubic method. Of course, any kind of
reconstruction that is mass conserving can be used, e.g., rational functions as used in the
transport scheme of Xiao, Yabe, Peng and Kobayashi [2002] and the parabolic spline
method (PSM) recently developed by Zerroukat, Wood and Staniforth [2006]. In
idealized advection tests, Zerroukat, Wood and Staniforth [2007] found that using
the PSM for the subgrid-scale reconstructions in their scheme generally leads to more
accurate results than when using PPM2. This is despite the fact that, in terms of operation
count, PSM is 60% more efficient than PPM2. However, at present, the most widespread
subgrid-cell reconstruction method is PPM2.

Without further constraining the coefficients of the parabolas, it is not guaranteed
that the subgrid-scale reconstruction preserves monotonicity or positive definiteness
(Godunov [1959]). A simple monotonic filter was proposed by Colella and Wood-
ward [1984], and is explained in Fig. 2.2. For local extrema, the filter is similar to
the quasi-monotonic filter by Bermejo and Staniforth [1992] for traditional semi-
Lagrangian advection schemes, i.e., the subgrid-scale distribution is reduced to a constant
when there is a local extrema in the cell averages (Fig. 2.2a). This severe clipping can sig-
nificantly reduce the accuracy as idealized advection tests have shown (compare CISL-N
with CISL-M and CCS-N with CCS-M in Table 2.1). Clearly, one would like to retain
the higher order polynomial in the situation depicted in Fig. 2.2a while not altering the
treatment of the situation in Fig. 2.2b.

Lin and Rood [1996] modified the Colella and Woodward [1984] monotonic filter
so that the monotonic filter only applies to undershooting and does not interfere with any
of the overshooting (referred to as semi-monotonic filter). The semi-monotonic filter can
further be modified so that it only prevents negative undershooting, whereby it becomes
a positive-definite filter. Since these filters avoid the severe clipping of overshoots, the
application of these filters shows a dramatic increase in accuracy in idealized advection
tests compared with the monotonic filter described in the previous paragraph (CISL-P
and CCS-P in Table 2.1). Other filters with more relaxed constraints, but which are
computationally more efficient, can be found in Lin [2004]. However, all these filters
are still not fully satisfactory since they do not interfere with all types of spurious under-
shooting and overshooting.

As mentioned, the filter should not interfere with local extrema as the one in Fig. 2.2a
but still apply the monotonic filter in the situation depicted on Fig. 2.2b (similarly for
undershooting). That is what the filter of Sun, Yeh, Sun and Sun [1996] for traditional
semi-Lagrangian schemes is designed to do. Through a series of logical statements, the
filter detects local extrema and does not alter the high-order subgrid-scale reconstruction
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i1 1i21cell index: i

(a)

(b)

i1 1i21cell index: i

Fig. 2.2 A graphical illustration of the basic monotonic filter of Colella and Woodward [1984]. Solid
lines show the cell averages, and the dashed line is the unmodified piecewise parabolic fit. (a) The sit-
uation in which the parabola in cell i is a local extrema. The monotonic filter sets the parabola equal
to a constant in cell i. (b) The situation when ψi is in between (pE)i and (pW)i, but is sufficiently
close to one of the edge values that the parabola takes values outside the range of the surrounding cell

averages, i.e., when
∣∣(pW − pE)i

∣∣ ≥
∣∣∣
(
px

6
)
i

∣∣∣. In this situation, (pE)i is reset and the gradient at the east

cell wall is set to zero thereby guaranteeing monotonicity of the polynomial in cell i (dash-dotted line)
or vice versa.

where these nonspurious extrema are located. As pointed out by Nair, Côté and
Staniforth [1999a], this filter, however, is still unsatisfactory near strong gradients,
where the unmodified subgrid-scale distribution exhibits 2!x noise. In such a situation,
for example, the semi-monotonic filter of Lin and Rood [1996] or the filter of Sun,
Yeh and Sun [1996] does not filter the noise satisfactorily (Fig. 2.3). To deal with such
situations (and others) while still maintaining non-spurious extrema, Zerroukat, Wood
and Staniforth [2005] proposed a more advanced filter that, in the situations shown
on Figs. 2.2 and 2.3, consecutively reduces the order of the fitting polynomials until
none of the spurious overshooting and undershooting depicted on the Figs. 2.2 and 2.3
appear. Then, the severe clipping of physical “peaks” is eliminated and grid-scale noise is
removed without introducing excessive numerical damping. Contrarily to the monotonic
filter of Colella and Woodward [1984], this filter can improve the accuracy compared
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Table 2.1
Error norms for the schemes of Zerroukat, Wood and Staniforth [2005] (SLICE), Nair and
Machenhauer [2002] (CISL), and Nair, Scroggs and Semazzi [2002] (CCS) for test case 1 in Williamson,
Drake, Hack, Jakob and Swarztrauber [1992]. α̂ is the angle between the axis of solid body rotation and
the polar axis of the spherical coordinate system. Hence α̂ = 0 is solid body rotation along the equator and
α̂ = π/2 advection across the poles. The error measures for α̂ = π/3 are from Lauritzen, Kaas and Machen-
hauer [2006]. “N” denotes no filter, “M” the monotonic filter, and “P” the positive-definite filter used in the
respective schemes. Note that the monotonic filter and subgrid-scale reconstructions in SLICE are different

from the other schemes (see text for details)

α̂ = 0 α̂ = π/2 α̂ = π/3

Schemes l1 l2 l∞ l1 l2 l∞ l1 l2 l∞

SLICE-N 0.046 0.029 0.022 0.079 0.049 0.042 — — —
SLICE-M 0.038 0.024 0.017 0.058 0.040 0.037 — — —
CISL-N 0.052 0.035 0.032 0.063 0.046 0.048 0.075 0.051 0.083
CISL-P 0.025 0.025 0.031 0.059 0.045 0.048 0.043 0.082 0.076
CISL-M 0.094 0.091 0.108 0.084 0.084 0.109 0.077 0.089 0.18
CCS-N — — — 0.054 0.042 0.065 0.051 0.039 0.076
CCS-P 0.036 0.034 0.042 0.051 0.041 0.065 0.033 0.034 0.077
CCS-M — — — 0.076 0.082 0.129 0.070 0.086 0.186

i1 1i21cell index: i

Fig. 2.3 A situation in which the unmodified subgrid-cell reconstruction exhibits strong Gibbs phenom-
ena. The semimonotonic filter of Lin and Rood [1996] would set the polynomials in cell i − 1 and
i + 1 equal to the cell average, but would not modify the polynomial in cell i that, in this situation, is a

spurious overshoot.

to the unfiltered high-order solution (see Semi-Lagrangian inherently conserving and
efficient (SLICE)-N and SLICE-M in Table 2.1). A similar filter has also been developed
for the PSM (Zerroukat, Wood and Staniforth [2006]).

2.2.2. 2D subgrid-cell reconstructions
As for the 1D case, 2D linear reconstructions exist (e.g., Dukowicz and Baumgardner
[2000] and Scroggs and Semazzi [1995]), but, in general, they introduce too much
numerical damping for meteorological applications. The PPM in 1D can be directly



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 25 1–120

Finite-Volume Methods in Meteorology 25

extended to 2Ds as done by Rančić [1992], i.e., in terms of a fully 2D subgrid-cell
reconstruction

pi,j (x, y) = (a1)i,j + (a2)i,j x + (a3)i,j x2 + (a4)i,j y + (a5)i,j y2 + (a6)i,j xy

+ (a7)i,j xy2 + (a8)i,j x2y + (a9)i,j x2y2, (x, y) ∈ [xi, xi+1] ×
[
yj, yj+1

]
.

(2.19)

This fully biparabolic fit involves the computation of nine coefficients, so nine constraints
are needed to determine the coefficient values.Apart from the conservation of mass within
each cell

∫∫

!Ai,j

pi,j(x, y)dxdy = ψi,j!Ai,j, (2.20)

the other eight constraints chosen by Rančić were formulated in terms of the four corner
values of pi,j(x, y) and the average of pi,j(x, y) along the four cell walls. The corner
point scalar values were computed by fitting 2D third-order polynomials using the 16 cell
averages surrounding the corner point in question. The average along the cell walls was
computed using ψ along a line perpendicular to the cell wall in question. For additional
details, see Rančić [1992].

The computational cost of the approach taken by Rančić can be reduced significantly
by using a quasi-biparabolic subgrid-cell representation. Contrarily to fully biparabolic
fits, the quasi-biparabolic representation does not include the “diagonal” terms and sim-
ply consists of the sum of two 1D parabolas, one in each coordinate direction. Using the
form (Eq. (2.15)) for the parabolas, the quasi-biparabolic subgrid-cell representation is
given by

pi

(
ξx, ξy

)
= ψi,j +

(
δpx
)
i,j
ξx +

(
px

6
)
i,j

[
1
12

−
(
ξx
)2
]

+
(
δpy
)
i,j
ξy

+
(
p

y
6

)
i,j

[
1
12

−
(
ξy
)2
]
, (2.21)

where (δpx)i,j ,
(
px

6

)
i,j

, (δpy)i,j , and
(
p

y
6

)
i,j

are the coefficients of the parabolic func-
tions in each coordinate direction (Machenhauer and Olk [1998]). This representation
reduces the computational cost of the subgrid-cell reconstruction significantly but, of
course, does not include variation along the diagonals of the cells.

By using 1D filters that prevent undershoot and overshoot to the parabolas in each
coordinate direction, monotonicity-violating behavior can be reduced but not strictly
eliminated in 2Ds. In case of negative values at the cell boundaries of both unfiltered
1D parabolic representations, even larger negative values may be present in one or
more of the cell corners when the 1D representations are added. The monotone and
positive-definite filters eliminate only the negative values at the boundaries and not
the possible negative corner values. As a result, small negative values can appear even
after the application of a monotonic filter (e.g., Lin and Rood [1996] and Nair and
Machenhauer [2002]). To eliminate these negative values an additional filter must be
applied.
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2.3. Different schemes in 2Ds

As mentioned above, different approaches can be used to estimate the integral over the
departure cell. These can be divided into two main categories:

• Semi-Lagrangian schemes in which the integral over the departure cell is approxi-
mated explicitly. These schemes to be described in Section 2.3.1 are referred to as
DCISL schemes. DCISL schemes come in two types: fully 2D schemes and cascade
schemes in which the approximation of the upstream integral is divided into two
steps where each substep applies 1D methods.

• Flux-based schemes in which the fluxes through the Eulerian arrival cell walls are
approximated. These schemes are described in Section 2.3.2. As for the DCISL
schemes, there are two types of conceptually different schemes of this category:
schemes based on a sequential operator splitting (often referred to as time-splitting)
and schemes based on direct estimation of the 2D fluxes.

It is important to note, as was also pointed out in the introduction, that DCISL and
flux-based FV schemes are conceptually equivalent since they both estimate the mass
in the departure cell. However, as will be illustrated, this is, in practice, done in quite
different ways.

The following overview of these two categories will mainly focus on recent devel-
opments in DCISL schemes since these have not yet been introduced in textbooks or
general overview articles. For these schemes, a stability analysis is performed. Fur-
thermore, the level of local mass conservation, i.e., the accuracy of the approximation
to the exact departure area in different DCISL schemes and one flux-based method, is
investigated.

2.3.1. DCISL schemes
The semi-Lagrangian scheme can either be based on backward or forward trajectories
(or equivalently downstream and upstream trajectories), i.e., by considering parcels arriv-
ing or departing from a regular grid, respectively. The majority of semi-Lagrangian
schemes are based on backward trajectories because it is usually simpler to interpo-
late/remap from a regular to a distorted mesh. However, forward trajectory cascade
schemes and the downstream version of the schemes in Laprise and Plante [1995]
are exceptions to this. The deformed grid resulting from tracking the parcels moving
with the flow is referred to as the Lagrangian grid, while the stationary and regular grid
is referred to as the Eulerian grid. The curve resulting from tracking a latitude mov-
ing with the flow is referred to as a Lagrangian latitude. Similarly for a Lagrangian
longitude.

The choice of trajectory algorithm is crucial for the accuracy of DCISL schemes.
Traditional semi-Lagrangian schemes employ backward trajectories that are computed
with an implicit iterative algorithm also known as the second-order implicit midpoint
method (see, e.g., Côté and Staniforth [1991]). This trajectory algorithm does not
include the acceleration. Several schemes that include estimates of the acceleration in the
trajectory computations have been proposed (e.g., Hortal [2002], Mcgregor [1993],
Lauritzen, Kaas and Machenhauer [2006] – see Section 3).
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Using backward trajectories, the 2D discretization of Eq. (1.8) leads to the CISL
scheme

ψ
+
!A = ψδA, ψ = ρ, ρq, (2.22)

where

ψ = 1
δA

∫∫

δA

ψ (x, y) dA
(2.23)

is the integral mean value of ψ (x, y) over the irregular departure cell area δA, and
ψ

+
is the mean value of ψ+ (x, y) over the regular arrival cell area !A (see Fig. 2.4).

The approximation of the integral on the right-hand side of Eq. (2.22) employs two
steps: firstly, defining the geometry of the departure cell that involves the computation of
parcel trajectories; secondly, performing the remapping, i.e., computing the integral over
the departure cell using some reconstruction of the subgrid distribution at the previous
time-step. The geometrical definition of the departure cell and the complexity of the
subgrid-scale distribution are crucial for the efficiency and accuracy of the scheme.

For realistic flows and for time-steps obeying the Lipschitz criterion (see Section 2.1),
the upstream cells deform into simply connected but non-rectangular and possibly locally
concave geometric patterns. The question is how to integrate ψ (x, y) efficiently over
such a complex area.

2.3.1.1. Fully 2D DCISL schemes In 1D, there is very little ambiguity on how to
approximate the upstream cell, but in 2Ds, it is much more complicated and several
approaches have been suggested in the literature. In Fig. 2.5, the arrival and departure
cells in cartesian geometry for three different DCISL schemes are shown.

Rančić [1992] defines the departure cell as a quadrilateral by tracking backward the
cell vertices A, B, C, and D and connecting them with straight lines (Fig. 2.5(a)). The

DA

!A

Fig. 2.4 The regular arrival cell with area !A and the irregular departure cell (shaded area) with area δA
in the continuous case for a generic upstream DCISL scheme. Using the figure of speech in Laprise and
Plante [1995], the departure–arrival cell relationship is conceptually equivalent to throwing a fishing net
upstream to fetch the mass enclosed into a area that will, after one time-step, end up at the regular mesh.
The arrows are the parcel trajectories from the departure points (open circles), which arrive at the regular cell

vertices (filled circles).
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(a)

(c)

(b)

Fig. 2.5 The departure cell (shaded area) when using the scheme of (a) Rančić [1992], (b) Machenhauer
and Olk [1998] scheme, and (c) the cascade scheme of Nair, Scroggs and Semazzi [2002]. The filled
circles are the departure points, and open circles the midpoints between the departure points, and aster-
isks are the intermediate grid points which are used to define the intermediate cells in the cascade scheme

(crosshatched area).

vertices are not necessarily aligned with the coordinate axis, which leads to some algo-
rithmic complexity for the evaluation of the upstream integral. The integral over the
departure area is, in the situation depicted in Fig. 2.5a, decomposed into four subintegrals,
i.e., the integral over the areas defined by the overlap between the departure cell and the
Eulerian cells. Thus, one has to perform analytic integrals over many possible cases of
shapes of subdomains, which makes the computer code rather cumbersome. In addition,
the subgrid-scale distribution used by Rančić was a piecewise-biparabolic representation
which, being fully 2D, is quite expensive to compute in itself. The combination of the
complex geometry of the departure cell and the fully 2D subgrid-cell representation makes
the scheme approximately 2.5 times less efficient than the traditional semi-Lagrangian
advection scheme using bicubic Lagrange interpolation (Rančić [1992]). This, and the
fact that the scheme has not been extended to spherical geometry, has hindered the scheme
for widespread use in the meteorological community.

In order to speed up the remapping process, Machenhauer and Olk [1998] sim-
plified both the geometry of the departure cell and the subgrid-scale distribution.
The departure cell is defined as a polygon with sides parallel to the coordinate axis
(Fig. 2.5(b)). The sides parallel to the x-axis are at the y-values of the departure points,
and the sides parallel to the y-axis pass through E, F, G, and H, located halfway between
the departure points. Hence, the area of the departure cell is identical to the area of the
Rančić [1992] scheme. Since the sides of the departure cell are parallel to the coor-
dinate axis, the evaluation of the upstream integral is greatly simplified. By using the
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pseudobiparabolic subgrid-scale distribution (see Eq. (2.21)) and accumulated parabola-
coefficients along latitudes (see Nair and Machenhauer [2002] for details), the integral
over the departure cell can be computed much more efficiently compared to the approach
taken by Rančić [1992]. For advection in cartesian geometry, Nair and Machen-
hauer [2002] reported a 10% overhead with this scheme compared with the traditional
semi-Lagrangian scheme.

Note that the departure areas in Fig. 2.5 completely cover the entire integration area
without overlaps or cracks, which is crucial to an upstream DCISL scheme, otherwise
the total mass is not conserved. For a downwind cell-integrated scheme using forward
trajectories, it is, however, not necessary that the arrival cells span the entire domain
of integration in order to have global mass conservation. Using the figure of speech of
Laprise and Plante [1995], a downstream cell-integrated scheme is equivalent to throw-
ing dust contained in little buckets (regular departure cells) into the wind and watching it
later fall into bins (regular Eulerian cells). Contrary to upstream DCISL schemes, where
one integrates over a particular departure cell, a downstream cell-integrated scheme
keeps track of the contribution to each regular Eulerian cell from the irregular arrival
cells. As long as all the mass in each arrival cell is redistributed with a mass conser-
vative method, mass is conserved even if the neighboring arrival cells overlap. This is
taken advantage of in the scheme of Laprise and Plante [1995], which probably uses
the simplest cell geometry of all the schemes presented here. The arrival cell is defined as
a rectangle where the edges have the same orientation as the regular cells (see Fig. 2.6).
This is achieved by tracing the traverse motion of cell edges and not the cell vertices.
Hereby, the arrival cell retains the orthogonality and orientation of the regular departure
cell. Note, however, that only two cells share edges, while, if cell vertices are tracked,

Departure level

x

y

y

x

Arrival level

Fig. 2.6 A graphical illustration of the downstream version of the cell-integrated schemes of Laprise and
Plante [1995]. The filled circles are the departure points that are at the edge centers of the regular departure
cell. The arrows connect the departure points with the respective arrival points (unfilled circles). The dashed
rectangle is the arrival cell which edges have the same orientation as the departure cell. In a downstream
cell-integrated scheme, the amount of mass that arrives at a regular Eulerian cell is computed, i.e., the integral
over the area (shaded area at the departure level) that arrives at the intersection between the regular Eulerian
cell and the arrival cell (shaded area at the arrival level). Similarly for the remaining intersections with

Eulerian cells.
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cell vertices are shared by four cells. Consequently, one must compute twice as many
trajectories compared to a downstream scheme tracking cell vertices.

The actual integral in the downstream scheme of Laprise and Plante [1995] is
not performed at the arrival level since that would require the reconstruction of the
subgrid-scale distributions from irregular and overlapping arrival cell averages. The
integral is performed at the departure level over the part of the departure cell that, after
one time-step, “falls” into a particular regular Eulerian cell (see Fig. 2.6). The intersection
between the arrival cell and a particular Eulerian cell is always a rectangular region with
sides parallel to the coordinate axis, which simplifies the integration process significantly.
Consequently, the downstream scheme of Laprise and Plante [1995] is approximately
twice as fast as the Rančić [1992] scheme, even though both schemes use fully 2D
subgrid-scale reconstructions. The schemes of Laprise and Plante [1995] and Rančić
[1992] have not been extended to spherical geometry.

2.3.1.2. Cascade DCISL schemes Using the so-called cascade method, originally
developed for non-conservative interpolation by Purser and Leslie [1991], the 2D
upstream integral can also be approximated by splitting it into two 1D steps. The basic
idea is to track backward (forward) the Eulerian grid and then apply 1D integrals,
firstly along the Eulerian (Lagrangian) longitudes or latitudes and secondly along the
Lagrangian (Eulerian) latitudes or longitudes (see Fig. 2.7). To obtain inherent mass con-
servation, the interpolation in the original cascade interpolation method must be replaced
with the PPM (Colella and Woodward [1984]) or some other mass-conservative
remapping method. Contrary to fully 2D DCISL schemes, the cascade approach is
equally suited for downstream and upstream trajectories, or equivalently, the 1D remap-
ping methods are equally suited for remapping from a distorted as from a regular 1D
grid. However, to facilitate the comparison with fully 2D DCISL schemes, we assume
upstream trajectories in the discussion of the cascade schemes, although some of the
schemes initially were formulated for downstream trajectories.

The cascade method can be divided into three steps. Firstly, given the departure
points, the application of 1D remappings is prepared by computing an intermediate grid.
It is crucial to the cascade technique that the intermediate grid is well defined, i.e., that
there should not be multiple intersections between Lagrangian latitudes (longitudes) and
Eulerian longitudes (latitudes) (see, e.g., Fig. 1 in Nair, Côté and Staniforth [1999a]).
Therefore, in spherical coordinates, it cannot be applied very near the poles. Secondly,
a 1D remapping of mass from the regular Eulerian cells to the intermediate grid cells is
performed. Thirdly, the mass on the intermediate grid is remapped to the departure cells.

We start out by considering the conservative cascade DCISL scheme of Nair,
Scroggs and Semazzi [2002]. In this scheme, the departure cells are defined as poly-
gons with sides parallel to the coordinate axis as in the Machenhauer and Olk [1998]
scheme. In each 1D cascade step, the PPM2 is used. Compared to the Machenhauer
and Olk [1998] scheme, the departure cell geometry is defined somewhat differently
(see Fig. 2.5(c)). Two of the sides parallel to the y-axis, x = x(E) and x = x(G), are
defined as in the Machenhauer and Olk [1998] scheme, and the remaining two sides
parallel to the y-axis are at the Eulerian longitude x = xi. The sides parallel to the
x-axis are determined from the intermediate Lagrangian grid points I, J, K, L, M, and
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Fig. 2.7 Graphical illustration of the cascade interpolation method introduced by Purser and Leslie [1991].
Solid lines are the regular Eulerian grid and the dashed lines are the Lagrangian grid. Here we consider an
upstream scheme, hence, the Lagrangian grid end up at the Eulerian grid when moving with the flow over one
time-step. The intermediate grid is defined by the crossings between the Eulerian longitudes and the Lagrangian
latitudes (unfilled circles). The nonconservative cascade interpolation method proceeds as follows. Perform
a 1D interpolation from the Eulerian grid to the intermediate grid, i.e., interpolate along Eulerian longitudes
from the filled circles to the unfilled circles. Hereafter interpolate from the intermediate grid to the Lagrangian
grid, i.e., from the unfilled circles to the asterisks. Ideally one should interpolate along the curved Lagrangian
latitude, but in the original cascade interpolation scheme of Purser and Leslie [1991], the x-coordinate is used
as the position variable for interpolation along the Lagrangian latitude, which corresponds to approximating

the Lagrangian latitude with line segments parallel to the x-axis.

N defined as y = ½ [y(I ) + y(J )] , y = ½ [y(K) + y(L)] , y = ½ [y(L) + y(M)], and
y = ½ [y(I ) + y(N )], respectively. The y-values of the intermediate points are deter-
mined by cubic Lagrange interpolation between the y-values of four adjacent departure
points along the Lagrangian latitude (dashed line in Fig. 2.5(c)). The Lagrange weights
for computing the intersections can be efficiently evaluated using the algorithm outlined
in the Appendix in Purser and Leslie [1991]. The upstream integral is computed by
a remapping in the north-south direction from the Eulerian cells to the intermediate
cells (crosshatched rectangular regions on Fig. 2.5(c)), followed by a remapping along
the Lagrangian latitudes from the intermediate cells to the departure cells. Hence, the
first remapping is along the Eulerian longitude passing through the Eulerian cell centers.
Since the second remapping uses the x-coordinate as the independent variable, it is along
line segments parallel to the x-axis. Without any a priori knowledge of the flow, there
is no argument for not reversing the order of the directional sweeps, i.e., first to remap
along the Eulerian latitude and then along the Lagrangian longitude. As discussed in
some detail in Lauritzen [2007], the order of the directional sweeps is not symmetric,
and hence there is a directional bias built into the cascade approach. However, in neither
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of the cascade schemes presented here has this been reported to be a problem. A symmet-
ric version of the cascade scheme can easily be constructed, for example, by alternating
between the sweep directions, i.e., by using Lagrangian longitudes and Eulerian latitudes
at even time-steps and Lagrangian latitudes and Eulerian longitudes at odd time-steps.

Since the two remappings are 1D and that the intermediate grid can be efficiently
computed, the Nair, Scroggs and Semazzi [2002] scheme is more than twice as efficient
as the fully 2D scheme of Machenhauer and Olk [1998]. Cascade methods are equally
suited for upstream and downstream trajectories. For example, the Nair, Scroggs and
Semazzi [2002] scheme formulated for backward trajectories has also been extended to
forward trajectories in Nair, Scroggs and Semazzi [2003].

On equidistant cartesian grids, the conservative cascade scheme developed by Nair,
Scroggs and Semazzi [2002] is very similar to the one of Rančić [1995], although
the way they are presented in the respective articles is very different. Rančić [1995]
formulated his scheme without explicit reference to areas by assigning mass to nodes or
mass-points. The scheme is identical to the Purser and Leslie [1991] cascade interpola-
tion but with the two 1D Lagrange interpolation sweeps replaced with PPM2. Although
Rančić did not make explicit reference to areas in his formulation, the scheme can,
however, be interpreted in terms of areas: in each 1D sweep, the mass nodes represent
the mass enclosed in cells with walls located midway between the mass nodes, and
the remapping is along line segments which are parallel to the coordinate axis. Hence,
by formulating Rančić scheme for upstream trajectories, the only differences between
the Nair, Scroggs and Semazzi [2002] and Rančić scheme are the choice of points
for which the trajectories are computed and the order of the 1D sweeps. Where Nair,
Scroggs and Semazzi [2002] track cell vertices as they are transported by the flow,
Rančić used cell centers; and where Nair, Scroggs and Semazzi [2002] remaps first
along Eulerian longitudes, the upstream version of Rančić’s scheme remaps along the
Eulerian latitudes first. Hence, in principle, these schemes are identical and only differ-
ing in implementation details when considering a cartesian equidistant grid. However,
it is not clear if Rančić’s scheme can be extended to non-equidistant grids, and hence it
has not been extended to spherical geometry, whereas the Nair, Scroggs and Semazzi
[2002] scheme has been extended to spherical geometry using two different approaches
(Nair, Scroggs and Semazzi [2002] and Nair [2004]).

In the cascade schemes discussed so far, the second sweep is along Lagrangian lati-
tudes (longitudes) that are defined by line segments parallel to the x-axis (y-axis). In the
continuous case, the Lagrangian latitude (longitude) is a curve, and one should ideally
remap mass along such a curve. Zerroukat, Wood and Staniforth [2002] refined
the approaches described so far by performing the second sweep along a continuous
piecewise linear line that more accurately represents the curved Lagrangian latitude
(longitude). The scheme is called the SLICE scheme and is described next.

The remapping procedure used in SLICE is graphically illustrated on Fig. 2.8. As
in the scheme of Machenhauer and Olk [1998] and the cascade scheme of Nair,
Scroggs and Semazzi [2002], the cell vertices are tracked backward. The corresponding
departure points are connected with straight lines to define Lagrangian longitudes and
latitudes. Regular intermediate cells are defined by the intersections between the
Lagrangian longitudes and the Eulerian latitudes that pass through the center of the
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Fig. 2.8 Agraphical illustration of the remappings in the Semi-Lagrangian inherently conserving and efficient
scheme. The filled circles are the departure points corresponding to the cell vertices. The dotted (dashed) lines
are the Lagrangian latitudes defined by connecting the departure points which arrive along the same latitude
with straight line segments. The shaded areas are the intermediate areas that are defined by the crossings
between the Lagrangian longitudes and the Eulerian latitudes passing through the center of the Eulerian cells
(thin lines). The crossings are marked with asterisk. First the mass is remapped from the Eulerian cells to the
intermediate cells. The dash-dotted line is the line along which the cumulative distance function is defined,

and is used for the second remapping.

cells. Similarly to the Nair, Scroggs and Semazzi [2002] scheme, the cell averages
are mapped from the Eulerian cells to the regular intermediate cells defined by the
intersections (see shaded area in Fig. 2.8). As mentioned in the previous paragraph, the
remapping from the intermediate cells to the departure cells is quite different from the
Nair, Scroggs and Semazzi [2002] scheme. The second remapping is performed along
the Lagrangian longitude that is defined by a continuous piecewise linear line (dash-dot
line in Fig. 2.8). A cumulative distance function along the Lagrangian longitude is used
to define the Eulerian and Lagrangian north-south cell walls for the second remapping
(see Zerroukat, Wood and Staniforth [2002] for details). Hereby the independent
coordinate for the second sweep is defined along continuous piecewise linear lines that,
in principle, are more accurate than line segments parallel to the coordinate axis. How-
ever, the intermediate cells have walls parallel to the coordinate axis (east-west walls
of shaded on Fig. 2.8). Hence the mass used in the second sweep is only approxi-
mately along the piecewise linear Lagrangian longitude (dashed lines on Fig. 2.8). For
the 1D remappings, SLICE applies a piecewise cubic method (Zerroukat, Wood and
Staniforth [2002]) or the PSM (Zerroukat, Wood and Staniforth [2007]).
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A great potential of cascade schemes is that they may be extended to 3Ds without
excessive computational cost and algorithmic complexity. For example, 3D Lagrangian
interpolation requires O

(
o3) operations, where o is the formal order of accuracy of the

interpolator, while cascade schemes require O(o) operations (e.g., Purser and Leslie
[1991]). Cascade schemes retain their simplicity in higher dimensions, whereas fully
higher dimensional DCISL schemes increase rapidly in complexity as the number of
dimensions is increased. Cascade interpolation has not only been applied in semi-
Lagrangian advection schemes but have also been used for remapping state variables
between the regular latitude-longitude grid and the cubed-sphere grid in a conservative
and monotone manner (Lauritzen and Nair [2007]).

In some situations, the cascade DCISL schemes get a more accurate subgrid-scale
representation compared to the fully 2D DCISL scheme of Machenhauer and Olk
[1998]. The latter scheme uses a 2D reconstruction that does not include variation along
the diagonals of the cells. In the cascade schemes, the second sweep is along Lagrangian
latitudes (longitudes). Hence, in situations in which the Lagrangian latitudes (longi-
tudes) are sloping toward north-east or north-west and significant variation is along
these Lagrangian latitudes (longitudes), the cascade schemes get some of the diagonal
variation that is eliminated by the subgrid-scale reconstructions used in Machenhauer
and Olk [1998]. This is clearly demonstrated when comparing the error measures for the
solid body advection for the flow orientation parameter α̂ = π/3 in Table 2.1 (see CCS
and CISL). In this situation, the distribution is far away from the poles and the transport
is nearly along celldiagonals.

2.3.1.3. Degree of local mass conservation To understand to which extent the different
DCISL schemes are local, a test case using an analytic flow field involving translation,
rotation, and divergence has been constructed. We define the degree of mass “locality” of
the schemes as their ability to approximate the domain of the exact upstream departure
cell over which the mass is integrated. Note that the domain of dependence is larger
than the upstream departure cell area. The domain of dependence is the area from which
information is needed to construct the subgrid-cell representations in the Eulerian cells
overlapped by the departure cell.

The analytic wind field is given by

u(x, y) = u0 + D0x − R0y,

v(x, y) = v0 + D0y + R0x,

(2.24)

where (u0, v0) = 54 m
s × (cos(10◦), sin(10◦)), D0 = −0.0023 /s, and R0 = 0.0029 /s.

The time-step used for the test is !t = 120 s and the grid-point spacing is !x = !y =
5000 m. These values have been estimated from typical forecast values near strong
baroclinic developments obtained with the operational 5 × 5 km high-resolution limited-
area model (HIRLAM) forecasting system run at the Danish Meteorological Institute.
However, the HIRLAM D0 and R0 values have been multiplied by a factor 10 in order to
visualize the effect of divergence and rotation. The “exact” trajectories and departure cell
are shown on Fig. 2.9 (“exact” refers to a 18-digit precise computation of the departure
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Fig. 2.9 ‘Exact’ departure cell and backward trajectories (curved lines) for the analytic velocity field con-
sisting of a translational, divergent, and rotational part. The unfilled circles are the departure points computed
with the trajectory algorithm of Lauritzen, Kaas and Machenhauer [2006]. The values on the x- and

y-axis are in units of 5000 m.

points using a Fehlberg fourth–fifth order Runge-Kutta method). Three error measures
are used to measure the degree of local mass conservation:

• The area of the departure cell normalized by the exact departure cell area.
• The area located outside the exact departure cell normalized by the exact departure

area.
• The area located inside the exact departure cell normalized by the exact departure

area.

Figure 2.10 shows the departure cells of the different DCISL schemes and the exact
departure cell for the parameters listed above. For this flow field, the departure cell is
a polygon with straight-line walls, and hence the departure area of scheme of Rančić
[1992] is exact if exact trajectories are used.

In Table 2.2, the error measures for the degree of local mass conservation are shown
for three different DCISL schemes. The trajectory algorithm of Lauritzen, Kaas and
Machenhauer [2006] has been used for the computation of the departure points.
The deviation from unity of the first error measure (column 1 in Table 2.2) for the
Machenhauer and Olk [1998] scheme is due to the fact that the departure points are
not exact. Had the trajectories been exact, the Machenhauer and Olk [1998] scheme
would have had the first error measure equal to one. With respect to the first error measure,
all DCISL schemes are equally accurate for this particular test case. The cascade schemes
are more local than the fully 2D scheme of Machenhauer and Olk [1998] in terms
of the two remaining error measures. Hence, there is less of the departure cell located
outside the exact departure cell and less of the exact departure area that is not included
in the schemes departure area. Of the two cascade schemes, the SLICE scheme is most
accurate for this particular flow case. Note that the order of the 1D sweeps is reversed
in the SLICE scheme compared to the Nair, Scroggs and Semazzi [2002] scheme.
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(b)

(c) (d)

(a)

Fig. 2.10 The departure cells (dark area) when using the scheme of (a) Rančić [1992], (b) Machenhauer
and Olk [1998], (c) the cascade scheme of Nair, Scroggs and Semazzi [2002] and (d) the cascade scheme
of Zerroukat, Wood and Staniforth [2002] for the idealized test case for assessing the degree of local
mass-conservation. The departure areas are based on the departure points computed with the trajectory scheme

of Lauritzen, Kaas and Machenhauer [2006]. The grey lines are the “exact” departure cell walls.

Table 2.2
Error measures for the degree of local mass conservation for the schemes of Machenhauer and
Olk [1998] (CISL), Nair, Scroggs and Semazzi [2002] (CCS), and Zerroukat, Wood and

Staniforth [2005] (SLICE) for the analytic flow field described in Section 2

Scheme Departure area/(exact (Area outside exact Area mising inside exact
departure area) departure area)/(exact departure area)/(exact

departure area) departure area)

CISL 1.0009 0.1124 0.1124
CCS 1.0009 0.0813 0.0805
SLICE 1.0009 0.0778 0.0769

It is important to note that the above example does by no means substitute a general
analysis including a statistically large number of departure cells in realistic flows. There-
fore, one should not use the analysis to draw general conclusions on the relative accuracy
of the three DCISL schemes. For instance, part of the advantage of the Nair, Scroggs
and Semazzi [2002] scheme over the Machenhauer and Olk [1998] scheme is, in the
case shown, due to the fact that the flow is convergent. Consequently, the departure cell
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consists of three rectangles, so there are two “jumps” in the north and south walls, respec-
tively. The Machenhauer and Olk [1998] scheme only has one “jump” in the north and
south wall. For a divergent flow field, this advantage would no longer appear. Similarly,
the direction of the cascade sweeps influences the degree of local mass conservation.

In Section 2.3.2.1, the “locality” of the flux-based scheme of Lin and Rood [1996]
is assessed on the present test case. The results in Fig. 2.11 show the actual areas of
information needed to obtain a forecast using that transport scheme and the wind field
in Eq. (2.24). It can be seen in this case that the effective departure area is substantially
more spread out than those of the DCISL schemes in Fig. 2.10.

2.3.1.4. Stability analysis Although the PPM is a widely used numerical method, there
has not been performed a Von Neumann stability analysis of that method, as far the

P

L

O

(a)

(c) (d)

K G
J F

1/2

1/2 21/2

21/2

1

C N B

H
I E

D M A (b) P"

L"

O"

K" G" F"

C"N B"

HI" E"

D M" A"

21

Fig. 2.11 A graphical illustration of the Lin and Rood [1996] scheme for the idealized test case for assessing
the degree of local mass conservation. The arrival cell is the north-eastern most regular grid cell in all plots. The
capital letters on (a) and (b) refer to the vertices located south-west of the letter in question except for J’ and N’
that refer to the vertice to the south-east of the letter in question. The notation ABCD will refer to the average

value in the cell with vertices atA, B, C, and D. (a) and (c) illustrate XC

[
½
(
ψ

n + ψAY

)]
, whereψAY (yellow

area) is computed using an advective operator. (a) Following the conceptual illustration of Leonard, Lock and

Macvean [1996], XC

[
½
(
ψ

n + ψAY

)]
is given by ½

(
DCOP + HGKL

)
− ½

(
ABNM + EFJI

)
. (c) shows

the cell averages with weight one (dark blue), half (light blue), minus one (red), and minus half (light red), for the

contribution from XC . (b) Similarly for YC , we get that YC

[
½
(
ψ

n + ψAX

)]
= ½

(
BF ′G′C + N ′J ′K′O′

)
−

½
(
AE′H ′D + M′I ′L′P ′

)
and the green area is ψAX. (d) shows the final forecast with the same coloring

as in (c). The red rectangle is the exact departure area. (See also color insert).
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authors are aware. Rather the stability of the schemes has been demonstrated numerically.
Here, a stability analysis of the PPM2 in 1 and 2Ds using DCISL schemes is given and
is further detailed in Lauritzen [2007].

First, consider the 1D situation in which all the DCISL schemes are identical. The
stability analysis and the notation used here are similar to that used in the stability analysis
of traditional grid-point semi-Lagrangian schemes presented in Bates and Mcdonald
[1982]. If we assume a constant flow u (without loss of generality assume u positive),
then the west cell wall of cell i, located at xi = i!x, departs from

(xi)∗ = xi − u!t. (2.25)

Similarly for the right cell wall. Let integer p be such that (xi)∗ is located in between
(i − p − 1)!x and (i − p)!x, and define

α = u!t

!x
− p. (2.26)

For a constant flow and if a piecewise constant subgrid-cell distribution is used, then the
forecast is given by

ψ
+
i = (1 − α)ψi−p + αψi−p−1, (2.27)

which is identical to the traditional semi-Lagrangian grid-point scheme using linear
Lagrange interpolation under the assumption that the grid-point values represent cell
averages. Assume a solution in the form

ψi = ψ0)n exp
(
îkx
)
, (2.28)

where ) is the complex amplification factor, ψ0 is the initial amplitude, k is the wave
number, and î is the imaginary unit. Since a cell-integrated scheme is based on cell
averages,

ψi =
(i+1)!x∫

i!x

ψ0)n exp
(
îkx
)

dx (2.29)

must be evaluated and the resulting expression substituted into Eq. (2.28). It may easily
be shown that the squared modulus of the amplification factor can be written as

|)|2 = 1 − 2α(1 − α)(1 − cos k!x). (2.30)

This is the same result as would have been obtained for a traditional semi-Lagrangian
grid-point scheme using linear Lagrange interpolation (see, e.g., Bates and Mcdonald
[1982]). For all resolvable wavelengths, the scheme is stable |)|2 ≤ 1 as long as 0 ≤
α ≤ 1. By definition, α is within that range, and hence the 1D DCISL scheme using a
piecewise constant subgrid-scale reconstruction is unconditionally stable.
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Using the PPM2 for the subgrid-scale distribution with no filters and assuming a
constant wind field, the forecast can be written as

ψ
+
i = 1

12
α2(1 − α)ψi−p−3 − 1

12
α(1 + 7α)(1 − α)ψi−p−2

− 1
3
α
(

4α2 − 5α− 2
)
ψi−p−1 − 1

3
(1 − α)

(
4α2 − 3α− 3

)
ψi−p

− 1
12
α(1 − α)(8 − 7α)ψi−p+1 + 1

12
α(1 − α)2 ψi−p+2. (2.31)

By performing a Von Neuman stability analysis, it may be shown, after some algebra,
that the squared modulus of the amplification factor can be written as

|)|2 = 1 + 2
9
α2
(

4α2 − 4α− 7
)

(1 − α)2 − 8
9
α2
(

4α2 − 4α− 5
)
(1 − α)2 cos k!x

+ 1
9
α2
(

50α2 − 50α− 39
)
(1 − α)2 cos2 k!x

− 2
9
α2
(

19α2 − 19α− 7
)
(1 − α)2 cos3 k!x

+ 1
9
α2
(

14α2 − 14α− 1
)
(1 − α)2 cos4 k!x + 2

9
α3(1 − α)3 cos5 k!x.

(2.32)

Since DCISL schemes approximate the integral over the departure area explicitly, the
amplification factors in Eq. (2.31) and Eq. (2.32) are not a function of p. Figure 2.12
shows |)|2 for the four shortest wavelengths for the DCISL scheme using piecewise con-
stant subgrid-cell reconstructions and PPM2, and for comparison, the squared modulus
of the amplification factor for the traditional semi-Lagrangian scheme using cubic inter-
polation. Apart from the 2!x-wave, the higher order subgrid-cell reconstruction leads
to a much less damping scheme compared with the lowest order scheme (as expected).
The shortest resolvable wave (2!x-wave) is, however, severely damped with the DCISL
scheme based on PPM2, which might explain why schemes based on PPM2 do not exhibit
excessive noise problems near sharp gradients even without applying filters. It can be
demonstrated numerically that the scheme is unconditionally stable for all wavelengths
when 0 ≤ α ≤ 1 (which is satisfied by definition).

The above analysis is directly extended to 2Ds. Assume a constant flow field (u, v)

where the velocity components are positive, let p and q be integers such that the south-
west vertice of cell (i, j) is located in the Eulerian cell with indices (i − p − 1, j − r − 1)

(see Fig. 7 in Bates and Mcdonald [1982]), α is defined in Eq. (2.26) and

β = v!t

!y
− r. (2.33)

Here, only the fully 2D schemes of Machenhauer and Olk [1998] and the cascade
scheme of Nair, Scroggs and Semazzi [2002] are considered. Note, however, that for
a constant flow field the cascade scheme of Nair, Scroggs and Semazzi [2002] and
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Fig. 2.12 Squared modulus of the amplification factor as a function of α for the (a) 2!x, (b) 3!x, (c) 4!x,
and (d) 5!x waves. Red and green lines are for the DCISL scheme using PPM2 and piecewise constant
subgrid-cell representation, respectively. For comparison, the squared modulus of the amplification factor for
the traditional semi-Lagrangian scheme based on cubic Lagrange interpolation (blue line) is shown as well.

(See also color insert).

Zerroukat, Wood and Staniforth [2002] are identical, apart from the order of the
polynomial used for the subgrid-scale reconstructions. When using piecewise constant
subgrid-scale reconstructions, the explicit forecast formula for all DCISL schemes is
given by

ψ
+
i,j = (1 − α)(1 − β)ψi−p,j−r + α(1 − β)ψi−p−1,j−r

+ β(1 − α)ψi−p,j−r−1 + αβψi−p−1,j−r−1. (2.34)

Again, the formula is equivalent to the forecast for the traditional semi-Lagrangian
scheme using bilinear Lagrange interpolation under the assumption that grid-point values
represent cell averages (see, e.g., Bates and Mcdonald [1982]). Assuming a solution
in the form

ψi,j = ψ0)n exp
[
î (kx + ly)

]
, (2.35)

where k and l are the components of the wave number vector, then the mean value of
the solution over cell (i, j) is given by

ψi,j =
(j+1)!y∫

j!y






(i+1)!x∫

i!x

ψ0)n exp
[
î (kx + ly)

]
dx




 dy. (2.36)
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Substituting Eq. (2.36) into Eq. (2.34), the complex amplification factor can be written as

) =
{

1 − α
[
1 − exp

(
−îk!x

)]} {
1 − β

[
1 − exp

(
−îl!y

)]}
exp
[
−î (p!x + r!y)

]
.

(2.37)

It may be easily verified that |)|2 ≤ 1 for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, hence the 2D
scheme using piecewise constant subgrid-cell reconstructions is unconditionally stable.

For the higher order schemes, Maple software has been used to compute the explicit
forecast formulas and for performing the stability analysis. The explicit formula for the
forecast when using the scheme of Machenhauer and Olk [1998] and Nair, Scroggs
and Semazzi [2002] can be written as a weighted sum

ψ
+
i,j =

3∑

h=−2

3∑

g=−2

Ch,g(α, β)ψ
n
i−p−1+h,j−r−1+g (2.38)

The coefficients are listed in Tables 2.3 and 2.4 for the Machenhauer and Olk [1998]
and Nair, Scroggs and Semazzi [2002] schemes, respectively. The formula for the
squared modulus of the amplification factor resulting from the Von Neumann stability
analysis is too lengthy to display here. Instead, plots of |)|2 for selected wave numbers are
shown (see Fig. 2.13). See Lauritzen [2007] for further details. The cascade scheme
of Nair, Scroggs and Semazzi [2002] is slightly more damping than the fully 2D
scheme of Machenhauer and Olk [1998] for the shortest resolvable traverse wave
(Fig. 2.12(a)), and the situation is vice versa for the next shortest resolvable traverse
wave (Fig. 2.12(b)) as well as longer wavelengths. It has been verified numerically that
the squared modulus of the amplification factor is less than or equal to unity for 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1, i.e., the 2D DCISL schemes are unconditionally stable and less diffusive
compared to a traditional semi-Lagrangian scheme based on bi cubic interpolation.

2.3.1.5. Extension of DCISL schemes to spherical geometry The singularities on the
sphere are one of the main challenges for transport schemes formulated on conventional
latitude-longitude grids, and most algorithms require a certain amount of “engineering”
to tackle the pole problem, which often reduces the efficiency and simplicity of the algo-
rithms. As already mentioned, the number of schemes developed in cartesian geometry
is significantly larger than the number of schemes formulated for spherical geometry.
For the DCISL schemes discussed here, only the scheme of Machenhauer and Olk
[1998], Nair, Scroggs and Semazzi [2002], and Zerroukat, Wood and Staniforth
[2002] have been extended to the sphere.

In cartesian geometry, the most accurate approximation to a departure cell, given
the departure points, is the polygon resulting from connecting the departure points with
straight lines. Similarly, in spherical geometry, the cells defined by connecting the depar-
ture points with great circle arcs seem as the optimal choice. But as in cartesian geometry,
integrating along the optimal curves leads to complicated and computationally expen-
sive algorithms. Therefore, as in the cartesian case, the area approximation must be
simplified.
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Fig. 2.13 Squared modulus of the amplification factor as a function of (α, β) for (a)
(
Lx, Ly

)
= 2 (!x,!y)

and (b)
(
Lx, Ly

)
= 3 (!x,!y), where Lx is the wavelength in the x-direction and similarly for Ly . Black

contours are for the scheme of Machenhauer and Olk [1998] and grey contours the scheme of Nair, Scroggs
and Semazzi [2002]. The contour-interval is 0.1 and contours start at 0.9 at the corners and decrease toward

the center of the plot. The two schemes show similar damping properties.

The Machenhauer and Olk [1998] scheme is extended to spherical geometry by
using the µ-grid originally introduced by Machenhauer and Olk [1996] (Nair and
Machenhauer [2002]). The µ-grid is a latitude-longitude grid in which the latitude θ
is replaced by µ = sin(θ) (see Fig. 2.14). This transformation is area preserving, and the
µ-grid is essentially a cartesian grid where the latitude grid lines are no longer equidis-
tant. The departure cells are defined as quadrilaterals on the (λ, µ)-plane exactly as in
cartesian geometry, i.e., the cell walls that in cartesian geometry were parallel to x and
y isolines are parallel to the longitudes and latitudes on the µ-grid, respectively. Hence,
away from the poles, this transformation is invariant in the sense that the correspond-
ing upstream integrals and departure cells take exactly the same form as in cartesian
geometry. Since the algorithm is formally equivalent on the µ-grid, only minor modifi-
cations of the algorithm in cartesian geometry are needed away from the poles. In the
vicinity of the poles, however, approximating the cells with straight-line walls on the
µ-grid is a poor approximation of the cells on the spherical latitude-longitude grid (see,
e.g., Fig. 4c in Nair and Machenhauer [2002]). Especially the exact north and south
walls are deviating significantly from linearity on the (λ, µ)-grid, and hence some “engi-
neering” is needed. Local tangent planes at the poles are introduced for more accurate
cell-approximations. The areas in which the tangent planes are used are referred to as
the polar caps. Ideally, the integration should be performed along straight lines on the
tangent planes. Instead, more latitudes are introduced in the polar caps, and the coordi-
nates of the cell vertices on the tangent plane are transformed into (λ, µ)-coordinates,
and thereafter, the integrals are performed along straight lines in the (λ, µ) plane. In the
Lagrangian belt containing the pole point (referred to as the singular belt), the algorithm
breaks down since the Lagrangian cell containing the Eulerian pole is not well defined
(see Fig. 2.14). The total mass inside the singular belt can, however, be computed and is
distributed among the cells in a mass conservative way using a regular semi-Lagrangian
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Fig. 2.14 A graphical illustration of the polar cap treatment in the scheme of Nair and Machenhauer
[2002]. The upper plot shows the polar stereographic projection of the Eulerian cells (bounded by the dashed
lines which are the λ and µ isolines), and the singular belt (shaded region). The singular belt is the set of
departure cells bounded by two consecutive Lagrangian latitudes that contain the Eulerian pole point (filled
circle). On the lower plot, the Eulerian cells and the singular belt are plotted on the (λ, µ)-plane. Note that the
pole point (filled circle on upper plot) is the line µj = 1 on the lower plot. The filled square is the Lagrangian

pole point.
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method. The method computes the densities at the approximate departure cell centers
using a quasi-bicubic interpolation. These values are used as weights for distributing the
total mass in the singular belt among the cells, i.e., the point value of the density at a
given departure cell center, normalized by the sum of all the departure cell point values,
determines the fraction of the total mass which the cell in question is attributed (see Nair
and Machenhauer [2002] for additional details).

The cascade scheme of Nair, Scroggs and Semazzi [2002] has been extended
to the sphere using the µ grid as well but with two different treatments of the polar
cap. The first method used cascade interpolation throughout the spherical domain except
for the Lagrangian belts over the Eulerian poles, but the scheme was limited by the
meridional Courant number, which must be less than unity in the version presented in
Nair, Scroggs and Semazzi [2002]. Later, the scheme was adapted to large meridional
Courant numbers by using the cascade approach away from the polar caps and by using
the fully 2D scheme of Nair and Machenhauer [2002] over the polar caps (Nair
[2004]).

Away from the poles, the extension of the cascade remapping method from cartesian
geometry to the µ-grid is straightforward. The computation of the intermediate grid,
or equivalently, the crossings of the Lagrangian latitudes and Eulerian longitudes are
computed using cubic Lagrange interpolation on the µ-grid. The mass is transferred to
the intermediate grid and from there to the Lagrangian grid, exactly as in the cartesian
case, but simply on the µ-grid. Since the meridional Courant number is less than unity,
the only problematic zone with ill-defined cells (singular belt) is made up by the cells
north of the first Lagrangian latitude that ends up at the first Eulerian latitude circle after
one time-step (similarly for the Southern hemisphere). As in the case of the Nair and
Machenhauer [2002] scheme, the total mass in the singular belt can be computed and
the total mass can be redistributed to the individual cells as explained above. Contrary
to the Nair and Machenhauer [2002] scheme, the cascade scheme does not use high-
resolution polar belts. Only the singular belts are treated differently from the rest of the
domain.

For general applications, this restriction on the meridional Courant number is a severe
limitation. Nair [2004] suggested the use of the efficient cascade method of Nair,
Scroggs and Semazzi [2002] away from the poles and the polar cap treatment of Nair
and Machenhauer [2002] in the zones where the cascade method would break down
(north of the Lagrangian latitude closest to the Lagrangian pole point and similarly for
the Southern hemisphere). Hereby the severe meridional Courant number restriction is
alleviated.

The SLICE scheme is extended to spherical geometry by using a regular latitude-
longitude grid (Zerroukat, Wood and Staniforth [2004]). The intermediate grid is
computed in spherical coordinates by using the great circle approach of Nair, Côté
and Staniforth [1999b] (for details see Section 2b in this reference), which is more
efficient though less accurate than the cubic Lagrange interpolation on the µ-grid used
in Nair, Côte and Staniforth [2002]. The cascade method breaks down when not
all Lagrangian longitudes intersect an Eulerian latitude. Consequently, there are some
intermediate cells that are ill defined, i.e., the intermediate cell walls are not both well
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defined. Consider the situation in which the western intermediate cell wall exists but not
the eastern one, while the east cell wall of intermediate cell (i + 1, j) is well defined.
After the first cascade sweep, the total mass between the west wall of intermediate cell
(i, j) and the east wall of intermediate cell (i + 1, j) is known. The total mass is split
in two and allocated to the nearest Lagrangian mass centers used in the second cascade
sweep. This is not accurate but the redistribution is mass conservative. Some of the lost
accuracy is recovered with a “post fix” procedure similar to the singular belt treatment
in Nair and Machenhauer [2002]. Here, however, the mass in the entire polar cap is
redistributed mass-conservatively using Lagrange weights.

For solid body rotation over the poles, the error measures shown in Table 2.1 do
not indicate a superior method for treating the pole problem. Even though SLICE uses
a subgrid-reconstruction that, under the assumption that no filters are invoked, is one
order of magnitude higher than PPM2 used in the scheme of Nair and Machenhauer
[2002] and Nair, Scroggs and Semazzi [2002], SLICE is not superior with respect to
error measures l1 and l2. This also suggests that the polar treatment reduces the accuracy
of the scheme.

2.3.2. Flux-based FV schemes in 2Ds
Up to the beginning of the 1990s, when Rančić [1992] presented the first semi-
Lagrangian DCISL scheme, all FV schemes used in meteorology were flux-based in
nature.2 In flux-based schemes, the prognostic equation for the volume-specific scalarψ
is obtained as a sum of estimates of inward and outward fluxes in the Eulerian grid cell.
Generally assuming an Eulerian grid cell to be a polygon with L faces, the differential
FV prognostic equation (1.6) for the total “mass” for this particular cell can be written
as follows:

ψ
n+1

!A = ψ
n
!A +

∑L

l=1
mL

l , (2.39)

where ψ is the cell average “density,” n is the time step index,!A is the area, and mL
l is

the total inward mass flux integrated over a time step for face l. mL
l is defined negative if

the net flow through face l is outward and positive for inward fluxes. The conservation
is ensured if mL

l is unique for face l, i.e., the mass that leaves a cell through face l is
exactly gained in the neighboring cells sharing face l.

As pointed out by Hirsch [1990], FV schemes of the type in Eq. (2.39) were intro-
duced by Godunov [1959], and they were first used in meteorological applications
by Crowley [1968]. Since then, the schemes have gradually evolved with increasing
sophistication, and they have been used extensively in recent decades in both meteorol-
ogy and oceanography. We will not go into great detail regarding the entire historical
development of flux-based FV methods and their application on the sphere. Instead the
focus is on some aspects that are important for understanding the methodology and how
it has evolved into the most modern schemes.

To introduce the basic ideas behind flux-based FV schemes, consider at first the
continuity equation in 1D, x, without any source terms. Define the flux convergence

2The process of integrating over the departure cell, or equivalently, the remapping or rezoning of mass
between two grids, was, however, studied already in the 1970’s (e.g., Hirt, Amsden and Cook [1974]).
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operator

XC

(
u,!t,!x;ψn

)
=
[
Fn

w + Fn
e

]
/!x (2.40)

for a given Eulerian cell with extension!x. Indices w and e indicate the left (“western”)
and right (“eastern”) cell boundary, and F is the time-integrated mass flux related to the
flow speed u, i.e., F corresponds to the flux “m” in the multidimensional case (Eq. (2.39)).
Since the total fluxes depend on the flow speed, the time-step !t, and !x, this is also
the case for XC. Implicitly XC also depends on the Eulerian cell averages since they
are used for the reconstruction of the subgrid-cell distributions. For schemes where also
higher order moments or cell face values are prognostic variables (e.g., Prather [1986],
Xiao and Yabe [2002]), the subgrid-cell representation also depends on these moments
or values. In the limit as!t and!x approach zero, the operator XC divided by!t is the
FV approximation to the term −∂(uψ)/∂x. Expressed in terms of the flux convergence
operator, the 1D version of Eq. (2.39) becomes

ψ
n+1
i = ψ

n
i + XiC(ψ

n
) (2.41)

for the Eulerian grid cell i, omitting the obvious dependence on u,!t, and !x for
brevity. The operatorXC redistributes mass between the Eulerian grid cells. By definition,
application of the XC operator does not change the total mass in the integration domain
since the left-flux of cell i always cancels the right-flux of cell i − 1 (Fi−1e = −Fiw ). In
all FV schemes, the fluxes are obtained as integrals – or as approximations to integrals –
of the total mass in the length interval being “swept though” the face within the time-step
!t. This leads to the following “general” equation for XC:

XC

(
ψ

n
)

= 1
!x

[∫ xw

xw−u∗
w!t

ψndx −
∫ xe

xe−u∗
e!t

ψndx

]

(
= 1
!x

[Fw + Fe]
)

, (2.42)

where u∗
w is the effective advection speed for the area (interval) ‘swept though’ the left

face within the time-step from n!t to (n + 1)!t. Similarly u∗
e is for the right face. Note,

that the integrantψn in (2.42) in each grid cell (i) is an analytic function of x determined
as a constant, the cell mean value ψ

n
i , plus a subgrid-scale deviation from this mean

value. The deviation inside grid cell (i) is determined by ψ
n
i and cell mean values of

surrounding cells, in the case of a parabolic representation, of two cells on each side.
As mentioned in Section 2.2, the accuracy of FV schemes will depend on how accurate
the fluxes are estimated. Assuming exact effective advective speeds, the accuracy of
the scheme will therefore depend only on the order of the ψ subcell representation. To
maintain mass conservation, obviously u∗

i−1e must equal u∗
iw for any pair (i − 1, i) of grid

cells. For flux-based transport schemes, the advective speed used to estimate the mass
flux Fn

l is the flow speed at the spatial location of face l. Ideally this flow speed should
be a time mean value over !t. In practice it is evaluated as a local forecast or a simple
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extrapolation valid at time (n + ½)!t. For a 1D flow with no spatial variations and
where Eq. (2.42) is used to determine XC, Eq. (2.41) becomes identical to a 1D DCISL
scheme. The reader is referred to Section 1 for a general description of the analogy
between DCISL and flux-based schemes. One of the main differences between the flux-
based FV schemes and the DCISL schemes is that the departure points is identified from
trajectories (i.e., characteristics) estimated iteratively in both time and space to better
include the effect of spatial as well as temporal variations in the flow. A similar accurate
estimation of the true departure area is generally not part of the flux-based schemes.

The generalization of the 1D FV schemes to 2Ds can be done in two fundamentally
different ways: via a more or less direct estimation of the 2D-fluxes – to be described
below in Section 2.3.2.3 – or via operator splitting. In the operator splitting method
Section 2.3.2.1 – the transport problem is split into a combination of operators in each
of the two coordinate directions.

2.3.2.1. Operator splitting Consider for simplicity only cartesian x-y coordinates. In
this case, the individual conservative flux convergence operators are in the x-direction
(Eq. (2.40)) and in the y-direction,

YC

(
v,!t,!y;ψn

)
=
[
Gn

s + Gn
n

]
/!y, (2.43)

where v is the spatially varying speed in the y-direction, !y is the grid extension in the
y-direction while s and n denote the lower (“southern”) and upper (“northern”) face of
the grid cell. G denotes the fluxes related solely to the translations in the y-direction.

A simple-minded operator splitting is where the fluxes in each direction are treated
independently as simultaneous 1D fluxes:

ψ
n+1
i,j = ψ

n
i,j + Xi,jC

(
ψ

n
)

+ Yi,jC

(
ψ

n
)
, (2.44)

where i and j is the spatial index in the x- and y-direction, respectively. This scheme is
inherently mass-conserving, and as noted by Leonard, Lock and Macvean [1996], it
is also stable when the flux is calculated using a first-order – or so-called donor cell –
method. However, as shown by Leith [1965], a scheme of a type in Eq. (2.44) is unstable
when second-order polynomials are used for the subgrid-cell representation in Eq. (2.42)
and in the corresponding expression for flux convergence in the y-direction,

YC

(
ψ

n
)

= 1
!y

[∫ ys

ys−v∗
s !t

ψndy −
∫ yn

yn−v∗
n!t

ψndy

]

(
= 1
!y

[Gs + Gn]
)

, (2.45)

where v∗ is the effective advection speed in the y-direction.
It is not surprising that the simple-minded update becomes unstable: the effective

departure area being split into two separate areas in the upstream x and y directions. What
is needed to achieve stability is a sequential flux splitting instead of the simultaneous flux
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splitting in (2.44). This means that the transport problem is first solved in one coordinate
direction and the resulting field is subsequently transported in the transverse coordinate
direction. Thereby the transport through a certain cell wall is determined from both the
velocity parallel to the cell wall, by the first transport step, and from the velocity normal
to the cell wall, by the second transport step. As a result an unbroken and more realistic
departure area is obtained. Inspired by the notation in Leonard, Lock and Macvean
[1996], consider first the intermediate transport problem in the x-direction (omitting for
simplicity the grid cell indexing):

ψCX = ψ
n + XC

(
ψ

n
)
. (2.46)

By definition, the total mass is conserved after this intermediate forecast. The subsequent
second update step in the y-direction becomes

ψ
n+1
CXY = ψCX + YC

(
ψCX

)
, (2.47)

or equivalently (by inserting Eq. (2.46) into Eq. (2.47)):

ψ
n+1
CXY = ψ

n + XC

(
ψ

n
)

+ YC

(
ψCX

)
. (2.48)

Here the argument ψCX to the YC operator is obtained as integrals of the subgrid-cell
representation in the y-direction of theψCX field. Since only conservative operators have
been applied, the total mass is unchanged.

The algorithm in Eq. (2.48) introduces a directional bias. Therefore, in practical
applications, it has been common procedure to alternate between the directional splitting
in (2.48) and the opposite sequential splitting:

ψ
n+1
CYX = ψ

n + YC

(
ψ

n
)

+ XC

(
ψCY

)
(2.49)

with

ψCY = ψ
n + YC

(
ψ

n
)
. (2.50)

The operator split schemes in Eq. (2.48)/Eq. (2.49) are also referred to as time-split
schemes. Alternatively, instead of alternating Eq. (2.48) and Eq. (2.49), one can, of
course, combine the operators and define a spatially symmetric conservative scheme as

ψ
n+1 = ½

(
ψ

n+1
CXY + ψ

n+1
CYX

)

= ψ
n + XC

[
½
(
ψ

n + ψCY

)]
+ YC

[
½
(
ψ

n + ψCX

)]
. (2.51)

Schemes of the general type Eq. (2.48)/Eq. (2.49)/Eq. (2.51) have been presented
in several papers, e.g., Tremback, Powell, Cotton and Pielke [1987], Bott [1989,
1992].
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There is a fundamental time split error – often referred to as lumpiness – associ-
ated with schemes of this type. This splitting error is a consequence of the fact that a
constant ψ-field is generally not conserved with these schemes as it should in a spa-
tially but divergence free flow (i.e. a flow with ∂u/∂x = −∂v/∂y ,= 0). This lake of
constancy conservation of the scheme (2.46)–(2.47) arises because ψCX in (2.47) is
a result of not only an advection but also a deformation in the x-coordinate direc-
tion. This is illustrated in Fig. 2.15 for the operator splitting scheme in Eqs. (2.46)
and (2.47). The original constant density ψ0 is indicated by the level of shading in
the left two columns in the left panel (grid cells with x-index, i − 1 and i − 2). The
effect of the operation (Eq. (2.46)), i.e., ψCX, is shown for the cells with x-index
i (only) as the level of shading. The effective deformation in the x-direction for the
arrival cell marked i, j is a convergence −D0 leading to increased values with darker
shading. Around the arrival cell i, j − 2, no deformation takes place in the x-direction
and the shading is therefore unchanged. Finally, in the arrival cell i, j − 3 defor-
mation (i.e. divergence) is leading to a decreased value and consequently a lighter
shading. The horizontal dotted lines in the right panel indicate the limits of the sub-
sequent transport in the y-direction through the “southern” and “northern” walls,
respectively, of cell i, j. Since the y-extension of this area is less than one (i.e., diver-
gence D0). However, since the air that is transported into the arrival cell i, j comes
from a place with density less than ψ0 the final forecasted value ψ

n+1
CYX (not shown)

in cell i, j will end up being less than the original value ψ0 which it should have
retained.

The operator splitting error problem leads to serious error growth for transport by
deformational flows. Petschek and Libersky [1975] showed that a kind of numerical
instability is associated with the time-splitting. In simulations of highly compressible
fluids, the splitting error seems to be of less importance (e.g., Woodward and Colella
[1984], Carpenter, Droegemeier, Hane and Woodward [1990], Colella [1990]).
However, in most geophysical applications, the splitting error must be explicitly dealt
with to obtain sufficiently accurate simulations.

Leonard, Lock and Macvean [1996] and Lin and Rood [1996], independently,
introduced essentially the same technique to eliminate the splitting error. The following
derivation leads to the same expressions as those originally presented by these authors.
Here, however, the focus is on the motivation behind the basic idea: ensuring the con-
tribution from flow deformations to the final forecasted value are excluded in the initial
transports parallel to the cell faces. The first ingredient is to define those contributions
to Xc ≈ −!t ∂

(
uψ
)
/∂x and Yc ≈ −!t ∂

(
vψ
)
/∂y that are related to flow deformations

in each direction (TDx ≈ −!t ψ∂u/∂x and TDy ≈ −!t ψ∂v/∂y) and those related to
advection (TAx ≈ −!t u∂ψ/∂x and TAy ≈ −!t v∂ψ/∂y). For given conservative flux
convergences, one can at first define either the deformation or the advection contributions
and then determine the other pair using the following relationships:

XC

(
ψ

n
)

= TAx + TDx,

YC

(
ψ

n
)

= TAy + TDy.

(2.52)
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The advective updates are defined in terms of TAx and TAy:

ψAX = ψ
n + TAx,

ψAY = ψ
n + TAy.

(2.53)

Lin [2004] defined initially deformations by the following centered approximations
(here expressed in cartesian coordinates):

TDx = −!tψ
n u∗

e − u∗
w

!x
,

TDy = −!tψ
n u∗

n − u∗
s

!y
.

(2.54)

The associated advective contributions to the forecasts are then defined from the
conservative flux-form operators as follows:

TAx = XC − TDx, (2.55)

TAy = YC − TDy, (2.56)

respectively. The terms TAx and TAy are referred to as “advective” since they are
approximations to −!tu∂ψ

n
/∂x and −!tv∂ψ

n
/∂y, respectively.

When initially advective contributions are defined, e.g., as in Lin and Rood [1996],
one will typically define them as:

TAx = ψAX − ψ
n = 1

!x

∫ xe−u∗!t

xw−u∗!t
ψndx − ψ

n ≈ −!tu∗ ∂ψ
n

∂x
,

TAy = ψAY − ψ
n = 1

!y

∫ yn−v∗!t

ys−v∗!t
ψndy − ψ

n ≈ −!tv∗ ∂ψ
n

∂y
,

(2.57)

where u∗ = 1/2(u∗
w + u∗

e ) and v∗ = 1/2(v∗
n + v∗

s ). In this case,

TDx = XC − TAx

= 1
!x

[∫ xw

xw−u∗
w!t

ψndx −
∫ xe

xe−u∗
e!t

ψndx

]

+ ψ
n − 1

!x

∫ xe−u∗!t

xw−u∗!t
ψ ndx

= 1
!x

[∫ xw

xw−u∗
w!t

ψndx +
∫ xe

xw

ψndx +
∫ xe−u∗

e!t

xe

ψndx

]

− 1
!x

∫ xe−u∗!t

xw−u∗!t
ψndx

= 1
!x

[∫ xe−u∗
e!t

xw−u∗
w!t

ψndx −
∫ xe−u∗!t

xw−u∗!t
ψndx

]

≈ −!tψn u∗
e − u∗

w

!x
(2.58)

with a similar expression for TDy.
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Once the advective update in the x-direction ψAX has been calculated from (2.53)
and (2.57), one can consider a provisional conservative transport of this update in the
y-direction:

ψCYAX = ψAX + YC

(
ψAX

)
. (2.59)

Note that generally
∫∫

totaldomain

ψCYAXdxdy =
∫∫

totaldomain

ψAXdxdy ,=
∫∫

totaldomain

ψ
n
dxdy, (2.60)

where the last integral represents the total mass. To achieve mass conservation, we need
to re-add the TDx field:

ψ
n+1
YX = ψCYAX + TDx

= ψAX + YC

(
ψAX

)
+ TDx

= ψCX + YC

(
ψAX

)

= ψ
n + XC

(
ψ

n
)

+ YC

(
ψAX

)
.

(2.61)

Like the (2.48) forecast the (2.61) forecast is conservative since it only includes conserva-
tive operators. However, the difference is that the fieldψAX, which is finally transported
in the north-south direction into the i, j-cell, has been advected but not deformed. With
ψn ≡ ψ0 in (2.61) it is easily verified that

ψ
n+1
YX = ψ0

(
1 −!t

[
!u

!x
+ !v

!y

])
= ψ0 if

[
!u

!x
+ !v

!y

]
≡ 0.

Here !u = ue − un and !v = vn − vs. Thus, a constant is exactly conserved if the
discretized divergence

[
!u
!x + !v

!y

]
≡ 0.

As for Eq. (2.48), a directional bias is introduced by Eq. (2.61). This can be compen-
sated by averaging the update ψYX in Eq. (2.61) with the equivalent update ψXY in the
opposite direction leading to the symmetric expression:

ψ
n+1 = ½

(
ψYX + ψXY

)

= ψ
n + XC

[
½
(
ψ

n + ψAY

)]
+ YC

[
½
(
ψ

n + ψAX

)]
.

(2.62)

An alternative and slightly cheaper approach than Eq. (2.62) is to alternate betweenψYX

and ψXY in each second time-step.
Considering the forecast in Eq. (2.61) as an example, it is noteworthy to observe

that the contributions to the divergence term −!tψ(!u/!x +!v/!y) are determined
from field values at different locations for each of the two directions. It is obvious that
a contribution comes from YC(ψAX) at a location upstream in the y-direction, and due
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Fig. 2.15 Schematic illustration of the mass conservative but not constancy conserving time splitting in
Eqs. (2.46)/(2.47) for a nondivergent flow. The left panel illustrates the intermediate forecast of ψCX for
the ith column of grid cells. The upstream departure areas δx = !x +!t

(
u∗
e − u∗

w

)
arriving in the ith

column are indicated with dashed lines. The shading in column i indicates the level of flow deformation
(− (δx −!x) / (!t!x)) related to the flow in the x-direction only, with dark shading indicating strong “con-
vergence” and light shading “divergence.” The right panel illustrates the final forecast (Eq. (2.47)) of ψn+1

CXY

for grid cell (i, j). Here, the upstream departure area δyi,j = !y +!t
(
v
∗i,j
e − v

∗i,j
w

)
is illustrated with dotted

lines. The shading in the right panel is identical to that in the left, i.e., the final forecast in (i, j) is not indicated
with shading. It is obvious, however, that it would be lighter than the original shading in the two grid columns
j − 1 and j − 2. Thus, the scheme is not constancy conserving. Note that since flow is nondivergent, we have

D ≈ −
(
δxi,j −!x

)
/ (!t!x) −

(
δyi,j −!y

)
/ (!t!y) = 0.

to the definition of YC (ψAX) the ultimate origin of this contribution is upstream in both
the y- and x-directions as it should be according to the “exact solution”. Contrary to this,
the term TDx gives a contribution to the divergence term that is based on field values
at a different location: if TDx is chosen as the primary definition and the definition in
Eq. (2.54) is used, it is based on the value ψ

n
at the location of the arrival Eulerian cell,

and if TAx is chosen as the primary definition and (2.58) apply, it is based on the value
ψ

n
at a location !tu∗ upstream in the x-direction. Similar arguments apply to ψXY ,

and therefore the forecast in Eq. (2.62) includes some (small) contributions from the ψ
n

field either at the location of the Eulerian arrival cell (when TDx and TDy are chosen as
primary definition) or upstream in each of the two directions (when TAx and TAy are
primaries). Fig. 2.11 shows the actual departure area for a forecast using the transport
schemes by Lin and Rood [1996] and the wind field in Eq. (2.24). It can be seen that for
this particular case, there is a considerable spread out of the departure area relative to the
DCISLschemes in Fig. 2.10.Acareful inspection of Fig. 2.11 shows that the net departure
area is displaced systematically towards “south-east” as compared to the “exact departure
area”. This is related to curvature of the trajectories in Fig. 2.9.As for the DCISL schemes
the shift of mass inside grid cells, due to calculated sub-grid-scale deviations from the
cell average value ψ

n
in cells crossed by the boundary of the departure area, may result

in a larger or a smaller effective departure area from which mass is contributed to ψ
n+1

,
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compared to the departure area shown in Fig. 2.11. However, in any case the global mass
is conserved and the sub-grid-scale distributions serve to reduce any artificial damping.

The approaches by Leonard, Lock and Macvean [1996] and Lin and Rood [1996]
to eliminate the operator – or time – splitting error may have been inspired by the earlier
techniques introduced by Bott [1993] and Easter [1993]. Bott [1993] applied flux
limiters (see Section 2.6) to obtain monotonicity-preserving transport, but otherwise, the
basic idea is the same as explained above. One fundamental difference is, however, that
the Bott [1993] scheme does not permit time-steps exceeding the CFL criterion such
as the schemes by Leonard, Lock and Macvean [1996] and Lin and Rood [1996].

Easter [1993] introduced an alternative way of eliminating the splitting error in the
original positive-definite scheme by Bott [1989]. His approach is equivalent to that by
Leonard, Lock and Macvean [1996] and Lin and Rood [1996]: the 1D conservative
transport in the first direction of the operator splitting will generally change the fluid
density due to fluid deformations and due to pure advection. For tracer mixing ratio,
only pure advection along tracer gradients can change the value. By eliminating the
deformational part, one can isolate mixing ratio transport and subsequently during the
transport in the second direction include the deformational contribution in a consistent
way: the estimated total deformation in each of the two directions for a given cell is
based on the local flow around this cell.

Schemes of the type presented above have been quite popular in recent years (e.g.,
Rasch and Lawrence [1998], Lin [2004]) and have and will be been implemented
into atmospheric models ranging from meso-scale models (e.g., Skamarock, Klemp,
Dudhia, Gill, Barker,Wang and Powers [2007]) to general circulation models GCMs
(e.g., Adcroft, Campin, Hill and Marshall [2004]. Note, however, that by far most
applications have been offline, i.e., passive advection of tracers in models using a different
scheme for the solution of the continuity equation in the dynamical core. For such models,
the need for special attention in relation to the mass-wind inconsistency problem – see
Section 3 – is often even more important than in the online models mentioned here.

As shown by Lin and Rood [1996], the flux-based schemes derived above will nor-
mally lead to conservation of linear correlations between the mixing ratios qa and qb

of two tracers a and b, i.e., if qn
b = αqn

a + β then qn+1
b = αqn+1

a + β where α and
β are constants. This is because the flux convergences and transports of the types of
Eqs. (2.42), (2.45), and (2.54) satisfy the general linear relationships:

Z (ψ + β) = Z (ψ) + Z (β) ,

Z (αψ) = αZ (ψ). (2.63)

The above relationships will in general also apply to DCISL schemes based on, e.g., the
PPM method.

The conservation of linear relationships between different tracers is an attractive
feature in, e.g., chemical modeling because it prevents artificial chemical reactions in ide-
alized situations where the mixing ratio within a domain of one tracer can be expressed as
a linear function of another. Note, however, that for schemes where the upstream subgrid-
cell representation is forced positive-definite or monotonic, Eq. (2.63) is generally not
fulfilled. It should also be mentioned that no such thing as linear relationships exist
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between tracers in nature. Generally, the flux-based schemes (and the DCISL schemes)
do, therefore, not conserve the local relative concentrations or mixing ratios between
two tracers. In particular, this is the case in regions where one tracer has a reasonably
smooth behavior while the other is dominated by a sharp variation of the spatial gradient.

In practice, the mixing ratio for a tracer is used as prognostic variable in many flux-
based schemes. Hourdin and Armengaud [1999] used a scheme quite similar to that
by Lin and Rood [1996], where a few requirements on the spatial behavior of the
mixing ratio were sufficient to ensure both monotonicity and positive definiteness. Gen-
erally, schemes based on mixing ratio should conserve a constant mixing ratio, although
enforcement of positive definiteness and monotonicity in such schemes may deteriorate
correlations between mixing ratios. Note that schemes based solely on mixing ratio will
generally not conserve the total mass of the tracer unless care is taken to conserve total
mass of the air in a consistent way. If flux-limiters (see Section 2.6) or a priori con-
straints on the subcell representation are applied solely to mixing ratios, one will lose
mass conservation unless special additional constraints are imposed. In meteorological
models the atmospheric air contain more or less water vapour so specific concentration
(see definition page 3) is used instead of mixing ratio, defined relative to dry air.

2.3.2.2. Stability of operator-split, flux-based schemes The operator-split, flux-based
schemes have often been subject to a CFL criterion (i.e., !t < !x/u∗) in 1D. One can
identify two main reasons for this:

• The upstream subgrid-cell representation needed to estimate the face fluxes was
defined locally from the grid cells neighboring the target Eulerian cell. This means
that longer time steps led to extrapolation (and not aggregation) of information
and hence the CFL criterion. It was not considered to apply “semi-Lagrangian”
thinking.

• Some schemes are quite heavily hooked up on localized flux limiters. This makes
it difficult to generalize into far upstream constraints. Examples are the otherwise
popular and accurate schemes by Bott [1989, 1992, 1993].

As pointed out by Leonard [1994], there are, however, no immediate scientific rea-
sons to limit the integration domain to the neighboring grid cells for schemes where
the face fluxes are based on pure upstream integrals of “mass”.3 If the subgrid-cell
information is defined everywhere without extrapolation, the face fluxes consist of inter-
polation/aggregation of information and they will be stable as shown in the 1D PPM
case for the DCISL schemes (Section 2.3.1.4).

The stability of low-order versions of 2D flux-based semi-Lagrangian schemes was
cursorily investigated by Lin and Rood [1996].4 Later, Lauritzen [2007] made a
detailed stability analysis of both higher and lower order versions of the Lin and Rood

3However, depending on the machine architecture and the actual scheme it may in some case be more
efficient to require that characteristics depart from the immediate neighbouring cells because then there is no
need for searching.

4Note that equations (A.5) and (B.1) in Lin and Rood [1996] are missing some terms, but that the correct
formulas have the same generic form. See the Appendix in Lauritzen [2007].
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[1996] class of schemes as well as a conceptual analysis to explain the results. The Lin
and Rood [1996] class of schemes is given by Eq. (2.62), and the different schemes in
the class are formed by varying the order of the 1D operators that are applied. The flux-
form operators applied to the terms in the square brackets in Eq. (2.62) are referred to as
outer operators, whereas the operators used forψAX andψAY are referred to as the inner
operators. When the inner and outer operators differ, Lauritzen [2007] showed in a
linear Von Neumann stability analysis that increased damping (or weak instability) may
result, but this spurious damping disappears when the operators are identical (similarly
for phase errors). This is due to the fact that for Courant numbers larger than unity
there can be contributions to the forecast not originating from the Lagrangian departure
area as they physically should. If the operators are identical and under the assumptions
applied in a Von Neumann stability analysis, the Lin and Rood [1996] scheme becomes
formally identical to the Nair, Scroggs and Semazzi [2002] and Zerroukat, Wood
and Staniforth [2002] schemes, and therefore only includes information from the
departure cell. For more details, see Lauritzen [2007].

2.3.2.3. Explicit estimation of the 2D fluxes Most flux-based schemes have used the
technique of time- or operator splitting described in Section 2.3.2.1, and the approach
has proven to be very efficient and economic. There will, however, always be a slight
inconsistency since the splitting prevents integration of the exact departure area. To
reduce these problems, several papers (e.g., Dukowicz and Ramshaw [1979], Smo-
larkiewicz [1984], Bell, Dawson and Shubin [1988], Colella [1990], Dukowicz
and Kodis [1987], Smolarkiewicz and Grabowski [1990], Rasch [1994], Leonard
[1994], Hólm [1995], Dukowicz and Baumgardner [2000]) have investigated the pos-
sibility of constructing fully 2D flux-based schemes. In these schemes, one aims directly
at an estimate of the transport in the “cross-directions”, which was taken care of by the
sequential approach in the operator split methods.

The fully 2D flux-based schemes are similar to fully 2D DCISL schemes since they –
more or less directly – are based on estimates of integrals over upstream areas to obtain
the mass interactions with all the neighboring grid cells. One example is the scheme by
Hólm [1995] in cartesian geometry, which for a given grid cell is based on four unique
fluxes in the x-direction, the y-direction, and the two cross-directions (see Fig. 2.16).

The scheme proposed by Rasch [1994] appears to be somewhat different. This scheme
is based on an upwind biased stencil of points that are used to define an upstream spatial
interpolation of the same type as that in semi-Lagrangian models.5 However, making
use of certain symmetry rules in the upstream polynomials, this interpolation can be
formulated in the traditional flux form (Eq. (2.39)) for a given Eulerian grid cell. In
other words, constraints on the polynomial coefficients ensure that the implied fluxes
are unique for each face.

Contrary to the operator-split flux-form FV schemes, it is complicated to circumvent
the CFLcriterion for fully 2D flux-based schemes. Referring to the discussion in Section 1
on the analogies between flux-form and DCISL schemes, a fully 2D semi-Lagrangian
flux-form scheme would in fact be the same as a DCISL scheme.

5Note, however, that the scheme by Rasch [1994] is Eulerian and therefore subject to a CFL criterion.
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(i, j) 

Fig. 2.16 Schematic illustration of the four unique fluxes needed in fully 2D flux-based finite-volume
schemes.

2.4. Locally mass conserving semi-Lagrangian grid point methods

Recently, a few locally mass conserving upstream or downstream interpolating semi-
Lagrangian grid point schemes have been proposed in the literature. Mass conservation
has been achieved via local modifications of the polynomial interpolations in such a way
that the total mass is always conserved. Effectively the prognostic grid point variable in
such schemes is the average density in Eulerian grid cells, and therefore these schemes
can be considered special types of semi-Lagrangian FV schemes.

We have already – in Section 2.3.1.1 – mentioned the scheme by Laprise and Plante
[1995] where a downstream semi-Lagrangian scheme was modified along these lines.
The scheme by Rasch [1994] – although Eulerian – is an example of an upstream mass
conserving scheme based on modifications of the polynomial coefficients. More recently,
Kaas [2008], Cotter, Frank, Reich [2007] and Reich [2007] have proposed upstream
and downstream grid point semi-Lagrangian schemes which are locally mass conserv-
ing. The basic idea is to modify the upstream or downstream polynomial interpolation
coefficients.

For an upstream traditional semi-Lagrangian scheme – following Kaas [2008] –
these coefficients can be considered area (or volume in the 3D case) weights transferring
information from Eulerian grid points to the different irregularly spaced neighboring
semi-Lagrangian departure points. The original weights in this remapping are modi-
fied by that fraction, which ensures that the sum of the weights given off by a given
Eulerian grid point to all the surrounding departure points is equal to the unique area
(volume) represented by this grid point. Hereby a local mass conservation is achieved
when the prognostic variable is density. The forecasted densities (in the arrival Eulerian
grid points), including the effects of divergence, are equal to the modified upstream inter-
polated values divided by the unique area (volume) represented by the arrival Eulerian
grid point.
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For downstream schemes as in Cotter, Frank, Reich [2007] and Reich [2007],
the procedure is opposite and somewhat more tricky since it is the distribution weights
that are modified. Also Reich [2007] discusses the possibility of introducing modified
upstream semi-Lagrangian weights.

The domain of dependence of locally mass conserving semi-Lagrangian schemes
is comparable to that in pure DCISL schemes and depends on the actual polynomial
accuracy used for the upstream interpolations/subgrid-cell representations. However, the
degree of local mass conservation is higher in the DCISL schemes since the departure
cell area is close to the true departure area, while in the locally mass conserving semi-
Lagrangian schemes, mass is extracted from grid cells in a larger domain.

2.5. Additional prognostic variables

To improve the subgrid-cell representation needed to estimate the mass fluxes, one may
introduce additional prognostic variables. Van Leer [1977] (scheme IV) and Prather
[1986] used traditional second-order polynomials to represent the spatial distribution
and used both gradients and curvatures as additional prognostic variables to define these
polynomials. This allowed for the formulation of a formally very accurate scheme
that conserved second-order moments. Note, however, the arguments by Thuburn
[2006] that it is not desirable to conserve second moments since one can only conserve
the resolved part. Furthermore, the Prather [1986] scheme is very computationally
demanding both in terms of CPU and memory requirements. Therefore, it has not been
popular in “real” applications.

More recently, schemes have been introduced (e.g., Xiao and Yabe [2002]), where
not only the cell mean values but also the values and gradients at the cell interfaces
are prognostic variables. These additional prognostic variables have the same role as
the moments introduced by Prather [1986]: the reduction of the loss of information
(damping) associated with the spatial remappings that are fundamental to all FV schemes.
The proposed new schemes are highly accurate as the scheme by Prather [1986], but at
significantly reduced computational cost, particularly in terms of CPU usage. The scheme
has been further improved and generalized to 2 and 3Ds using directional splitting (Xiao,
Yabe, Peng and Kobayashi [2002], Peng, Xiao, Ohfuchi and Fuchigami [2005]). To
describe the basics behind the new so-called conservative semi-Lagrangian schemes
based on rational functions (CSLR) schemes, consider transport in 1D and assume that
we know the cell mean value ψ and the “west” and “east” interface values, ψw and
ψe. From this information, one has three degrees of freedom to construct the subgrid-
cell representation at a given time step n. One possible choice of functions could of
course be the PPM. However, Xiao, Yabe, Peng and Kobayashi [2002] found that
rational functions with second-order polynomials gave better results at less numerical
cost. However, the rational functions used have a built-in singularity that causes problems
unless special care is taken. In the CSLR scheme, this singularity can appear when a local
maximum or minimum is transported. According to Xiao, Yabe, Peng and Kobayashi
[2002], the problem can be dealt with by introducing a small machine-dependent constant
that prevents division by zero at the singularity. In the 2D case, the update of the ψ
values is performed as standard flux-form integrals, Eqs. (2.42) and (2.45), of the rational
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functions.The cell interface values are updated using standard semi-Lagrangian upstream
interpolation based on the rational functions followed by the relevant change related to
the divergence of the flow. The new schemes are stable and efficient, but, of course, they
will be more memory demanding since an additional prognostic variable is introduced.
It is anticipated that the basic idea behind the CSLR schemes is so powerful that it will
be adopted in many future integration schemes used in atmospheric models.

We see no fundamental problems in applying the powerful technique of including cell
interface values as additional prognostic values in fully 2D and cascade DCISL schemes
although the authors are not aware of any specific attempts along this direction.

2.6. Flux limiters

FV schemes based on polynomial unfiltered subcell representations do not, in general,
fulfill requirements such as positive definiteness and monotonicity. In particular, numer-
ical oscillations often develop near discontinuities or large variability in gradients. In
Section 2.2.1, it was described how it is possible to introduce different filters or con-
straints on the subgrid-cell representations to reduce or eliminate these problems. In most
cases – with the filter by Zerroukat, Wood and Staniforth [2005] as an exception –
the applications of such filters tend to reduce the accuracy of the schemes because of
the implied clippings and smoothings of the subcell scale polynomials. We can denote
these filters a priori filters because they are introduced before the estimation of fluxes
or the upstream cell integrations. It is, however, also possible to introduce a posteriori
corrections – often referred to as flux limiters – of the fluxes to ensure fulfillment of the
desired properties. This type of flux corrected transport (FCT) filters was introduced by
Boris and Book [1973] and by Zalezak [1979]. The basic idea behind the classical
FCT is to perform a local mixing of the fluxes obtained from a high-order scheme (which
is accurate but violate the desired properties) with fluxes from a low-order highly dif-
fusive scheme (which fulfill the properties), e.g., a simple so-called upstream scheme.
The procedure is – for each cell interface – to modify the local fluxes of the diffusive
scheme as much as possible toward the fluxes in the high-order scheme without exceed-
ing the magnitude of this flux and without creating new local maxima or minima in the
neighboring cells; i.e., the local fluxes are changed differently at all interfaces under
the constraint that the change in neighboring cell values do not lead to changed sign of
gradients in the neighboring interfaces.

Several different types of flux limiter approaches have been presented in the literature
to obtain positive definiteness, e.g., Bott [1989], or monotonicity, e.g., Smolarkiewicz
and Grabowski [1990], Bott [1992], Rasch [1994], Hólm [1995], Xue [2000]. For
some schemes, such as the schemes by Bott [1989], Bott [1992], the flux limiters are
inherent parts of the basic flux calculations. Hólm [1995] was the first to apply flux
limiters directly to the fluxes in fully 2D flux-based schemes.

Although one can argue that the specific flux limiters used will be somewhat arbitrary
from a physical point of view, such filters can improve the performance of transport
schemes significantly at a reasonable cost although there are some logical statements and
“max/min” functions involved in the algorithms. As mentioned above, limiters enforcing
positive definiteness will generally not ensure conservation of mixing ratios between
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different tracers. Furthermore, when flux limiters are applied in operator-split schemes
permitting long time-steps, the flux limiters cannot guarantee strict multidimensional
shape conservation in flows with strong deformation (Leonard, Lock and Macvean
[1996]). An exception is the limiter of Skamarock [2006].

2.7. Concluding remarks

Two fundamentally different FV methods in 2Ds are being used in meteorology: DCISL
schemes and the flux-based methods. In DCISL schemes, the forecast for a given Eule-
rian cell is based on an integral over an isolated area approximating the exact upstream
departure area. This means that DCISL schemes are quite direct approximations to the
exact forecast that is an integral of the exact subgrid representation over the exact depar-
ture area. In flux-based methods, the forecast is obtained as the net flux of mass through
each of the faces of the Eulerian cell. For each face of the cell, this flux is shared with a
neighboring Eulerian cell and it is determined as an integral over the area swept through
the actual face during one time-step. Although less direct than DCISL schemes, the flux-
based methods also approximate an integral over the exact departure area. Therefore,
the two methods are equivalent and the accuracy of both will depend on the order of
the subgrid representation being integrated and the effective approximation to the “true”
departure cell.

For DCISL as well as flux-based schemes, the operations related to two directions
can be separated or split. For DCISL schemes, this is referred to as cascade integration,
and for the flux-based schemes, it is termed operator- or time-splitting. The advantage of
the splitting is that only 1D subgrid representations and integrations are required which
makes these schemes considerably more efficient.

Although the flux-based schemes are generally quite accurate and conserve mass (or
any integral invariant) locally, higher order subgrid representations, i.e., high accuracy,
will generally violate conservation of shape, i.e., the schemes become nonmonotonic
or nonpositive-definite. A number of constraints to reduce or eliminate such problems
can be applied to the subgrid representations entering the upstream integrals. It is also
possible to apply a posteriori corrections (e.g., so-called flux limiters) to the forecast that
reduce or eliminate these problems.

DCISL schemes are by construction semi-Lagrangian and not subject to any advective
CFL criterion that limits the maximum possible time-step apart from the requirement of
the departure cells being well defined. In contrast to this, many traditional flux-based
schemes are formulated to allow only transport over a maximum distance of one grid cell
within one time-step, i.e., the Courant number must be less than unity to obtain stability.
For operator-split flux-form schemes, it is, however, possible to extend the integration
domain thereby avoiding the CFL criterion.

In the original time-split flux-form schemes, the lake of conservation of constant
density fields in non-divergent (but deforming) flow, caused a splitting error, the so-called
nudging error, The introduction of combined advective-conservastive flux-form schemes
circumvented this problem. In realistic case studies with DCISL schemes no error like the
flux-form nudging error has been reported, although the DCISL schemes do not conserve
exactly a constant field in non-divergent flow. Such constancy conservation will be
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obtained in upstream DCISL schemes only if the departure area δA is exactly equal to the
arrival area!A, or in other words if the discretized Lagrangian divergence D = ∂A−!A

!t!A is
exactly zero. This should be the case in any reasonably smooth divergence free flow if the
determination of the departure area was exact. In praxis the departure area is determined
only approximately. In present schemes it is dependent on the accuracy of the backward
trajectories from the corner points of the arrival area and the strait line approximation
to the exact connections between the departure corner points. Laprise and Plante
[1995] found in an idealized solid body rotation experiment an accumulated relative
error (∂A −!A)/!A over 10 time steps of up to 1%. It seems reasonably to assume
that this number will be reduced substantially with a trajectory computation like that used
by Lauritzen, Lindberg, Kaas and Machenhauer [2008], that takes accelerations
into account. This should be investigated further. Furthermore in realistic flows it must be
expected that accumulation of errors will occur less frequent and cancellation of errors
will reduce the problem, if any.

For the schemes considered here, the exact departure area in deforming flows is better
represented and integrated over in the DCISLschemes than in flux-based schemes. There-
fore, with respect to the schemes for effective approximation to the departure area, one
may conclude that DCISL schemes are generally more accurate than flux-based schemes.

One may anticipate that further developments of FV methods will include introduc-
tion of additional prognostic values and gradients at the cell interfaces as was recently
proposed.

3. FV models

As stated previously, FV methods are well suited for the numerical simulation of conser-
vation laws. This is demonstrated in Section 3.1 where a complete set of FV prognostic
equations, that conserve exactly mass, entropy, total energy, and angular momentum
in an adiabatic, friction-free and quasi-hydrostatic atmosphere, is derived. A numerical
model based on this set of FV conservation laws, a so-called complete set of conserva-
tion laws (CSCL) model, remains to be realized. However, assuming forcing terms and
Eulerian vertical discretization as in an existing operational primitive equation model, it
is shown how such a prognostic system may be set up. The advection of all invariants is
supposed to be calculated by an explicit, absolutely stable DCISL time-stepping scheme
borrowed from Lauritzen, Kaas, Machenhauer and Lindberg [2008]. Here, in each
time-step, mass and other invariants are transported conservatively along Lagrangian sur-
faces determined as in Lauritzen, Kaas, Machenhauer and Lindberg [2008] by 3D,
so-called hybrid trajectories that are horizontally upstream (determined from the hori-
zontal wind field) and vertically downstream (determined indirectly by the condition of
hydrostatic balance).

In Sections 3.2 and 3.3, respectively, two recently developed quasi-hydrostatic
dynamical cores in spherical coordinates are described, namely, the global NCAR-FFSL
(National Center for Atmospheric Research – Flux Form Semi-Lagrangian) dynami-
cal core (Collins, Rasch, Boville, Hack, Mccaa, Williamson, Kiehl, Briegleb,
Bitz, Lin, Zhang and Dai [2004]) and the limited area HIRLAM-DCISL dynamical
core (Lauritzen, Kaas, Machenhauer and Lindberg [2008]). They are pioneering

user
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examples of the two different types of FV dynamical cores developed in the meteoro-
logical modeling community. The former is based on the flux-form (Eq. (1.2)) and the
latter on the Lagrangian form (Eq. (1.8)) of the continuity equation. These dynamical
core examples of FV dynamical cores developed recently in the meteorological model-
ing community. In both dynamical cores, the continuity equation is solved by absolutely
stable FV advection methods, which ensure exact mass conservation. In the HIRLAM
DCISL, the remaining primitive equations are solved with finite-difference methods that
do not ensure exact conservation of additional integral invariants. In the NCAR-FFSL,
additionally potential temperature and absolute potential vorticity are conserved for
adiabatic friction-free flow. In the HIRLAM-DCISL dynamical core, the DCISL advec-
tion scheme is combined with a semi-implicit time-stepping, thereby allowing large
time-steps for all variables at the expense of solutions to elliptic Helmholtz equations
each time-step (Robert [1969, 1981, 1982]). In the NCAR-flux-form semi-Lagrangian
(FFSL) dynamical core, an explicit flux-based advection scheme is used, which means
that shorter time-steps must be used for the dynamical variables, while advection of
tracers (including water vapor) and physical parameterization can be predicted with
long time-steps. Both dynamical cores have been coupled with comprehensive physical
parameterization packages. In Section 3.4, the properties of the dynamical cores are
discussed.

The main part of this section is dealing almost exclusively with complete quasi-
hydrostatic atmospheric models. However, relevant aspects of online and off-line
applications are taken up in Section 3.5, and finally in Section 3.6, possibilities of
extensions to nonhydrostatic models are briefly discussed.

3.1. A complete set of FV conservation laws for a quasi-hydrostatic atmosphere

As shown by Machenhauer [1994], an explicit FV general circulation model, which
conserves exactly a maximum number of fundamental integral invariants, may be formu-
lated. Let it as above be called a CSCL model. In this section, the prognostic equations
are derived and a possible explicit time-stepping procedure is presented. Finally, the
feasibility of such a model is discussed.

3.1.1. The continuous primitive equations
Consider the continuous equations, the so-called primitive equations, for a general
pressure-based terrain-following vertical coordinate η (p, ps) as formulated, for exam-
ple, for the European Center for Medium Weather Research (ECMWF) integrated
forecast system (IFS) model (Simmons and Burridge [1981]) and the HIRLAM
(Källén [1996]) operational atmospheric models. The prognostic equations are:
the quasi-horizontal momentum equation

d "V
dt

= −∇φ − α∇p − f "k × "V + "P "V + "K "V , (3.1)

the thermodynamic equation

cp
dT

dt
= αω + (PT + KT )cp, (3.2)
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the continuity equation for moist air

d
dt

(
∂p

∂η

)
+ ∂p

∂η
∇ · "V + ∂p

∂η

∂η̇

∂η
= 0, (3.3)

and the moisture equation

dqv

dt
= Pqv + Kqv, (3.4)

which in combination with Eq. (3.3) may be written as

d
dt

(
qv
∂p

∂η

)
+
(

qv
∂p

∂η

)
∇ · "V +

(
qv
∂p

∂η

)
∂η̇

∂η
= ∂p

∂η

(
Pqv + Kqv

)
. (3.5)

The hybrid vertical coordinate η (p, ps), introduced by Simmons and Burridge [1981],
is a monotonic function of pressure p and surface pressure ps such that

η(0, ps) = 0 and η(ps, ps) = 1.

Here t is time, "V is the horizontal wind vector, qv is the specific humidity, ∇ is the
horizontal gradient operator along η-surfaces, φ is the geopotential, "k is the vertical
upward unit vector, f is the Coriolis parameter (f = 20 sin ϕ, where 0 is the angular
velocity of the Earth and ϕ is the latitude), ω is the p-coordinate vertical velocity (ω =
dp/dt), α is the specific volume, and ρ is the density of moist air determined by the ideal
gas equation

α = 1
ρ

= RdTv

p
. (3.6)

Rd is the gas constant for dry air and Tv is the virtual temperature defined by
Tv = T

[
1 +

(
1−ε
ε

)
qv

]
, where T is the absolute temperature, ε = Rd/Rv, and Rv is

the gas constant for water vapor. cp is the specific heat of moist air defined by
cp = cpd(1 + (δ− 1) qv), where δ = cpv/cpd , cpv and cpd are the specific heat of water
vapor and dry air, respectively. The geopotential φ, which appears in Eq. (3.1), is defined
by the diagnostic hydrostatic equation:

∂φ

∂η
= RdTv

∂ ln p

∂η
. (3.7)

The P-forcing terms in Eqs. (3.1), (3.2), and (3.4) represent the contributions of the
parameterized physical processes while the k-forcing terms represent the parameterized
horizontal diffusion. The P-terms may be specified as for the ECMWF model:

"P "V = −g

(
∂p

∂η

)−1 ∂"J "V
∂η

, (3.8)

cPPT = QR + QL + QD − g

(
∂p

∂η

)−1 [∂JS

∂η
− cpdT (δ− 1)

∂Jqv

∂η

]
, (3.9)

Pq = Sqv − g

(
∂p

∂η

)−1 ∂Jqv

∂η
, (3.10)
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where "J "V , JS , and Jqv represent net parameterized vertical fluxes of momentum, dry
static energy cpdT + φ, and moisture. QR, QL, and QD represent heating due, respec-
tively, to radiation, internal phase changes, and internal dissipation of kinetic energy
associated with the "P "v-term. Sqv denotes the rate of change of qv due to rain and snow-
fall. Comprehensive physical forcing packages have been developed for the calculation
of the P- and k-terms in operational primitive equation models as the IFS and HIRLAM.
Assuming that such a package is available, it is convenient to express the forcing of the
CSCL model in terms of P- and k-terms.

3.1.2. Vertical discretization
In the formulation of the FV CSCL model, it is convenient to make use of the traditional
Eulerian hybrid sigma-pressure vertical discretization which is used widely, e.g., in the
ECMWF and the HIRLAM models. This means that the model atmosphere is divided
into NLEV layers which are defined by the pressures at the interfaces between them (the
“half levels”):

pk+1/2 = Ak+1/2 + Bk+1/2ps (3.11)

for 0 ≤ k ≤ NLEV. The pressure thickness of the model layers is denoted as !kp =
pk+1/2 − pk−1/2. The coefficients Ak+1/2 and Bk+1/2 are constants whose values
completely define the vertical η coordinate.

The finite difference analog, to the hydrostatic Eq. (3.7) for the geopotential thickness
of a single layer and for the air mass from surface and up to a half level, is given by

φk+1/2 − φk−1/2 = −Rd(Tv)k (! ln p)k , (3.12)

φk+1/2 = φs + Rd

NLEV∑

l=k+1

(Tv)l (! ln p)l , (3.13)

respectively, where

(! ln p)k = ln
(

pk+1/2

pk−1/2

)
. (3.14)

To obtain the geopotential at a full level, the almost universal approach of Simmons and
Burridge [1981] is used:

φk = φk+1/2 + αkR(Tv)k , (3.15)

where

αk =






ln 2 k = 1

1 − pk−1/2

!kp
(! ln p)k k = 2, .., NLEV




 . (3.16)
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Following Lauritzen, Kaas, Machenhauer and Lindberg [2008], the “full level”
pressures pk are computed with

pk = pk+1/2 exp(−αk) . (3.17)

Away from the upper boundary, pk
∼= 1

2

(
pk+1/2 + pk−1/2

)
. The various FV conservation

laws may be derived directly from the primitive equations listed above (as was done in
Machenhauer [1994]). However, the more straightforward procedure used in Section 1
to derive the mass conservation law (Eq. (1.12)) will be used here.

3.1.3. Conservation of mass of moist air
The mass in a FV δV with vertical walls, horizontal cross-section δA, and thickness
δz = z1 − z2 (see Fig. 3.1) is

MδV =
∫∫

δA

(∫ z1

z2

ρ dz

)
dxdy. (3.18)

Utilizing the hydrostatic balance dp = −gρ dz, the inner integral may be written as
∫ z1

z2

ρ dz = 1
g

∫ p2

p1

dp = 1
g

(p2 − p1) = 1
g
δp

z 5 ` p 5 0
&A

!A

Ak 2 1/2 Bk 2 1/25 1pk2 1/2
2n 11 p

S
2n11

Ak11/2 Bk 11/25 1pk11/2
2n11 p

S

2n 1 1

p15 pn11
k21/2

p15 pn 1 1
k 1 1/2

^2

^2

p25 p2n
k11/2

p15 p2n
k21/2

&x &y

z1

z2

z1

z2

z 5 zs

p5 p2n 1 1
s

Fig. 3.1 Cell of moist air with vertical walls extending from the height z1 at pressurep1 to the height
z2 at pressure p2, situated in the left column at time t = n!t and in the right column at time t +!t =
(n + 1)!t. During a time step, we suppose the cell is moving in an air flow without vertical shear so that
its vertical walls remain vertical. Generally, its horizontal cross-section area δA, its thickness δz = z1 − z2,
and the corresponding pressure difference δp = p2 − p1 are changing with time during the time-step. At
time t the cell is enclosed in model layer k, i.e., p1 = pn

k−1/2 = Ak−1/2 + Bk−1/2 pn
s and p2 = pn

k+1/2 =
Ak+1/2 + Bk+1/2 pn

s , and at t +!t, the cell arrives in the regular grid column (the column to the right) with
cross-section area !A = !x!y in a layer, which generally do not coincide with a model layer ((p1, p2) ,=(

pn
k−1/2, p n

k+1/2

)
).
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so that Eq. (3.18) becomes

MδV = 1
g

∫∫

δA

δpdxdy = 1
g
δp δA (3.19)

This FV is supposed to move with the flow with vertical walls and without any flux of
mass through its boundaries. Thus, the condition for mass conservation is

dMδV

dt
= 1

g

d
dt

(
δp δA

)
= 0 (3.20)

This is similar to Eq. (1.12) except that here the hydrostatic approximation has been
applied.

3.1.3.1. 3D trajectories In Section 1.1, a traditional FV Lagrangian approach was
applied with an integration of Eq. (1.12) in time along (exact) 3D upstream trajecto-
ries, starting at time t from the irregular departure cell and ending at t +!t at the
regular arrival cell (an Eulerian grid cell with area !A and vertical height difference
!kh = hk+1/2 − hk−1/2). This resulted in the prognostic Eq. (1.8) that was rewritten
finally as Eq. (1.10). A prediction based on Eq. (1.10) would require a 3D integration
over the irregular departure FV that would be very complicated and thus inefficient
to do in practice. An even more serious objection against using Eq. (1.10) in practice
is that it would require the construction of 3D trajectories that would require a pri-
ori known vertical velocities. In a quasi-hydrostatic atmosphere, however, the vertical
velocity is a diagnostic quantity, which is determined by the diabatic heating and the
instantaneous horizontal flow of mass and heat (Richardson [1922]). In pressure coor-
dinates, which is more relevant here, it is even simpler; the pressure vertical velocity
ω = dp/dt is diagnostically determined by the continuity equation from just the instan-
taneous horizontal flow of mass. Thus, the vertical displacements of mass during a time
step!t must be determined as those displacements that ensure re-establishment of hydro-
static equilibrium after the given horizontal displacements of mass. Such considerations
led Machenhauer and Olk [1997] to suggest a change in the traditional Lagrangian
approach used in Section 1.1. They suggested construction and use of combined back-
ward horizontal and forward vertical trajectories as indicated in Fig. 3.1. This idea
of introducing quasi-horizontal Lagrangian trajectories and associated hydrostatically
determined vertical velocities was concretized by Lauritzen, Kaas, Machenhauer
and Lindberg [2008] in the HIRLAM-DCISL (Section 3.2) as described in the follow-
ing. They called the combined backward horizontal and forward vertical trajectories
hybrid trajectories. Also Lin and Rood [1998, 2004] introduced a so-called “floating
Lagrangian control volume vertical coordinate” determined from hydrostatic balance,
which in its essence is similar to the Lagrangian trajectories introduced by Machen-
hauer and Olk [1997], although the vertical displacements and thereby the vertical
velocity in their scheme are defined from upstream trajectories determined by horizontal
winds at the faces of the arrival Eulerian cell only and not from upstream winds as in
DCISL.

The DCISL hybrid trajectories depart at t = n!t from the corner points of the irreg-
ular area δkAn (the departure cell in the left column in Fig. 3.1) with a vertical extent
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equal to that of a model layer, i.e., with an averaged pressure difference between its
top and bottom equal to !kp

n δ = pn
k+1/2 − pn

k−1/2
δ = 1

δA

∫∫

δA

!kp
n dxdy, the hori-

zontal mean of !kp
n over the irregular departure area δkAn. Note that (x)

δ
denotes

a horizontal mean over an irregular departure cell area δkAn, whereas (x) denotes a
horizontal mean value over a regular arrival cell area !A. The area-averaged full level
pressure pn

k

δ
in the departure area is determined from pn

k+1/2
δ

and pn
k−1/2

δ
analogously to

Eq. (3.17). The pressure at the trajectory starting point is interpolated from the pn
k values

in the surrounding grid cells. The trajectories are ending at time t +!t = (n + 1)!t

at the corner points of an arrival cell with horizontal area !A located in a regular
grid column (the right column in the figure) and in a layer with pressure thickness

δkp̂
n+1 =

(
p̂k+1/2

) n+1
−
(
p̂k−1/2

) n+1
. The full level pressure in the arrival cell is

p̂
n+1
k =

(
p̂k+1/2

) n+1
exp
(
−αn+1

k

)
; and the pressure at the trajectory end point is inter-

polated from the p̂
n+1
k values in the surrounding grid cells. In general, δkp̂

n+1
does not

coincide with an Eulerian model layer (as also indicated in the figure).
The Lagrangian FV is supposed to move along the hybrid trajectories so that an

integration of Eq. (3.20) from t = n!t to t +!t = (n + 1)!t results in the prognostic
equation

δkp̂
n+1

!A = !kp
n δδkA

n, (3.21)

where the n and n + 1 superscripts refer to the time levels.
As indicated in Fig. 3.2, NLEV-1 FVs arrive at time t +!t in the same grid column

in addition to cell k considered above. These FVs originate from all the other model
layers, one FV on top of the other. Here, it is assumed that a FV originating from model
level k ends up in the arrival column also as number k from the top (without mixing
with the one above and the one below). It is described below how the right-hand side of
Eq. (3.21) can be estimated for each of the layers. Once the right-hand sides are known

for each of the NLEV layers, δkp̂
n+1

can be computed from Eq. (3.21) for each level k,

and finally p̂
n+1
k−1/2 can be determined by summing up the hydrostatic weight of all the

cells above:

p̂
n+1
k−1/2 =

k−1∑

l=1

δkp̂
n+1

. (3.22)

Hereby the vertical displacement from pn
k−1/2 to p̂

n+1
k−1/2 is determined in a hydrostatically

fully consistent way (see Eq. (3.34) below).
Summing up the hydrostatic weight of all the NLEV cells yields the surface pressure

pn+1
s =

NLEV∑

l=1

δkp̂
n+1

, (3.23)
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p 5 0

pn
s

21

pn
s

Fig. 3.2 Schematic illustration of the departure and arrival cells which make up the deformed column on the
left and the regular column on the right, respectively. The cells move with vertical walls, and the horizontal
extension is a polygon. In this figure, the polygon is as in the 2D DCISL scheme of Nair and Machenhauer
[2002] but the general idea applies to all DCISL schemes. The filled and unfilled circles indicate the center of
mass of the departure and arrival cells, respectively. Note that the vertical levels in the arrival column p̂ n+1

k+1/2

are the ones implied by the advection scheme and not the model levels, pn+1
k+1/2, based on the hydrostatically

determined surface pressure, pn+1
s , and the predefined coefficients (Eq. (3.11)).

from which the pressure at the interfaces between the Eulerian model layers can be
determined:

pn+1
k−1/2 = Ak−1/2 + Bk−1/2 pn+1

s . (3.24)

Now Eq. (3.23) we return to the determination of the right-hand side of Eq. (3.21),
!kp

n δδAn
k . This is an iterative process where each iteration involves two steps: (I)

at first the area δAn
k is determined by constructing hybrid trajectories from the corner

points in the irregular departure cell to the corner points of the regular arrival cell. The
sides in δAn

k are defined as the straight lines connecting the corner points. (II) Then,

!kp
n δ = pn

k+1/2 − pn
k−1/2

δ = 1
δA

∫∫

δA

!kp
n dxdy, the horizontal mean of !kp

n over

the irregular departure area δAn
k is computed. Steps I and II are iterated.

3.1.3.2. Trajectory algorithm (I) Several trajectory algorithms have been developed
(see Section 2.3); here we choose the hybrid trajectory scheme developed by Lauritzen,
Kaas, Machenhauer and Lindberg [2008], which is used in the HIRLAM-DCISL
dynamical core to be described in Section 3.2.

Since the FV is assumed to move with horizontal winds and vertical walls, the problem
is 2D. Thus, we need to consider only the projection of the trajectories on a horizontal
plane. The horizontal position vectors for the departure point, the arrival point, and the
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trajectory midpoint are denoted "rn
∗ , "rn+1, and "rn+1/2

∗/2 , respectively. The arrival point is
defined as

"rn+1 = "rn
∗ +

(
"C1
( "Vn

∗
)
+ "C2

(
"̃Vn+1

))
. (3.25)

For notational clarity, the level number (k) has been suppressed. The trajectory consists
of two parts:

(i) "C1
( "Vn

∗
)

= "rn+1/2
∗/2 − "rn

∗ is the vector from the departure point to the trajectory mid-

point. It depends on "Vn
∗ , the horizontal velocity at the departure point at time

t = n!t. "C1
( "Vn

∗
)

is determined by one or more terms in a Taylor series expansion
about the departure point:

"C1 = !t

2
"Vn
∗ +

N−1∑

υ=1

1
(υ + 1)!

(
!t

2

)υ+1
(

dυ "V
dtν

)n

∗
, (3.26)

where N is the order of the expansion.

(ii) "C2

(
"̃Vn+1

)
= "rn+1 − "rn+1/2

∗/2 is the vector from the trajectory midpoint to the arrival

point. It depends on "̃Vn+1, a horizontal velocity at the arrival point extrapolated in

time to t +!t = (n + 1)!t. The time extrapolation, defined by "̃Vn+1 = 2 "Vn −
"Vn−1. "C2

(
"̃Vn+1

)
, is determined by one or more terms in a Taylor series expansion

about the arrival point:

"C2 = !t

2
"̃Vn+1 −

N−1∑

υ=1

1
(υ + 1)!

(
−!t

2

)υ+1
(

dυ "̃V
dtν

)n+1

. (3.27)

In the HIRLAM-CISLdynamical core, the first two terms in the Taylor series are included

(N = 2), and thus, estimates of the acceleration
d "V
dt

are taken into account. The accelera-

tion is approximated with
d "V
dt

≈ "V · ∇ "V (Mcgregor [1993]). It follows from Eq. (3.25)

that the departure point is given by

"rn
∗ = "rn+1 −

(
"C1
( "Vn

∗
)
+ "C2

(
"̃Vn+1

))
. (3.28)

3.1.3.3. Upstream integral (II) An “upstream integration”

!kp
n δ = pn

k+1/2 − pn
k−1/2

δ = 1
δA

∫∫

δA

!kp
n dxdy (3.29)

determines the horizontal mean of !kp
n over the irregular departure area δkAn. It may

be estimated by one of the DCISL methods described in Section 2. In HIRLAM-DCISL
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(Lauritzen, Kaas, Machenhauer and Lindberg [2008]), two alternative methods are
available, the method of Nair and Machenhauer [2002] and that of Nair, Scroggs
and Semazzi [2002]. For each of the model layers, all the departure areas δkAn cover
the entire integration domain without overlaps or cracks. Consequently, it follows from
Eq. (3.21) that mass is conserved both locally and globally.

3.1.3.4. Iteration In order to determine the departure point from Eq. (3.28), we need
to iterate steps I and II (Sections 3.1.3.2 and 3.1.3.3) since, to start with, the pressure at
the end point of the trajectory (at a corner of the regular arrival cell) is not known, and
also the horizontal positions of the start point of the trajectory (the corner point of the
departure cell) are unknown. Generally, for each grid cell, only the trajectory ending at
the south-western corner point needs to be determined since adjacent cells share vertices.

The first guess (iteration number v = 1)

1. The winds in model layer k are extrapolated in time to time level n + 1 and
interpolated to the arrival point, the south-western corner of a grid cell. The

result is
(
"̃Vn+1

k

)

SW
. It is used to determine a first guess "C2-value:

(
"C2

)1

k
.

2. A first guess "C1-value ("C1)
1
k is determined using the time level n winds "V

n

k ,
interpolated also to the arrival point.

3. Thus, the first-guess departure point
(
"rn
∗
)1 is determined from Eq. (3.28) using

the first guess C’s:
(
"rn
∗
)1="rn+1 −

((
"C1

)1

k
+
(

"C2

)1

k

)
.

Iterations

1. The upstream integral is made using the departure points
(
"rn
∗
)υ and an

updated (ν + 1)th guess pressure
(
p̂

n+1
k−1/2

)υ+1
is determined using

Eqs. (3.21) and (3.22). Corresponding full level pressures
(
p̂k

)υ+1 =
(
p̂k+1/2 exp(−αk)

)υ+1
are computed and an interpolation of these to the

south-western corner point gives
(
p̂k

)υ+1
SW

.

2. Vertical interpolation of
(

"C2

)υ
k

is made to this pressure
((

p̂k

)υ+1
SW

)
giving

(
"C2

)υ+1

k
.

3. Interpolate
(

"C1

)υ
k

to a preliminary point
(
"rn
∗
)υ+1
prel.

= "r n+1 −
((

"C1

)υ
k

+
(

"C2

)υ+1

k

)
giving

(
"C1

)υ+1

k
.

4. Determine the (υ + 2)th iteration location of the departure point
(
"rn
∗
)υ+1
k

=
"rn+1 −

((
"C1

)υ+1

k
+
(

"C2

)υ+1

k

)
.

5. If repeat steps 1 to 4.
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Note that this departure point algorithm does not require 3D interpolation. Only 1 and
2D interpolations are used.

3.1.3.5. Values needed for the prediction of other invariants To be used for the pre-
diction of other invariants, the following values are stored each time-step for every grid
cell:

Horizontal position of the final departure corner points, determined from
Section 3.1.3.4:

"rn
∗ = "rn+1 −

(
"C1
( "Vn

∗
)
+ "C2

(
"̃Vn+1

))
. (3.30)

These determine the areas δkAn of the departure cells.

Full level pressure
(
pn

k

)δ
∗ averaged over the departure area δkAn, determined from

Eqs. (3.16) and (3.17):

(
pn

k

)δ
∗ = pn

k+1/2 exp
(
−αn

k

)δ
, (3.31)

where

αn
k =






ln 2 k = 1

1 − pn
k−1/2

!kp
n ln

(
pn

k+1/2
pn

k−1/2

)
k = 2, .., NLEV





. (3.32)

Mean pressure at the top of arrival cells, determined from Eq. (3.22):

p̂
n+1
k−1/2 =

k−1∑

l=1

δkp̂
n+1

. (3.33)

They determine together with Eq. (3.31) a mean value of the vertical pressure velocity
ω = dp/dt of the cell, moving along the trajectories:

(ωk)
n+1/2
∗/2 = 1

!t

(
p̂

n+1
k −

(
pn

k

)δ
∗

)
. (3.34)

This may be used for parameterizations.
The mean surface pressure is determined from Eq. (3.23):

pn+1
s =

NLEV∑

l=1

δkp̂
n+1

, (3.35)

which determine the pressure at the top of the Eulerian cells (3.24):

pn+1
k−1/2 = Ak−1/2 + Bk−1/2 pn+1

s . (3.36)
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3.1.4. Conservation of mass of passive tracers
The mass of a passive tracer with specific concentration qi in a FV δV with vertical walls,
horizontal cross-section δA, and thickness δz = z1 − z2 (see Fig. 3.1) is

MqiδV =
∫∫

δA

(∫ z1

z2

qiρ dz

)
dxdy. (3.37)

Utilizing again the hydrostatic balance dp = −gρ dz, the inner integral may be
written as

∫ z1

z2

qiρ dz = 1
g

∫ p2

p1

qidp = 1
g

5
qi (p2 − p1) = 1

g

5
qiδp,

where 5
qi is the pressure averaged specific concentration. Hereby, Eq. (3.37) becomes

MqiδV = 1
g

∫∫

δA

5
qiδpdxdy = 1

g

5
qiδp δA. (3.38)

The FV mass conservation law for this passive tracer, which is supposed to move with
the flow, with vertical walls, and without any flux of mass through its boundaries, is then

dMqiδV

dt
= 1

g

d
dt

(
5
qiδp δA

)
= 0. (3.39)

The FV is supposed to move along the hybrid trajectories determined for the continuity
equation so that an integration of Eq. (3.39) from t = n!t to t +!t = (n + 1)!t results
in the prognostic equation

(
5
q
δ

i

) n+1

k
δkp̂

n+1
!A =

(
5
q
!

i

) n

k
!kp

n
δ

δAn
k , (3.40)

where 5
xδ and 5

x! denote vertical mean values over δkp̂ and !kp, respectively. Here and
in the following, we make the discretization assumption: the horizontal mean over the
arrival area of a product is equal to the product of the horizontal mean values of the
factors.

3.1.5. Conservation of mass of water vapor
Apart from forcing terms, the derivation of the discretized prognostic equation for water
vapor is identical to the above for passive tracers. The mass of water vapor with specific
humidity qv in a FV δV with vertical walls, horizontal cross-section δA, and pressure
thickness δp is

MqvδV = 1
g

∫∫

δA

5
qvδpdxdy = 1

g

5
qvδp δA. (3.41)
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The FV mass conservation law for water vapor is then

d
dt

(
5
qvδp δA

)
=
(
5

Pqv + 5

Kqv

)
δp δA, (3.42)

and the discretized prediction equation becomes

(
5
q
δ

v

)n+1

k
δkp̂

n+1
!A =

(
5
q
!

v

)n

k
!kp

n
δ

δAn
k

+!t

(
5

P
!

qv
+ 5

K
!

qv

) n+1/2

k

δkp
n+1/2

δn+1/2

δA
n+1/2
k

(3.43)

For simplicity, here and in the following, an instantaneous forcing is assumed to work
on the FV at time t +!t/2 when it is at the midpoint of the trajectory. Of course, it
should ideally be averaged along the trajectory. In reality, it might be convenient to treat
the forcing as in an existing semi-Lagrangian model. Thus, in the current HIRLAM-
DCISL, for instance, the physics are added at time level n + 1 at the arrival cell as
in HIRLAM.

3.1.6. Conservation of total energy
The total energy E is the sum of the internal energy Ei, the potential energy Ep, and the
kinetic energy Ek.
The internal energy

Ei =
∫ z1

z2

cvT ρ dz = 1/g
∫ p2

p1

cvT dp. (3.44)

The potential energy

Ep =
∫ z1

z2

gz ρ dz =
∫ p2

p1

z dp

= z2p2 − z1p1 −
∫ z2

z1

p dz

= z2p2 − z1p1 + 1/g
∫ p2

p1

RT dp, (3.45)

where integration by parts as well as the equation of state p = ρRT has been used.
The “total potential” energy is then

Ei + Ep = z2p2 − z1p1 + 1/g
∫ p2

p1

(cv + R)T dp

= 1/g(δ(φ p) +
∫ p2

p1

cpT dp), (3.46)
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where δ(φ p) = φ 2p2 − φ1 p1 with φ = gz and, in addition, the relation cp = R + cv

has been used. Here, respectively, cp, cv, and R are the specific heat capacity at constant
pressure, the specific heat capacity at constant volume, and the individual gas constants,
all for moist air.

The kinetic energy is defined as

Ek = 1/(2g)

∫ p2

p1

(
u2 + v2

)
dp. (3.47)

Hence, the total energy becomes

E = Ei + Ep + Ek = 1/g(δ(φ p) +
∫ p2

p1

cpT dp + 1/2
∫ p2

p1

(
u2 + v2

)
dp).

(3.48)

Introducing vertical mean values and including the level index k, Eq. (3.48) may be
written as

E = 1/g(δk(φ p) +
(
5
cp

5

T
)

k
δkp + (½)

(
5
u2

k + 5
v2
k

)
δkp), (3.49)

where we have assumed that 5cpT = 5
cp

5

T and 5
u2 = 5

u
5
u and similarly for the northward

component v. This is consistent with assuming that the variables are independent of
pressure in the layer.

The total energy of a FV δV with vertical walls and horizontal cross-section δA and
thickness δz = z2 − z1 (see Fig. 3.1) is then EδA, where ( ) = 1

δA

∫∫
δA ( ) dxdy. Finally,

we can construct the FV total energy conservation law:

d
(
EδA

)

dt
=
∫∫∫

δV

( "V ·
( "P "V + "K "V

)
+ cp (PT + KT )

)
dp dx dy, (3.50)

where the right-hand side follows from a derivation directly from the primitive equations
(see Machenhauer [1994])

The FV is supposed to move along the hybrid trajectories determined from the conti-
nuity equation so that an integration of Eq. (3.50) from t = n!t to t +!t = (n + 1)!t

results in the prognostic equation

δk

(
φ̂p̂
) n+1

+
((

5
c
δ

p

5

T
δ

k

)
+ 1/2

((
5
u
δ

k

)2
+
(
5
v
δ

k

)2
)
δkp̂

) n+1

!A

= !k

(
φp
) n +

((
5
c
!

p

5

T
!

k

)
+ 1/2

((
5
u
!

k

)2
+
(
5
v
!

k

)2
)
!kp

) nδ

δAn
k

+!t

(
5

"V ·
(
5

"P
!

"V +
5

"K
!

"V

)

+5
c
!

p

(
5

P
!

T + 5

K
!

T

)) n+1/2

δkp
n+1/2

δn+1/2

δA
n+1/2
k .

(3.51)



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 76 1–120

76 B. Machenhauer et al.

3.1.7. Conservation of entropy
The specific entropy is S = cp ln θ, where θ is the potential temperature defined by
θ = T (p/p0)

R/cp and p0 = 1000 hPa. Note that here R and cp are for moist air and
not, as usual, for dry air. The total entropy of a FV δV with vertical walls and horizontal
cross-section δA and thickness δp = p2 − p1 (see Fig. 3.1) is then

SδV = 1
g

∫∫∫

δV

cp ln θ dp dx dy. (3.52)

Introducing vertical and horizontal mean values and at the same time including the level
number k, Eq. (3.52) may be written as

SδV = 1
g

(
5
cp ln

5

θ
)

k
δkp δAk, (3.53)

from which we get the FV entropy conservation law:

dSδV

dt
=
∫∫∫

δV

(
cp (PT + KT )

T
+
{(

cpv − cpd

)
ln T

+ (Rv − Rd) ln(p/p0)
}(

Pqv + Kqv

))
dp dx dy, (3.54)

where again the right-hand side follows from a derivation directly from the primitive
equations (see Machenhauer [1994]).

The FV is supposed to move along the hybrid trajectories determined for the continuity
equation so that an integration of Eq. (3.54) from t = n!t to t +!t = (n + 1)!t results
in the prediction equation

(
5
c
δ

p ln
5

θ
δ
) n+1

k

δkp̂
n+1

!A =
(
5
c
!

p ln
5

θ
!
)n

k

!kp
n

δ

δAn
k

+!t

(
5
c!p

(5
P!T +

5
K!

T

)

5
T

+
{(

5
c!pv −5

c!pd

)
ln

5

T! +
(
5

R!v − Rd

)
ln (pk/p0)

}

×
(
5

P!qv
+ 5

K!
qv

)) n+1/2
δkpn+1/2

δn+1/2

δA
n+1/2
k .

(3.55)

Here, a further “discretization assumption” is made: the mean value of ln x over the
arrival area is set equal to the logarithm of the mean value.

3.1.8. Conservation of angular momentum
The absolute angular momentum per unit mass of air is

m = (0a cosϕ + u)a cosϕ (3.56)
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or

m = 0a2 cos2 ϕ + ua cosϕ, (3.57)

where u is the eastward component of velocity, a is the radius of the Earth (for simplicity
and as usual assumed constant), and ϕ is the latitude.

The absolute angular momentum of the mass in a FV δV with vertical walls and
horizontal cross-section δA and thickness δp = p1 − p2 (see Fig. 3.1) is then

mδV = 1
g

∫∫

δA

∫ p2

p1

(0a cosϕ + u)a cosϕ dp dx dy. (3.58)

Introducing vertical and horizontal mean values and at the same time adding the level
number k, Eq. (3.58) may be written as

mδV = 1
g

(5
mk δkp δAk

)
= 1

g

( (
0a2 cos2 ϕk + 5

uka cosϕk

)
δkp δAk

)
(3.59)

So, the absolute angular momentum conservation law becomes

d(mδV )

dt
= 1

g

∫∫

δA

p2∫

p1

(
−
(
∂φ

∂λ
+ RdTv

∂

∂λ
(ln p)

)
+ (Pu + Ku)a cosϕ

)
dp dx dy.

(3.60)

The FV is supposed to move along the hybrid trajectories determined for the continuity
equation so that an integration of Eq. (3.60) from t = n!t to t +!t = (n + 1)!t results
in the prognostic equation
(
0a2 cos2 ϕ +

(
5
u
δ

k

)n+1
a cosϕ

)
δkp̂

n+1
!kA

=
(
0a2 cos2 ϕ +

(
5
u
!

k

)n

a cosϕ
)
!kp

n

δ

δAn
k

+!t

{

−
(
∂
5

φ!

∂λ
+ Rd

5

T!v
∂

∂λ

(
ln 5

p
!
))

+
(
5

P!u + 5

K!
u

)}

a cosϕ δkp

δn+1/2

δA
n+1/2
k .

(3.61)

3.1.9. Choice of invariants
As mentioned by Thuburn [2006], the continuous adiabatic frictionless equations have
an infinite number of invariants. In CSCL, we have chosen to fulfill those conservation
laws which are fundamental for the dynamics and thermodynamics of the atmosphere,
namely the basic conservation laws from which the primitive equations are derived. It
should be mentioned that other invariants might substitute for some of those selected
above. One obvious example is to replace the conservation of angular momentum by
conservation of Ertel potential vorticity. In this case, we would still have a complete set
of prognostic equations. An advantage of using angular momentum is that it leads to a
direct separation of the u and v contributions to kinetic energy.
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3.1.10. Explicit integration procedure
Together with the diagnostic hydrostatic equation (Eq. (3.13)), the discretized FV ver-
sions of the conservation laws for (1) mass of moist air (Eq. (3.21)), (2) mass of passive
tracers (Eq. (3.40)), (3) mass of water vapor (Eq. (3.43)), (4) total energy (Eq. (3.51)),
(5) entropy (Eq. (3.55)), and (6) angular momentum (Eq. (3.61)) constitute a complete
prognostic system equivalent to the primitive equations. Initially, the following quantities
should be given: Eulerian grid cell area averaged surface pressure ps for each vertical

grid column, grid cell averaged values of temperature
5

T
!

k , specific humidity
(
5
q
!

v

)

k
,

specific concentration of passive tracers
(
5
q
!

i

)

k
, and eastward and northward horizontal

velocity components, 5u
!

k and5
v
!

k . These would be the history carrying variables. Explicit
time-stepping with such a system would be relatively easy. At first the continuity equa-
tion (Eq. (3.21)) is solved as described in Section 3.1.3. The outcome, summarized in
Section 3.2.1, is the grid cell averaged surface pressure pn+1

s . In addition, the hybrid
trajectories needed for the transport of all the other invariants and diagnostic values of
ω (which might be needed in the physical parameterization package) are determined.
Next step is to solve the continuity equations for water vapor (Eq. (3.43)) and pas-

sive tracers (Eq. (3.40)) giving the updated cell averaged prognostic variables
(
5
q
δ

v

) n+1

k

and
(
5
q
δ

i

)n+1

k
. The cell averaged values, δkp̂,

(
5
q
δ

v

)n+1

k
, and

(
5
q
δ

i

)n+1

k
, over the Lagrangian

cells, which originally are transported into a vertical Eulerian column, must be remapped

into the Eulerian cells, giving !kp,
(
5
q
!

v

)n+1

k
, and

(
5
q
!

i

)n+1

k
. Next, the conservation law

for entropy (Eq. (3.55)) is solved giving (after some algebra) the updated cell averaged

prognostic variables
5

T
δ

k. Again, the cell-averaged Lagrangian values
5

T
δ

k of the cells must

be remapped into the Eulerian cells giving
5

T
!

k . Next, the conservation law of angular
momentum (Eq. (3.61)) is solved giving (after some algebra) the updated cell averaged

prognostic variables 5
u
δ

k. Again, they must be remapped into the Eulerian cells giving 5
u
!

k .
Finally, the conservation law of total energy (Eq. (3.51)) is solved giving (after some

algebra and vertical remapping) the updated cell averaged prognostic variables 5
v
!

k .

3.1.11. Feasibility of a CSCL model
To the author’s knowledge, a dynamical core that includes FV versions of all the con-
servation laws considered here has not yet been realized in spite of the “fact” that (as
mentioned in the introduction) it may be expected that a simultaneous exact conserva-
tion of all the fundamental physical invariants valid for the atmosphere will result in
a particular fast convergence to any “true” solution. The reason for not realizing such
a system seems to be difficulties with the application of any of the popular fast-wave-
stabilizing techniques, i.e., the semi-implicit or the split-explicit technique, which would
eliminate fast wave CFL restrictions on the time-step. Machenhauer and Olk [1997]
succeeded in the construction of two 1D shallow water semi-implicit semi-Lagrangian
dynamical cores, one that conserves mass and total energy and another that conserves
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mass and angular moment (see Section 3.2.2). A 1D shallow water system has just two
prognostic variables. Therefore, just two invariants can be conserved exactly. In both
cases, the fast wave CFL restriction on the time-step was eliminated and large time steps
could be used. However, it seems difficult to extend this to 2 and 3Ds (see Section 3.2.3).
Another possibility would be the application of the split-explicit technique. However, as
already noted in Section 1, this possibility was abandoned by Machenhauer and Olk
[1997] for FV models because when splitting the system of continuous equations into
an advective part (which should use large time steps) and an adjustment gravity wave
part (which should use short time steps), it was found that neither of the sub systems
was conserving momentum or total energy. Consequently, it seems unlikely that these
invariants could be conserved exactly for the full system in any FV version. In the two
examples of dynamical cores with FV techniques, which are described in the following
two sections, the continuity equations are solved with the FV technique so that mass is
conserved exactly. In the NCAR-FFSL also potential temperature is conserved for adi-
abatic and friction-free flow. In the HIRLAM-DCISL, a semi-implicit time-stepping is
implemented, thereby allowing large time-steps for all variables at the expense of solu-
tions to elliptic Helmholtz equations. This has been feasible because just the continuity
equation is solved with the FV technique, while the other primitive equations are kept
in their original form, i.e., Eq. (3.1) with u and v and Eq. (3.2) with T as prognostic
variables. Furthermore, a special “predictor-corrector” approach (see Section 3.2.3.2)
has been used successfully in the semi-implicit continuity equation. In the other sys-
tem, the NCAR-FFSL, an explicit time-stepping scheme, is used. Consequently, shorter
time-steps have to be used for the dynamical core. Tracers (including water vapor) and
physical parameterization can, however, be updated with long time-steps. Such a time-
stepping procedure would, of course, be possible also in a CSCL model, which then,
most likely, would be comparable to the NCAR-FFSL in efficiency.

3.2. The HIRLAM-DCISL with a departure cell-integrated semi-implicit
semi-Lagrangian dynamical core

The HIRLAM-DCISL, described in details by Lauritzen, Kaas, Machenhauer and
Lindberg [2008], is a pioneering example of a FV model based on the Lagrangian
form of the continuity equation (Eq. (1.8)). The continuity equations for moist air, water
vapor, cloud water, and miscellaneous passive tracers are updated each time-step using
a DCISL FV scheme while the remaining prognostic equations are in finite difference
form and solved using a traditional upstream semi-Lagrangian scheme. It has been devel-
oped from the HIRLAM system, (Källén [1996] and Undén et al. [2002]). The new
HIRLAM-DCISL uses the same horizontal C-grid (Arakawa and Lamb [1977]) and ver-
tical Lorenz [1960] staggering of variables as the HIRLAM model (see Section 3.1.2).
Also the lateral boundary relaxation scheme is the same. HIRLAM-DCISL is the first
model that combines a FV semi-Lagrangian integration scheme with a semi-implicit
treatment of gravity wave terms. Thus, this semi-implicit version is absolutely stable as
long as the trajectories do not cross (Lipschitz criterion), which in practice means that
it runs stably with relatively long time-steps, similar to those used by HIRLAM, and
still sufficiently small compared to the time scale of weather system developments. In
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Section 3.2.1, we shall introduce at first an explicit version of HIRLAM-DCISL and then,
in Sections 3.2.2 and 3.2.3, the changes needed to make it semi-implicit are discussed.

3.2.1. Explicit HIRLAM-DCISL
The explicit continuity equation for moist air is solved for each model layer as described
in Section 3.1.3. (see Eq. (3.21)). Hybrid trajectories determine the irregular upstream
departure area δkAn, and an “upstream integration” determines the horizontal mean of
!kp

n over the departure area δkAn (3.29). Here !kp
n is defined as

!kp
n = pn

k+1/2 − pn
k−1/2. (3.62)

The departure cells are the same for all tracers, including water vapor, and Lagrange
interpolations between the hybrid trajectory departure points determine the departure
points for temperature T and the velocity components u and v. In HIRLAM-DCISL,
two alternative upstream integration methods are available, the method of Nair and
Machenhauer [2002] and that of Nair, Scroggs and Semazzi [2002]. The mean top

pressures of the arrival cells p̂
n+1
k−1/2 are determined hydrostatically from Eq. (3.22), i.e.,

from the Lagrangian pressure thicknesses δkp̂
n+1

in Eq. (3.33). Together with Eq. (3.62),
these values determine a mean value of the vertical pressure velocity ω = dp/dt along
the trajectory (Eq. (3.34)). This ω is consistent with the hydrostatic assumption and the
horizontal flow, contrary to the inconsistent vertical velocities, based on partly Eulerian
solutions to the continuity equation, which are applied in traditional semi-Lagrangian
models such as HIRLAM. ω is used in the thermodynamic equation (Eq. (3.2)) in the
energy conversion term αω

cp
= RdTv

cp

ω
p , which is approximated with

!t

[(
RdTv

cp

ω

p

)

k

]n+1

= Rd

cp

[
T n

v + T̃ n+1
v

]

k



 p̂
n+1
k −

(
pn

k

)δ
∗

p̂
n+1
k +

(
pn

k

)δ
∗



. (3.63)

The hydrostatic mean surface pressure (Eq. (3.23)) is the weight of all NLEV model
layers above the surface:

pn+1
s =

NLEV∑

l=1

δkp̂
n+1

, (3.64)

determining the top pressure of Eulerian cells (Eq. (3.24))

pn+1
k−1/2 = Ak−1/2 + Bk−1/2 pn+1

s . (3.65)

The explicit continuity equations for passive tracers (Eq. (3.40)) and water vapor
(Eq. (3.43)) are

(
5
q
δ

i

)n+1

k
δkp̂

n+1
!A =

(
5
q
!

i

)n

k
!kp

n
δ

δAn
k (3.66)
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and

(
5
q
δ

v

)n+1

k
δkp̂

n+1
!A =

(
5
q
!

v

)n

k
!kp

n
δ

δAn
k

+!t

(
5

P
!

qv
+ 5

K
!

qv

)n+1/2

k

δkp
n+1/2

δn+1/2

δA
n+1/2
k , (3.67)

respectively, determine updated specific concentrations,
(
5
q
δ

i

)n+1

k
and

(
5
q
δ

v

)n+1

k
, in

Lagrangian arrival cells
(
δV = δp̂!V

)
from

(
5
q
!

i

)n

k
and

(
5
q
!

v

)n

k
plus Eq. (3.62). Finally,

the updated specific concentrations,
(
5
q
!

i

)n+1

k
and

(
5
q
!

v

)n+1

k
, in the Eulerian cells

(!V = !p!A) are determined from
(
5
q
δ

i

)n+1

k
and

(
5
q
δ

v

)n+1

k
by 1D vertical remappings.

The discretized explicit momentum and thermodynamic equations are straightforward
grid-point semi-Lagrangian and finite difference approximations to Eqs. (3.1) and (3.2),
respectively (see Källén [1996] and Undén et al. [2002]), except that in the thermo-
dynamic equation the consistent energy conversion term is approximated consistently
with (3.63). Regarding the addition of the physics in Eq. (3.67): since DMI-HIRLAM
adds the physics at the arrival level (no averaging along the trajectory), that procedure
was also adopted in HIRLAM-DCISL. Of course, it should ideally be done as indicated
in Eq. (3.67).

3.2.2. 1D semi-implicit CSCL shallow water models
Machenhauer and Olk [1997] made a preliminary study, in which a successful imple-
mentation of a semi-implicit scheme was made in two different cell-integrated versions
of the simple 1D shallow water model. One version conserves mass and momentum
and another version conserves mass and total energy. The momentum and continuity
equations for the 1D shallow water model are, respectively,

du

dt
+ g

∂h

∂x
= 0 and (3.68)

dh

dt
+ h

∂u

∂x
= 0, (3.69)

where u is velocity (constant with height), h height (of the fluid surface), and x distance.
Aperiodic domain is assumed 0 ≤ x ≤ L. The implementation of a semi-implicit scheme
in the cell-integrated model versions will be compared with the traditional approach in
a traditional finite difference grid-point model based on Eqs. (3.68) and (3.69). The
traditional explicit semi-Lagrangian prediction equations are

un+1
exp = un − !tg

!x
(δ(h))n+1/2, (3.70)
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hn+1
exp = hn − !t

!x
(hδu)n+1/2, (3.71)

where δ indicates a finite difference operator. Like in HIRLAM, we choose a second-
order centered finite difference. A semi-implicit system corresponding to this system is
obtained simply by averaging (n+1)!t and n!t values of the pressure gradient term and
the linear part of the divergence term (Hδu) along the trajectories instead of taking them
at (n+1/2)!t at the midpoint of the trajectory as in Eqs. (3.70) and (3.71). The resulting
equations may be written as

un+1 = un+1
exp − !tg

2!x

[
δhn+1 + δhn − 2(δ(h))n+1/2

]
, (3.72)

hn+1 = hn+1
exp − !tH

2!x

[
δun+1 + δun − 2(δ(u))n+1/2

]
. (3.73)

We note that a linear version of Eqs. (3.70) and (3.71), linearized around a state at rest
with a mean fluid height H , has gravity wave solutions. These solutions are characterized
by purely divergent velocity fields. The height field and the divergence field in these
solutions oscillate with a frequency v ≈ 2π/

√
gH driven by an oscillating pressure

gradient force −g∂h/∂x and divergence −H∂u/∂x, respectively. This explains intuitively
why the implicit system, obtained by averaging these terms, can be expected to have
stable gravity wave solutions. The system (Eqs. (3.72) and (3.73)) is absolutely stable
(as long as the trajectories do not cross).

We may write the system as

un+1 = q1 − !tg

2!x
δhn+1, (3.74)

hn+1 = q2 − !tH

2!x
δun+1. (3.75)

In q1 and q2, the terms which do not depend on values at (n+1)!t have been collected.
Applying the δ operator on Eq. (3.75) and substituting in Eq. (3.74) gives

un+1 − gH!t2

4!x2 δ
2un+1 = q1 − g!t

2!x
δq2. (3.76)

This is an elliptic equation which can be solved to give un+1 and then (3.75) can be used
to determine hn+1.

The fact that the elliptic equation is with constant coefficients, a so-called Helmholtz
equation, means that it is relatively easy and fast to solve. In operational semi-implicit
multi-level models as HIRLAM, a series of elliptic equations must be solved. This
reduces the advantage of large time-steps. It is therefore important that the elliptic equa-
tions in any new implementation of the semi-implicit scheme are kept as simple and
fast to solve as possible. The strategy of Machenhauer and Olk [1997] for the present
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models and later that of Lauritzen, Kaas, Machenhauer, Lindberg, [2006, 2008]
for the HIRLAM-DCISL has been to do the semi-implicit implementation in the FV
model in such a way that the resulting elliptic equation becomes similar to that of the
traditional model it replaces.

Now let us derive the FV models corresponding to Eqs. (3.70) and (3.71). The mass,
momentum, and total energy in a volume of length δx are, respectively,

Mδx = ρ

∫ x+δx

x

(∫ h

0
zdz

)

dx = ρh δx, (3.77)

mδx = ρ

∫ x+δx

x

(

u

∫ h

0
dz

)

dx = ρuh δx, and (3.78)

E = ρ

∫ x+δx

x

∫ h

0
(gz + (1/2)(u2))dzdx = (1/2)ρ

(
gh2 + hu2

)
δx, (3.79)

where ρ is a constant density (mass per unit length). Then the conservation laws for
mass, momentum, and total energy are

d
dt

(
hδx
)

= 0, (3.80)

d
dt

(
uhδx

)
= −gδx

∂

∂x

(
1
2
h2
)

= −g

2
δ
(
h2
)
, and (3.81)

d
dt

((
gh2 + hu2

)
δx
)

= −gδx
∂

∂x

(
1
2
h2u

)
= −g

2
δ
(
h2u
)
, (3.82)

respectively, and after integration over a time-step from t = n!t to t +!t = (n + 1)!t,
we get the corresponding discretized conservation laws

h
n+1
!x = h

n
δx, (3.83)

uh
n+1

!x = uh
n
δx − g

!t

2
δ
(
h2
)n+1/2

, and (3.84)

(
gh2 + hu2

)n+1
!x =

(
gh2 + hu2

)n
δx − g

!t

2
δ
(
h2u
)n+1/2

(3.85)

A summation over all grid cells of each of these equations and application of the periodic
boundary condition show that mass, momentum, and total energy are globally conserved.
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We have used a slightly simplified notation compared to that introduced in Section 3.1. On

the right-hand side, we have, for example, simplified unh
nδ

to uh
n
. Also, the left-hand

sides are assumed to be discretized like in Section 3.1 so that here uh
n+1

!x stands for

un+1h
n+1

!x and
(
gh2 + hu2

)n+1
!x stands for

(
g
(
h

n+1
)2

+ h
n+1(

un+1)2
)
!x.

Eqs. (3.83) and (3.84) constitute a complete set of prognostic equations, which we may
call “the momentum set” and Eqs. (3.83) and (3.85) constitute another complete set
of prognostic equations, which we may call “the energy set.” Explicit time-stepping
can be performed with both set of equations as was the case for the complete system
of 3D FV conservation laws considered in the Section 3.1. The explicit time-stepping
scheme is absolutely stable with regard to advection but only conditional stable with
regard to gravity waves. The strategy of Machenhauer and Olk [1997] was to dupli-
cate as far as possible the implementation of the semi-implicit scheme done above in
the corresponding traditional model. Several problems are encountered when trying to
do this.

The first problem is that the divergence, which we want to average over the two
time levels n!t and (n + 1)!t, is not explicit in the cell-integrated continuity equation,
Eq. (3.83), as it is in the traditional one, Eq. (3.70). This can be dealt with by using the
Lagrangian expression for divergence.

D = 1
δix

dδix
dt

(3.86)

where here δix is an infinitesimal small length. A finite difference approximation to this
expression is

D = 1
!x

!x − δx

!t
. (3.87)

Isolating δx in Eq. (3.87) and inserting it in Eq. (3.83) gives

h
n+1 = h

n −!th
nD = h

n − h
n!x − δx

!x
. (3.88)

Noting that approximately !x − δx = !tδun+1/2 where δun+1/2 is the velocity incre-
ment over the cell at time (n+1/2)!t, we get finally

h
n+1
exp = h

n −!th
n δun+1/2

!x
. (3.89)

This expression is similar to Eq. (3.71) and can be used in the same way as Eq. (3.71) in
the implementation of the semi-implicit scheme. Doing so, the semi-implicit equation
becomes

h
n+1 = h

n − !t

!x

(
h

n
)′
δun+1/2 − !tH

2!x

(
δun+1 + δun

)
. (3.90)

The second problem is that both the momentum and total energy equation are nonlinear
quantities in the basic variables un+1 and h

n+1
. We shall see how that becomes a problem
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and how Machenhauer and Olk [1997] dealt with it. The explicit momentum equation
(Eq. (3.84)) may be written as

uh
n+1
exp !x = uh

n
!x −!t

(
UH + (uh)′

n
)
δun+1/2 − g

!t

2
δ
(
h′2 + 2h′H

)n+1/2
,

(3.91)

where we have used (uh)
n = (uh)′

n + UH and δx = !x −!tδun+1/2.The correspond-
ing semi-implicit equation becomes

uh
n+1 = uh

n
!x − !t

!x
(uh)′

n
δun+1/2 − g

!t

2!x
δ
(
h′2
) n+1/2

− !tH

2!x

((
U
(
δun+1 + δun

)
+ g
(
δhn+1 + δhn

)))
. (3.92)

The two semi-implicit equations (Eqs. (3.90) and (3.92)) may now be written in the form

h
n+1 = h

n+1
exp − !tH

!x

(
δun+1 + δun − 2δun+1/2

)
(3.93)

and

(uh)
n+1 = (uh)

n+1
exp − !tH

!x

(
U
(
δun+1 + δun − 2δun+1/2

)
+ g
(
δhn+1 + δhn − 2δhn+1/2

))
.

(3.94)

As for the explicit momentum system (Eqs. (3.83) and (3.84)), a summation over all grid
cells of each of these equations and application of the periodic boundary condition show
that also the semi-implicit system conserves mass and momentum globally. This follows
from the fact that the sum of the semi-implicit corrections to the explicit updated values
is zero.

To proceed as for the traditional system in Eqs. (3.72) and (3.73), (uh)n+1 in Eq. (3.94)
must be linearized. At first it is expanded as

(uh)n+1 =
((

U + u′)(H + h′))n+1 = UH +
(
u′)n+1

H +
(
h′)n+1

U +
(
u′h′)n+1

.

(3.95)

In order to make it linear in
(
u′)n+1 and

(
h′)n+1, we approximate

(
u′h′)n+1 with

(
u′h′)n

getting

(uh)n+1 ∼= UH + u′n+1H + h′n+1U +
(
u′h′)n . (3.96)

When Eq. (3.96) is inserted in Eq. (3.94), it becomes (after using Eq. (3.93) and some
algebra)

u′n+1 = 1
H

(
(uh)n+1

exp − Uhn+1
exp −

(
u′h′)n − !tg

!x

(
δhn+1 + δhn − 2δhn+1/2

))
− U.

(3.97)
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This equation is in the same form as the traditional velocity equation (Eq. (3.72)). So,
using it together with Eq. (3.93), we can establish a system, similar to the traditional
system (Eqs. (3.74) and (3.75)):

u′n+1 = q̃1 − !tg

2!x
δhn+1, (3.98)

hn+1 = q̃2 − !tH

2!x
δun+1, (3.99)

where terms not depending on values at time level (n+1)!t are collected in q̃1 and q̃2,
respectively. Applying the operator δ (.) on Eq. (3.99) and substituting in Eq. (3.98), a
Helmholtz equation like Eq. (3.76) is obtained:

u′n+1 − gH!t2

4!x2 δ
2un+1 = q̃1 − g!t

2!x
δq̃2. (3.100)

The solution to this equation determines u′n+1 and Eq. (3.101) determines hn+1,
which may then be used to determine the semi-implicit correction terms in Eqs. (3.93)
and (3.94).

Machenhauer and Olk [1997] derived a similar semi-implicit model for the cell-
integrated energy system. As for the momentum system, a summation over all grid cells
of each of these equations and application of the periodic boundary condition showed
that the semi-implicit corrections to the explicit updated values become zero so that also
the semi-implicit energy system conserves mass and total energy globally.

In this case, the question is if the prognostic variable in Eq. (3.76), the total energy
gh2 + hu2, can be linearized as we did with the momentum. To show that, we first expand
it and then approximate nonlinear terms in perturbations with their values at time n!t.

gh2
n+1 + hu2

n+1 = gh2 + hu2
n+1

= g(H + h′)2 + (H + h′) (U + u′)2
n+1

= 2HUu′ n+1 + (UU + 2gH) h′ n+1 +
(
gh′2 + Hu′2 + 2Uh′u′ + h′u′2)n

+gH2 + HU2.

(3.101)

Apparently, one gets something that might work as it did for the momentum equation.
The main question is if the coefficient 2HU in front of u′ n+1

is sufficiently large. Of
course, it will not work if U = 0, i.e., if the mean zonal flow is zero. In a realistic flow,
however, both H and U are relatively large compared to the perturbations u′ n+1

. In test
runs with such a flow, the resulting semi-implicit energy system did work satisfactorily,
even with a time-step 50 times larger than the CFL maximum.

However, for the full multilevel CSCL system considered in Section 3.1, a corres-
ponding linearization of the total energy E = 1/g(δk(φ p) + (

5
cp

5

T )kδkp + 1/2
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(5
u2

k + 5
v2
k

)
δkp), defined in Eq. (3.48), cannot be expected to work. Therefore, the present

approach cannot be expected to lead to a semi-implicit system that works satisfactory.
The reason is that, in the full CSCL system, the explicit angular momentum equation
determines the zonal velocity u and the explicit energy equation determines the merid-
ional velocity v. Thus, the question is how big the coefficient in front of v′ will be in a
linearized expression for E. It is easily seen that the term in question is

(
!kp

ref V
)
v

′
k,

where we have used δkp =
(
!kp

ref + δkp
)

and vk = V + v
′
k. Thus, the question is

whether the coefficient
(
!kp

ref V
)

is large enough. Generally, the answer is no as a
time independent V in most places will be close to zero. Thus, most likely the approach
of Machenhauer and Olk [1997] cannot be extended to the full CSCL system – at
least not in a system including the total energy conservation law. An efficient full semi-
implicit CSCL system may be possible and may be developed, eventually. However, it
will require the invention of a new way to transform the explicit system to a semi-implicit
system. The classical approach, described above, goes back to Robert [1969]. It was
developed for a system consisting of the momentum equations (or the vorticity and the
divergence equations), the continuity equation, and the thermodynamic equation. A new
approach, if possible, should be based directly on modifications of the explicit CSCL
system.

3.2.3. The semi-implicit version of HIRLAM-DCISL
As a consequence of the conclusions in the last paragraph of the preceding section,
Lauritzen, Kaas, Machenhauer and Lindberg [2006, 2008] decided to develop a
semi-implicit version of the HIRLAM model in which u and v are kept as prognostic
variables, and just the continuity equation is implemented in FV form. In this case, no
linearization of the prognostic variables is needed. In the present section, we present
the derivation of a semi-implicit system of prognostic equations based on the system
of explicit equations in Section 3.2.1. The derivation is described in more details in
Lauritzen, Kaas, Machenhauer and Lindberg [2006, 2008]. Here we concentrate
on deviations from the traditional derivation procedure used, e.g., for HIRLAM. The
traditional procedure for deriving the elliptic equations associated with the baroclinic
HIRLAM model is for the central parts the same as for the 1D shallow water models
considered in Section 3.2.2.

First, the explicit system is made semi-implicit by time averaging certain right-hand
side terms in the discretized primitive equations between time levels n!t and (n + 1)!t.

These linearized terms are:

1. the linearized pressure gradient force in the momentum equation (Eq. (3.1)), i.e.,
−∇Gk, which depends on temperature and surface pressure

2. two linearized divergence terms: (1) one in the FV continuity equation (Eq. (3.21))
and (2) one in the energy conversion term αω in the thermodynamic equation

(Eq. (3.2)), i.e., − Rd
cpd

(
T

pk+1/2

)ref k∑
l=1

(!lp)ref Dn+1/2
l in Eq. (3.120).

Secondly, the formula for the surface pressure and temperatures at time level (n + 1) from
the semi-implicit continuity and thermodynamic equations, respectively, are inserted in
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the formula for the linearized pressure gradient force, −∇Gk, in the momentum equa-
tions. Finally, the divergence operator, ∇ · ( ), is applied to the momentum equation
resulting in a set of coupled elliptic equations with updated divergence as an indepen-
dent variable. The vertically coupled equations are separated into a set of vertically
decoupled shallow water Helmholtz equations via diagonalization. The final solution to
the elliptic system determines the semi-implicit corrections to the explicit solutions for
all the prognostic variables.

3.2.3.1. The linearized pressure gradient force The explicit semi-Lagrangian momen-
tum equation at model level k is

(
"Vn+1
k

)

exp
− "Vn

k

!t
= −∇φk − Rd(Tv)k∇ ln pk − f "k × "Vk +

( "P "V + "K "V
)
k
.

(3.102)

The pressure gradient force

"Fk = −∇φk − Rd(Tv)k

pk
∇pk = −∇



φs + Rd

NLEV∑

l=k+1

(Tv)l(! ln p)l + Rdαk(Tv)k





− Rd(Tv)k ∇ ln pk (3.103)

is linearized as in HIRLAM:

−∇Gk = −∇



φs + Rd

NLEV∑

l=k+1

(Tv)l
(
! ln pref

)
l
+ Rdα

ref
k (Tv)k



− RdT
ref

p
ref
s

∇ps,

(3.104)

where T ref and p
ref
s are constant reference temperature and constant surface pressure,

respectively.
(
! ln pref

)
k

and αref
k are defined by Eqs. (3.14) and (3.16) with the “half-

level” pressures obtained from Eq. (3.11) by choosing ps = p
ref
s .

After temporal averaging of −∇Gk, the semi-implicit momentum equation may be
written as in HIRLAM:

[
"V + !t

2
∇G − f0"k × "V

]n+1

k

=
("R "V

)
k
, (3.105)

where
("R "V

)
k

represents explicit terms. In the traditional HIRLAM derivation of the
elliptic system, a substitution in the linearized pressure gradient force, −∇Gn+1

k , of the
updated surface pressure from the continuity equation and the updated temperatures
from the thermodynamic equations is performed. Thereby the linearized geopotential,
Gn+1

k , is expressed in terms of the divergence, Dn+1
k . The HIRLAM-DCISL derivation

proceeds similarly. Here, just those parts involving the FV continuity equation will be
dealt with. These are the parts which deviate from the traditional derivation.

user
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3.2.3.2. The semi-implicit DCISL continuity equations The discretization of the
explicit continuity equation for moist air was discussed in Section 3.2.1. The deriva-
tion of the semi-implicit continuity equation considered here is a direct extension of the
derivation for the 1D shallow water models in Section 3.2.2. Defining the discretized
Lagrangian divergence,

Dn+1/2
k = 1

!A

!A − δAn
k

!t
= 1
!t

(
1 − δAn

k

!A

)
(3.106)

and substituting δkA
n

!A from the explicit continuity equation (Eq. (3.21)) in the form

(
δkp̂
)n+1

exp = !kp
n δA

n
k

!A
, (3.107)

it may be written as

(
δkp̂
)n+1

exp = !kp
n −!t!kp

nD n+1/2
k

= !kp
n −!t

(
!kp

n
)′

Dn+1/2
k −!t(!kp)ref D n+1/2

k . (3.108)

Treating the linear term as a temporal average, the (“ideal”) semi-implicit continuity
equation results

δkp̂
n+1 =

(
δkp̂
) n+1

exp − !t

2
(!kp)ref

(
Dn+1

k

(
"V n+1
k

)
+ Dn

k

( "Vn
k

)
− 2Dn+1/2

k

)

(3.109)

or

δkp̂
n+1 =

(
δkp̂
) n+1

exp − !t

2
(!kp)ref

(
Dn+1

k

(
"Vn+1
k

)
− Dn+1

k

(
"̃Vn+1

k

))
, (3.110)

where Dn+1
k

(
"̃Vn+1

k

)
is defined as the Lagrangian divergence for the last part of the hybrid

trajectory

Dn+1
k

(
"̃Vn+1

k

)
= 1
!A

!A − δA
n+1/2
k

!t/2
(3.111)

and Dn
k

( "Vn
k

)
is defined as the Lagrangian divergence for the first part of the hybrid

trajectory

Dn
k

( "Vn
k

)
= 1
!A

δA
n+1/2
k − δAn

k

!t/2
, (3.112)

(see Fig. 3.3). Thus,

Dn
k

( "Vn
k

)
+ Dn+1

k

(
"̃Vn+1

k

)
= 2Dn+1/2

k . (3.113)
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Fig. 3.3 Illustrating the different areas in Eqs. (3.113) and (3.114): δAn
k (red), the departure area at time

n!t, δAn+1/2
k (green), the “mid-way” area at time (n + 1/2)!t, and δAn+1

k (blue), the arrival area at time
(n + 1)!t. (See also color insert).

This was used to derive Eq. (3.110) from Eq. (3.109). Note that corresponding to
Eq. (3.112), Dn+1

k

(
"Vn+1
k

)
is defined as

Dn+1
k

(
"Vn+1
k

)
= 1
!A

δA
n+1/2
k − δAn+1

k

!t/2
= 1
!A

δA
n+3/2
k − δA

n+1/2
k

!t
, (3.114)

where the last expression is centered about time level n + 1.
In order to proceed with the derivation of the semi-implicit system, the Lagrangian

divergence (Eq. (3.114)) should be expressed as a function of the velocity components.
In 1D, it was straightforward (see Eq. (3.89)), but in 2Ds, it is complicated although
not impossible. However, Lauritzen, Kaas and Machenhauer [2006], Lauritzen,
Kaas, Machenhauer and Lindberg [2008], found that the resulting elliptic equations
would be much more complicated than the elliptic equations associated with the tradi-
tional HIRLAM system, and therefore, it would be more time consuming to solve. This
would significantly reduce the efficiency of the semi-implicit model version. There-
fore, they decided to use instead a predictor-corrector approach, which results in elliptic
equations in the same form as in HIRLAM. The predictor-corrector approach applied to
Eq. (3.110) gives finally the semi-implicit continuity equation for moist air:

δkp̂
n+1 =

(
δkp̂
)n+1

exp − !t

2
(!kp)ref

(
Dn+1

k

(
"Vn+1
k

)
− D

(
"̃Vn+1

k

))

+ !t

2
(!kp)ref

[
Dn

k

( "Vn
k

)
− Dn

k

( "Vn
k

)]δ
∗
δAn

k

!A
, (3.115)
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where the discretized Eulerian divergence Dn+1
k

(
"Vn+1
k

)
is defined in the C-grid in

spherical coordinates as

Dn
k

( "Vn
k

)
= 1

a cosϕ

[
δλu

n
k

!λ
+ δϕ

(
vn
k cosϕ

)

!ϕ

]

= δλu
n
k

!x
+ 1

cosϕ
δϕ
(
vn
k cosϕ

)

!y
,

(3.116)

λ is the longitude, ϕ is the latitude, !x = a cosϕ!λ, and !y = a!ϕ.
By replacing Dn+1

k ( "Vn+1
k ) in Eq. (3.110) with the discretized Eulerian divergence

Dn+1
k ( "Vn+1

k ), as done in Eq. (3.115), an elliptic equation in the same form as in the
traditional HIRLAM system results. However, if just this replacement was done, the
scheme would be inconsistent since Dn+1

k

(
"Vn+1
k

)
is different from Dn+1

k

(
"Vn+1
k

)
(in

fact small-scale noise would develop and it would result in an instability). There-
fore, a correction term is added, the last term in Eq. (3.115), which corrects for
the error introduced in the first term of Eq. (3.115). The correction term is equal
to the error Dn+1

k

(
"Vn+1
k

)
− Dn+1

k

(
"Vn+1
k

)
introduced at time level n + 1, but it is

computed in the subsequent time-step when Dn
k

( "Vn
k

)
is known. (The current Dn

k

( "Vn
k

)

is then equal to Dn+1
k

(
"Vn+1
k

)
from the previous time step.) Note that the bar over

the last term in Eq. (3.115) indicates a spatial average over the departure area δAn
k ,

i.e., the same departure area as the one used to calculate
(
δkp̂
)n+1

exp . In practice,
!t
2 (!kp)ref

[
Dn

k

( "Vn
k

)
− Dn

k

( "Vn
k

)]
can be added to the term !kp

n as the first oper-
ation in each time-step. This means that only one upstream integration is needed to
evaluate the first and the last term on the right-hand side of Eq. (3.115). The correction
term is necessary because the discretized Eulerian divergence Dn+1

k

(
"Vn+1
k

)
, defined in

Eq. (3.116), corresponds to a discretized Lagrangian divergence (see Fig. 3.4a), which
is different from Dn+1

k

(
"Vn+1
k

)
, defined in Eq. (3.114). This difference is illustrated in

Fig. 3.4.
As demonstrated in Section 3.1.3.3, the explicit continuity equation (Eq. (3.21)) con-

serves mass both locally and globally. Since the correction terms in Eq. (3.115), which
correct the explicit prediction, consist of linear divergence terms, integration over the
entire integration area become zero if the Lagrangian and the Eulerian divergence both
are zero at the boundaries or if the integration area is global. Consequently, with these
assumptions fulfilled, the semi-implicit continuity equation also conserves global mass.
It is the impression from preliminary tests that the semi-implicit correction terms gen-
erally are small compared to the explicit local mass changes, so it is our impression that
the local mass conservation is only slightly modified by the semi-implicit corrections.

The explicit continuity equation for a passive tracer was derived in Section 3.1.4. The
result was Eq. (3.40) which may be written as

((5
qδi
)n+1
k

δkp̂n+1
)

exp
=
((

5
q
!

i

)n

k
!kp

n

)δ

∗

(
δAn

k

)

!A
.
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(a)

(b)

Fig. 3.4 Panel A: Illustrating the Lagrangian divergence Dn
k

( "Vn
k

)
= 1

!A

δAn+1
k −!A

!t , which corresponds to
the Eulerian divergence (Eq. (3.116)). The periphery of a regular departure area, !A, is marked red and the
periphery around its arrival area, δAn+1

k , is marked blue. Additional departure and arrival areas for three neigh-

bor cells are shown. Note that the areas δAn+1
k do not cover the whole domain; there are cracks between them.

Panel B: Illustrating the Lagrangian divergence Dn
k

( "Vn
k

)
= 1

!A

δA
n+1/2
k −δAn−1/2

k
!t , where the departure area

δA
n−1/2
k is marked red and the arrival area δAn+1/2

k is marked blue. Obviously, Dn
k

( "Vn
k

)
is generally different

fromDn
k

( "Vn
k

)
in A. In both panels: Black arrows are velocity components in the C-grid. (See also color insert).
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The variable on the left-hand side is the weight of the cell-integrated tracer mass per unit
horizontal area (see Section 3.1.4). For a nonpassive tracer, source and sink terms should
be added on the right-hand side of the equation. In a semi-implicit model, semi-implicit
correction terms must be added to the explicit predicted tracer weights in order to make
them consistent with the predicted moist air weights. The corrected semi-implicit tracer

prediction equation must be identical to that for moist air (Eq. (3.115)) for
(
5
qi

)n

k
≡ 1.

This means that the semi-implicit tracer continuity equation must be

(5
qδi
)n+1
k

δp̂n+1
k =

((
5
q
δ

i

)n+1

k
δkp̂

n+1
)

exp

− !t

2

((
5
q
!

i

)

k
!kp

) ref(
Dn+1

k

(
"Vn+1
k

)
− D

(
"̃Vn+1

k

))

+ !t

2

((
5
q
!

i

)

k
!kp

)ref [
Dn

k

( "Vn
k

)
− Dn

k

( "Vn
k

)]δ
∗
δAn

k

!A
.

3.2.3.3. The semi-implicit energy conversion term Also a dependence on divergence
in the thermodynamic equation (Eq. (3.2)) needs to be temporally averaged in the semi-
implicit model. Specifically, it is the energy converting term αω

cp
= RdTv

cp

ω
p , approximated

in the explicit model with Eq. (3.63), which is divergence dependent. To isolate this
dependence ωk

n+1/2, given by Eq. (3.34), is expanded as follows:

[ωk]
n+1/2
exp = 1

!t

(
p̂

n+1
k −

(
pn

k

)δ
∗

)
= 1
!t

(

exp
(
−αn+1

k

) k∑

l=1

δlp̂
n+1 −

(
pn

k

)δ
∗

)

,

(3.117)

where Eqs. (3.17) and (3.22) have been used. When then δlp̂
n+1

is substituted from
Eq. (3.108), the result is

[ωk]
n+1/2
exp = 1

!t

(

exp
(
−αn+1

k

) k∑

l=1

(
!lp

n −!t!lp
nDn+1/2

l

)
−
(
pn

k

)δ
∗

)

= 1
!t

(

exp
(
−αn+1

k

) k∑

l=1

!lp
n −

(
pn

k

)δ
∗

)

− exp
(
−αn+1

k

) k∑

l=1

!lp
nDn+1/2

l .

(3.118)

Thus, the explicit energy converting term may be written as

[(
RdTvω

cpp

)

k

]n+1

exp
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= Rd(Tv)
n+1/2
k(

cp

)n+1/2
k

p
n+1/2
k

[ωk]
n+1/2
exp = Rd (Tv)

n+1/2
k(

cp

)n+1/2
k

exp
(
−αn+1/2

k

)
p

n+1/2
k+1/2

[ωk]
n+1/2
exp

= Rd(Tv)
n+1/2
k(

cp

)n+1/2
k

exp
(
−αn+1/2

k

)
p

n+1/2
k+1/2

1
!t

(

exp
(
−αn+1

k

) k∑

l=1

!lp
n −

(
pn

k

)δ
∗

)

−
Rd(Tv)

n+1/2
k exp

(
−αn+1

k

)

(
cp

)n+1/2
k

exp
(
−αn+1/2

k

)
p

n+1/2
k+1/2

k∑

l=1

!lp
nDn+1/2

l , (3.119)

where again Eqs. (3.17) and (3.22) have been used. When the last term is linearized
about a reference temperature T ref and a reference surface pressure p

ref
s , the result is

[(
RdTvω

cpp

)

k

]n+1

exp

= Rd (Tv)
n+1/2
k(

cp

)n+1/2
k

exp
(
−αn+1/2

k

)
p

n+1/2
k+1/2

1
!t

(

exp
(
−αn+1

k

) k∑

l=1

!lp
n −

(
pn

k

)δ
∗

)

−
k∑

l=1




Rd (Tv)

n+1/2
k exp

(
−αn+1

k

)

(
cp

)n+1/2
k

exp
(
−αn+1/2

k

)
p

n+1/2
k+1/2

!lp

n



′

Dn+1/2
l

− Rd

cpd

(
T

pk+1/2

)ref k∑

l=1

(!lp)ref Dn+1/2
l . (3.120)

Treating the linear term as a temporal average, we finally get the (“ideal”) semi-implicit
energy conversion term
(

RdTvω

cpp

)n+1

k

=
[(

RdTvω

cpp

)

k

]n+1

exp

− Rd

cpd

(
T

pk+1/2

)ref k∑

l=1

(!lp)ref
(
Dn+1

l

(
"Vn+1
l

)
+ Dn

l

( "Vn
k

)
− 2Dn+1/2

l

)

(3.121)

or
(

RdTvω

cpp

)n+1

k

=
[(

RdTvω

cpp

)

k

]n+1

exp

− Rd

cpd

(
T

pk+1/2

)ref k∑

l=1

(!lp)ref
(
Dn+1

l

(
"Vn+1
k

)
− D

(
"̃Vn+1

l

))
,

(3.122)



07-Ch01-N51893 [21:49 2008/10/29] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 95 1–120

Finite-Volume Methods in Meteorology 95

where again D
(
"̃Vn+1

l

)
is defined by Eq. (3.111).

In order to obtain the same uncomplicated elliptic equations as in HIRLAM, the
predictor-corrector approach is again utilized. This changes Eq. (3.122) to

(
RdTvω

cpp

)n+1

k

=
[(

RdTvω

cpp

)

k

]n+1

exp

− Rd

cpd

(
T

pk+1/2

)ref
[

k∑

l=1

(!lp)ref
(
Dn+1

l

(
"Vn+1
l

)
− D

(
"̃Vn+1

l

))

−
k∑

l=1

(!lp)ref
[
Dn

l

( "Vn
k

)
− Dn

l

( "Vn
k

)]δ
∗
δAn

l

!A

]

. (3.123)

3.3. The NCAR-FFSL dynamical core

This section describes main features of the FV dynamical core, included in the NCAR
Community Atmospheric Model (CAM 3.0) description, Collins, Rasch, Boville,
Hack, Mccaa, Williamson, Kiehl, Briegleb, Bitz, Lin, Zhang and Dai [2004],
Chapter 3.3. It is the pioneering example of a meteorological FV model based on the
flux form (Eq. (1.2)) of the continuity equation. It was initially developed and used at the
NASA Data Assimilation Office for data assimilation, numerical weather prediction, and
climate simulations. The dynamical core is quasi-hydrostatic, global, and formulated for
traditional latitude-longitude coordinates.

3.3.1. The 3D transport scheme
The quasi-horizontal transport of air mass, tracer mass, and potential temperature is
based on a 2D FV FFSL scheme developed by Lin and Rood [1996] and Lin and Rood
[1997]. This Eulerian scheme of the operator splitting or time splitting type, described
in Section 2.3.2, is among the most modern flux-based FV schemes. For the sake of the
following description of the dynamical core, it is convenient to rewrite the prediction
equation, Eq. (2.52), with the notations of Lin and Rood [1997].

At first, the following standard finite difference δ and average ( ) operators are defined

δσq = q

(
σ + !σ

2

)
− q

(
σ − !σ

2

)
,

qσ = 1
2

[
q

(
σ + !σ

2

)
+ q

(
σ − !σ

2

)]
.

(3.124)

The conservation law for a density-like variable Q is

∂Q

∂t
+ ∇ ·

(
Q "V

)
= 0. (3.125)
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As explained in Section 2.3.2, the FFSL scheme involves the application of 1D flux
convergence operators and advective operators, successively applied along the two hor-
izontal coordinate directions, in such a way that the scheme becomes both conservative
and constancy preserving.

The 1D flux convergence operators F and G are defined as

F
(
u∗,!τ; Qn

)
= − !τ

a!λ cosϕ
δλ
[
X
(
u∗,!τ; Qn

)]
,

G
(
v∗,!τ; Qn

)
= − !τ

a!ϕ cosϕ
δϕ
[
cosϕY

(
v∗,!τ; Qn

)]
.

(3.126)

F and G updates Q for one time-step in the zonal (λ) and meridional (ϕ) directions,
respectively. Here, X and Y, the time-averaged fluxes of Q in the zonal (λ) and meridional
(ϕ) directions, respectively, are defined as

X
(
u∗,!τ; Qn

) ∼= 1
!τ

∫ t+!τ

t
uQ dt − hot ∼= u∗(Qn

)∗
λ
,

Y
(
v∗,!τ; Qn

) ∼= 1
!τ

∫ t+!τ

t
vQ dt − hot ∼= v∗(Qn

)∗
ϕ
,

(3.127)

where u∗ and v∗ are predicted time-centered velocity components at t +!τ/2 in C-grid
positions at the east and south face of the cell, respectively. (Qn)∗λ is determined by an
upstream integral

(
Qn
)∗
λ

= 1
a cosϕ!λ

∫ u∗!τ

0
Qna cosϕdλ, (3.128)

with a corresponding expression for (Qn)∗ϕ.
Thus, to approximate the time-averaged fluxes across the cell faces the time-centered

winds, u∗ and v∗, and the cell averaged field, Qn, at time level n are required. Fur-
thermore, for modeling cross-stream advection in the zonal and meridional directions,
respectively, the advective flux operators f̃ and g̃ are introduced. They are defined in
Collins, Rasch, Boville, Hack, Mccaa, Williamson, Kiehl, Briegleb, Bitz, Lin,
Zhang and Dai [2004] in terms of the corresponding F and G operators. Here, f̃ is
defined as

f̃
(
u∗,!τ; Qn

)
= F

(
u∗,!τ; Qn

)
+ !τ

a!λ cosϕ
δλu

∗, (3.129)

with a corresponding definition for g̃. With these definitions, the following prognostic
equation (corresponding to Eq. (2.52)) results

Qn+1 = Qn + F

[
u∗,!τ; Qn + 1

2
g̃
(
v∗,!τ; Qn

)]

+ G

[
v∗,!τ; Qn + 1

2
f̃
(
u∗,!τ; Qn

)]
(3.130)
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or

Qn+1 = Qn + F
[
u∗,!τ; Qϕ

]
+ G

[
v∗,!τ; Qλ

]
, (3.131)

where

Qϕ = Qn + 1
2
g̃
(
v∗,!τ; Qn

)
and Qλ = Qn + 1

2
f̃
(
u∗,!τ; Qn

)
. (3.132)

As in the HIRLAM-DCISL, the fluxes are assumed to be along 3D trajectories; however,
here the trajectories are line-segment parallel to the coordinate axes. The final vertical
displacements after each time-step are determined so that hydrostatic balance is main-
tained. A Lagrangian vertical coordinate ξ, is introduced (see Section 3.1.3.1), which
per definition is constant along the 3D trajectories. The quasi-horizontal flow along such
coordinate surfaces is 2D and relative to the coordinate surfaces, where the vertical
velocity is zero as expressed in Eq. (1.1). The governing Eulerian equations, presented
below in Section 3.3.2, are therefore without vertical advection terms.

In the present setup, the Eulerian vertical discretization defining the vertical extend
of the Eulerian grid cells is similar to the hybrid sigma-pressure discretization (Simmons
and Burridge [1981]) described in Section 3.1.2, except that here the top of the model
atmosphere is at a constant pressurep∞. Thus, the pressure at a η-model-surface is
pn

k+1/2 = p∞ + Ak+1/2 + Bk+1/2p
n
s and the vertical “pressure thickness” of an Eulerian

grid cell is δkpn = !kA +!kB pn
s . As illustrated in Fig. 3.1, the transport of air during

a time-step, ending up in an Eulerian grid column, is effectuated by a Lagrangian cell,
with initial pressure thickness δkpn = pn

k+1/2 − pn
k−1/2. The Lagrangian cell is moving

with the 3D flow and is ending up with a pressure thickness δkp̂n = p̂n
k+1/2 − p̂n

k−1/2.

Its pressure (p̂n+1
k+1/2) is determined hydrostatically from the weight of the cells arriving

above in the same Eulerian grid column. The scheme is globally conservative; however,
it is less locally conservative than the DCISLschemes. Thus, as illustrated in Fig. 2.15(d),
the FFSL scheme uses information from an area that is somewhat dispersed compared
to the exact departure area.

3.3.2. The governing equations
Neglecting physical forcing terms, the governing continuous quasi-hydrostatic equations
in spherical latitude-longitude coordinates are:

The hydrostatic balance equation on the form

δkp = −gρδkz, (3.133)

which shows that the variable in the continuity equation, δkp, is the weight per unit
horizontal area in the layer of air with thickness δkz.

The continuity equation or in other words the conservation law for mass is written as

∂

∂t
δkp + 1

a cosϕ

[
∂

∂λ
(ukδkp) + ∂

∂ϕ
(vkδkp cosϕ)

]
= 0. (3.134)
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Similarly, the mass conservation law for tracer species (including water vapor) is

∂

∂t

(
(qi)k δkp

)
+ 1

a cosϕ

[
∂

∂λ

(
uk(qi)k δkp

)
+ ∂

∂ϕ

(
vk (qi)k δkp cosϕ

)]
= 0.

(3.135)

The thermodynamic equation or the conservation law for potential temperature is

∂

∂t
(θkδkp) + 1

a cosϕ

[
∂

∂λ
(ukθkδkp) + ∂

∂ϕ
(vkθkδkp cosϕ)

]
= 0, (3.136)

where θk = (Tv)k
( pk

1000 hPa

) Rd
cpd is the (virtual) potential temperature.

The momentum equations are used on the so-called “vector invariant form:”

∂

∂t
uk = ηkvk − 1

a cosϕ

[
∂

∂λ
((ekin)k + φk − νDk) + 1

ρ

∂pk

∂λ

]
, (3.137)

∂

∂t
vk = −ηkuk − 1

a

[
∂

∂ϕ
((ekin)k + φk − νDk) + 1

ρ

∂pk

∂ϕ

]
, (3.138)

where Dk is the divergence, defined as in Eq. (3.146), ν is the coefficient for an optional
divergence damping, and the absolute vorticity ηk is

ηk = 20 sin ϕ + 1
a cosϕ

[
∂vk

∂λ
− ∂(uk cosϕ)

∂ϕ

]
. (3.139)

Here,0 is the angular velocity of the earth. Finally, the kinetic energy (ekin)k is defined
as

(ekin)k = 1
2

(
(uk)

2 + (vk)
2
)

. (3.140)

3.3.3. Time-stepping
In the model, the dynamics and the NCAR CAM physics are time-split as in HIRLAM in
the sense that all prognostic variables are updated sequentially, at first by the dynamics
and then by the physics. The time-stepping is fully explicit with subcycling over small
time-steps, !τ = !t/m, within the 2D dynamics. The number of subcycles needed to
stabilize the fast gravity waves is m. To avoid excessive small time-steps due to the
convergence of the meridians near the poles, a polar Fourier filter, which filters out
the shortest zonal waves, is applied to u∗ and v∗ and certain tendency terms in the
prognostic equations. The transport for tracers, however, can take a much larger time-
step !t equal to the interval between the physics updates. In the present setup, the
cells are transported along the Lagrangian surfaces during the long tracer time-steps,
starting initially at the beginning of the first small time-step as a model layer with
“pressure thickness”!kp

n = !kA +!kB pn
s , without any remapping of the variables

to the Eulerian model levels. So during these m short time-steps, the transport is fully
Lagrangian. Only at the end of each tracer time-step, a remapping takes place. This is
done to avoid excessive smoothing caused by too frequent vertical remapping after each
small time-step.
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3.3.3.1. Conservative predictions The prognostic variables, the cell averaged values
δkp, (qi)k , θk, uk, and vk, are updated by the use of the prognostic equations (Eqs. (3.134)
– (3.138)), but only the Eqs. (3.134)–(3.136) for the density-related variables are in
the proper flux-form (Eq. (3.125)) and are integrated directly by the FFSL prediction
equation (Eq. (3.130)). Thus, the dynamical core conserves exactly mass of air, tracer
mass, including water vapor (apart from evaporation and condensation), and potential
temperature (in adiabatic friction free flow). The integration of the momentum equations,
(Eqs. (3.137) and (3.138)) is discussed in Section 3.3.3.2.

At the start of time-step n (time n!τ), the prognostic variables, δkp, (qi)k , θk, uk, and
vk, are given in the D-grid as indicated in Fig. 3.5. In addition, the advective winds u∗

and v∗are needed for the update of δkp, (qi)k, and θk. So at first, these are updated to time
(n+1/2)!τon the C-grid using the momentum prediction equation (Eq. (3.144)). When
they are available, Eqs. (3.134)–(3.136) can be advanced one time-step using the FFSL
prediction form (Eq. (3.130)). u∗ and v∗ are not history carrying variables. They are
overwritten after being used. When the continuity equation has been solved, the updated

pressure thickness of each Lagrangian layer,
(
δkp̂
)n+1

, determines the pressure of the
Lagrangian surfaces by summing up the hydrostatic weight of all the cells above:

p̂
n+1
k−1/2 = p∞ +

k−1∑

l=1

δlp̂
n+1

. (3.141)

Summing up the hydrostatic weight of all the NLEV Lagrangian layers yields the surface
pressure:

pn+1
s = p∞ +

NLEV∑

l=1

δlp̂
n+1

. (3.142)

This is needed for determination of the pressure at the interfaces between the Eulerian
model layers:

pn+1
k−1/2 = p∞ + Ak−1/2 + Bk−1/2 pn+1

s , (3.143)

ekin

ekin
ekin

ekin

v*

uk

v*

uk

u*

vk

u*

vk

!k p (qi )k
'k

Fig. 3.5 Schematic stencil of the location of variables in finite volume schemes for the Arakawa C- (indicated
with superscript *) and D-grids.
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which are needed for the physical parameterization and the vertical remapping of the
prognostic variables. The density-like prognostic variables are given after each large

time-step, !t, as mean values over the Lagrangian layers, δkp̂
n+1

. To be used for phys-
ical parameterization, they must be remapped on the Eulerian model layers !kp

n+1

(determined from Eq. (3.143)).

3.3.3.2. Integration of the momentum equation Inspired by the papers of Sadourny
[1972] and Arakawa and Lamb [1981], a discretization of the momentum equations
has been achieved that results in conservation of the absolute vorticity. Since also mass
and potential energy are conserved and all three invariants are consistently transported,
it might be expected that approximately the same will be the case for potential vorticity.

The resulting prognostic equations are

un+1 = un +!τ

{
Y
(
v∗,!τ; ηλ

)
− 1

a cosϕ!λ
δλ[(ekin)

∗ − νD∗] + 5

Pλ

}
,

vn+1 = vn −!τ

{
X
(
u∗,!τ; ηϕ

)
− 1

a!ϕ
δϕ [(ekin)

∗ − νD∗] + 5

Pϕ

}
,

(3.144)

where (ekin)
∗, the upstream-biased kinetic energy (defined in the four corners of the

D-grid (Fig. 3.5)), is formulated as

(ekin)
∗ = 1

2

{
X
(
u∗ϕ,!τ; un

)
‘ + Y

(
v∗λ,!τ; vn

)}
(3.145)

and

D∗ = 1
a cosϕ

[
δλu

n+1

!λ
+ δϕ

(
cosϕ vn+1)

!ϕ

]

. (3.146)

The FV mean pressure gradient terms
5

Pλ and
5

Pϕ in Eq. (3.144) are computed by the
method presented in Lin [1997], which eliminates a long-standing problem in terrain-
following coordinates, i.e., the inaccuracy caused by different truncation errors in the
two terms that the pressure gradient force traditionally are split into.

The velocity components uk and vk are given after each large time at Lagrangian
levels, p̂k. Like the remaining prognostic variables, they need to be remapped to Eulerian
levels. An accurate and conservative remapping procedure has been developed. The
current remapping version, described in detail in Collins, Rasch, Boville, Hack,
Mccaa, Williamson, Kiehl, Briegleb, Bitz, Lin, Zhang and Dai [2004], conserves
exactly mass, momentum, and total energy.

3.4. Properties of the dynamical cores

3.4.1. Conservation properties
With proper boundary conditions, the HIRLAM-DCISL dynamical core conserves
exactly global mass of moist air and tracers, including water vapor, liquid water, and
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solid water, if included (apart from evaporation and condensation).Also the NCAR-FFSL
dynamical core conserves exactly these global masses. However, in addition, it conserves
globally potential temperature (in adiabatic friction-free flow) and absolute vorticity (in
adiabatic friction-free flow). Thus, the NCAR-FFSL dynamical core comes closer than
the HIRLAM-DCISL to the ideal CSCL model considered in Section 3.1. However, as
we have seen in the idealized tests presented in Section 2, the local conservation is more
accurate in the HIRLAM-DCISL transport schemes than in the NCAR-FFSL scheme
(compare Figs. 2.10(b) and 2.10(c) with Fig. 2.11(d)). Although the vertical remapping
is designed to conserve the total energy, it is not globally conserved in NCAR-FFSL. The
horizontal discretization and the use of a “diffusive” transport scheme with monotonicity
constraint tend to decrease the kinetic energy and thereby the total energy. Whether this
is realistic is difficult to assess. A total energy “fixer” is applied to effectively add the
loss in kinetic energy due to “diffusion” back to the model as total potential energy so
that the total energy is globally conserved. However, even without the fixer, the loss is
found to be very small, less than 2 W/m2 with a 2-degree resolution and it is found to
decrease with increasing resolution. It is stated in Collins, Rasch, Boville, Hack,
Mccaa, Williamson, Kiehl, Briegleb, Bitz, Lin, Zhang and Dai [2004] that in the
future it may considered to use the total energy as a transported prognostic so that the
total energy could be automatically conserved. In the HIRLAM-DCISL dynamical core,
no total energy “fixer” is applied.

3.4.2. FV Lagrangian pressure gradient force
As mentioned above, a particular feature of the NCAR-FFSL model is the Eulerian
expression for the FV mean pressure-gradient force (Lin [1997]), which is used in
the model. It eliminates a long-standing problem: the inaccuracy caused by different
truncation errors in the two terms that the pressure gradient force traditionally is split
into in terrain-following coordinates. A similar finite volume Lagrangian expression for
the mean pressure gradient force along the trajectories during a time-step is suggested by
Lauritzen, Kaas, Machenhauer and Lindberg [2008]. It may be used in any DCISL
model. It has not yet been implemented in HIRLAM-DCISL; however, it is expected
that it may lead to increased accuracy, even though the linearized pressure gradient
force (Eq. (3.104)), used to derive the semi-implicit correction terms, is based on the
two-term expression of the pressure gradient force. The proposed Lagrangian mean
pressure gradient force PGF!s′ along the sloping trajectory!s′is easily computed from

the pressure of the arrival cell, at the end of the trajectory,
(
p̂

n+1
k

)

exp
and the pressure

of the departure cell, at the start of the trajectory,
(
pn

k

)δ
∗. Note that these are the same

pressures that are used to define ω in Eq. (3.117). The proposed expression is

PGF!s′ =
[(

− 1
ρ

∂p

∂s′

)

k

]n+1/2

exp
= − 1

ρ

(
p̂

n+1
k

)

exp
−
(
pn

k

)δ
∗

!s′

= − 1

ρ

(
p̂

n+1
k

)

exp
−
(
pn

k

)δ
∗

!s
cos(ϑ). (3.147)
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ρ is an approximation of the mean density along the trajectory. !s is the horizontal
distance between the midpoints of the departure and the arrival cells, and !s′ is the
corresponding distance along the sloping trajectory. cos (ϑ) = !s

!s′ defines the slope of
the trajectory. In order to determine the horizontal component of the pressure gradient
force PGFh, the vertical component PGFv, which is balanced by gravity g, must be
subtracted:

PGFh =
√

(PGF!s′)
2 − g2. (3.148)

3.4.3. Tests of performance
Thuburn [2006] has made an attempt to estimate the relative importance of different
conservation laws. It is argued that satisfactory model performance requires spurious
sources of a conservable quantity to be much weaker than any true physical sources; for
several conservable quantities, the magnitudes of the physical sources are estimated in
order to provide benchmarks against which any spurious sources may be measured. A
model with weak spurious sources of a conservable quantity compared with the physical
sources may in practice produce as accurate forecasts, especially long simulations, as a
model which conserves the quantity exactly if the spurious sources are not systematic.
However, even if the spurious sources are weak but the spurious sources are systematic,
long simulations may be very inaccurate. Of course, if possible, the spurious sources
should be estimated relative to the physical sources, but that may be very difficult and
it is not enough; it is also necessary to know if the spurious sources are systematic. So,
in practice, as when other potential model improvements are considered, it is necessary
to carry out a series of real cases that is validated against observations in competition
with any model it is supposed to substitute. To the authors’ knowledge, such a series
of real case tests have not yet been carried out for any of the two FV dynamical cores
considered here.

3.4.4. Idealized baroclinic wave test
However, both have been preliminary tested in the idealized baroclinic wave test case of
Jablonowski and Williamson [2006a], in the following called JW06a (a more detailed
technical note Jablonowski and Williamson [2006b] is available). These tests have, as
we shall see, confirmed that both dynamical cores work properly, producing in general
as realistic baroclinic developments as present day’s nonconservative state-of-the-art
dynamical cores. It would have been of considerable interest to validate the importance
of the mass conservation property of the FV dynamical cores considered here in real case
tracer transport simulations. There seems to be no doubt that this property is essential
for tracer transport however to the authors’ knowledge, it has not yet been verified.

The idealized baroclinic wave test case of JW06a consists of an analytic steady-state
zonal solution to the global primitive equations. The steady-state is unstable so that an
overlaid perturbation in global reference integrations triggers the development of an
idealized baroclinic wave in the northern hemisphere. By day 4, a well-defined wave
train is established, and by days 7–9, a significant deepening of the highs and lows takes
place before a breakdown by days 20–30 leads to a full circulation in both hemispheres.
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3.4.5. Idealized test of NCAR-FFLS
JW06a applied the test to four different global dynamical cores at varying horizontal
and vertical resolutions. Namely, the NCAR Eulerian three-time-level semi-implicit
spectral transform dynamical core (EUL), the NCAR two-time-level semi-Lagrangian
semi-implicit spectral transform dynamical core (SLD), the German Weather Service
icosahedral finite-difference three-time-level semi-implicit dynamical core (GME), and
finally the NCAR-FFSL FV dynamical core.

3.4.6. Diffusion processes
Before summarizing the performance of FV in the test, it is relevant to list the diffusion
processes which had to be included in all the dynamical cores considered in order to
ensure stable integrations.

• EUL includes a ∇4horizontal diffusion on temperature, divergence, and vorticity to
control the energy on the smallest resolved scales and a ∇2 horizontal diffusion on
the top three levels to control upward propagating waves. The thermodynamic equa-
tion includes a frictional heating term corresponding to the momentum diffusion. It
includes also a posterior mass fixer applied at every time-step. The three-time-level
core includes a time filter to control the 2!t time computational mode.

• SLD do not include the ∇4 and ∇2 horizontal diffusions; the interpolants control
the energy at the smallest scales. Every time-step posterior mass and energy fixers
are applied. A standard decentering parameter ε = 0.2 is used in the semi-implicit
scheme.

• GME includes the ∇4 and ∇2 horizontal diffusions as EUL. Neither a mass fixer
nor an energy fixer is applied.

• FV do not include explicit ∇4and ∇2 horizontal diffusion operators; the horizontal
remapping, using a monotonic PPM sub-grid representation, is supposed to con-
trol the energy at the smallest scales. An explicit divergence damping is, however,
applied. The monotonic and conservative vertical remapping is performed every
10 explicit time-steps. FV employs in addition both a 3-point digital filter in mid-
latitudes and an FFT filter in polar regions to control unstable waves in the zonal
direction. A posterior energy fixer is applied at every time step.

3.4.7. Resolution, time step, run times
After the addition of small perturbation to the unstable steady-state zonal flow in the four
dynamical cores, they are run for 30 model days with different horizontal resolutions. The
five horizontal resolutions and the corresponding time-steps used in the FV integrations
are shown in Table 3.1. The other models were run with five approximately equivalent
resolutions. The time-steps used in the integrations with the different dynamical cores
are also included in the table. All these integrations were run with 26 standard vertical
levels (L26).

JW06a also publish the runtimes for the four dynamical cores at their midrange and
second highest resolutions. They are added in Table 3.1. They are meant to serve as a
general guide for the computational costs of each model acknowledging that the cost are
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Table 3.1
Horizontal resolutions (FV), time-step !t (s) and wall clock time WT (s)

for one model day

Resolution EUL SLD GME FV
(FV) !t/WT !t/WT !t/WT !τ(= !t/10)/WT

!ϕ ×!λ

4◦ × 5◦ 2400 7200 1600 720
2◦ × 2.5◦ 1200 3600 800 360
1◦ × 1.25◦ 600/44 1800/24 400/48 180/66

0.5◦ × 0.625◦ 300/483 900/271 200/325 90/625
0.25◦ × 0.3125◦ 150 450 100 45

hardware-dependent and vary with the ingenuity of the programmer. The runtime data
represent the wall clock time (WT) needed to complete one model day on a 32-processer
node of an IBM (International Business Machines) Power 4 architecture when using a
pure message passing interface parallelization approach. Identical compiler optimization
flags were used for all models. No efforts was made to optimize the numerical schemes or
to configure the models in their optimal setup, such as selecting an optimal time-step or
switching from quadratic to a linear truncation technique in case of SLD. The dynamical
cores represent the standard versions in CAM3 (The NCAR Community Atmospheric
Model system, version3) and GME.

The FV model is seen to be the most expensive in computational costs. Thus, the
conservative property is achieved on the expense of efficiency.At the medium resolution,
it is 2.75 times more expensive than the semi-Lagrangian semi-implicit SLD dynamical
core. However, it is also more expensive than the two Eulerian semi-implicit dynamical
cores at medium resolution: 50% more expensive than EUL and 38% more expensive
than GME. At the second highest resolution, it is still the most expensive dynamical
core. Its WT has increased by a factor 9.5, whereas those of EUL and SLD increased by
a factor of 11.0 and 11.3, respectively. However, GME increased much less, by a factor
of only 6.8. So at this resolution, FV is 92% more expensive than GME. The advantage
of EUL on the other hand has been reduced, but FV is still 29% more expensive than
EUL.

It should be noted that here FV is compared with operational dynamical cores that
have been carefully optimized. It must be noted furthermore that with massive parallel
computers with a high number of nodes, expected to be more common in the future, the
FV explicit code is supposed to gain in relative efficiency due to better parallelization
than Eulerian as well as semi-Lagrangian semi-implicit codes with elliptic solvers that
involve more data exchange between nodes.

3.4.8. Results of the global simulations
As already mentioned, the JW06a tests indicated that the synoptic performance of the FV
(or NCAR-FFSL) dynamical core generally is satisfactory. It is producing as realistic
idealized baroclinic developments as the state-of-the-art dynamical cores it is com-
pared with. All four dynamical cores compared are found to converge toward a common
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solution. Thus, the second-highest and highest resolution FV L26 surface pressure solu-
tions at day 9 are visually almost indistinguishable (see Fig. 6 in JW06a). Up to day
10, differences between the solutions from different dynamical cores can only be seen
at the smallest scales that are most influenced by the diffusive characteristics of the
numerical schemes, summarized above. An example is the closed cells in the low-
pressure center of the surface pressure fields at day 9 (Fig. 7 in JW06a) of the EUL
and GME solutions. They are slightly deeper than those from the FV dynamical core.
Such small-scale differences are seen more clearly in the 850 hPa relative vorticity fields
(shown in Fig. 8 in JW06a). At day 7, the high-resolution FV dynamical core exhibits
a slightly weaker vorticity pattern in comparison with EUL, SLD, and GME at high
resolutions. According to JW06a, the slightly weaker vorticity fields are caused by the
frequent remappings with monotonicity constraint for every short dynamic time-step in
the FV dynamical core. This constraint adds nonlinear intrinsic diffusion in the regions
where the monotonicity principle is locally violated. Note that JW06a has shown that the
slightly more diffusive solution of the FV dynamical core can be matched very closely
by EUL and SLD when increasing their diffusive coefficients. So there is no doubt that
the excessive smoothing in FV is caused by the intrinsic diffusion caused by the frequent
remappings at the end of every short dynamic time-step. Since the vertical remap-
pings are performed only every 10 dynamic time-step, their smoothing effects are less
pronounced.

The small-scale differences between the solutions of the different dynamical core
were interpreted as an uncertainty of their individual estimates of the true reference
solution. JW06a defined the uncertainty as the maximum root mean square deviation l2
between a highest and a second highest horizontal resolution surface pressure simulation
among all model versions (see JW06a for details). The uncertainty is increasing with
the number of days simulated, becoming more and more large scale, until saturation
between day 25 and 30, when the l2 difference is as big as the l2 difference between two
randomly picked global surface pressure fields. Using this uncertainty measure, JW06a
found that both two highest resolutions of the FV, the SLD and the EUL dynamical cores,
converge within the estimated uncertainty to the true solution, whereas only the highest
resolution of the GME dynamical core was found to converge.

3.4.9. Idealized test of HIRLAM-DCISL
Also the HIRLAM-DCISL dynamical core has been tested with the Jablonowski-
Williamson test case. As it would be difficult to extend the limited area of the
HIRLAM-DCISL dynamical core to a global domain, its domain was made as global
as possible and an effort was made to minimize the effects of its boundaries. The active
domain was extended meridionally to 80°S – 80°N and zonally to 80°W – 280°E, without
changing the zero divergence boundary condition, used in the elliptic system solver, to
a periodic boundary condition at the zonal boundaries. The zonal extension was chosen
so that the initial perturbation, centered at (20°E, 40°N), which triggers a main wave
is separated (by exactly 100°) from the western domain boundary where the boundary
scheme initially trigger a weak boundary wave. Both waves develop into wave trains
which become less and less separated, although they move with approximately the same
speed toward the east. The usual HIRLAM boundary relaxation scheme is applied in a 6◦
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wide zone along the boundary inside the active domain. Within this zone, the updated
prognostic variables are relaxed toward the initial values with a weight that decrease
from 1 at the boundary to zero approximately 6◦ inside it. To accommodate the DCISL
upstream integrations, there is also a halo zone around the active domain in which the
prognostic variables are held fixed at the initial values. In order to facilitate a com-
parison with the global FV dynamical core reference solution, the boundary wave was
effectively eliminated from both the HIRLAM-DCISL and the HIRLAM solutions. This
was done by utilizing that a completely similar boundary wave is created in simulations
without an initial perturbation. The simulations with the boundary wave removed were
then compared with the global reference solution. This was done only up to day 8 after
which the main wave reached the eastern boundary zone.

3.4.10. Resolution, time-step and runtimes
Two horizontal resolutions were used. The lower resolution, corresponding to the middle
global resolution (see Table 3.1), is!ϕ ×!λ = 1.15◦ × 1.45◦ and the higher resolution,
corresponding to the second highest global resolution, is!ϕ ×!λ = 0.59◦ × 0.74◦. In
the vertical, 27 levels are placed as in JW06b but with one more level at the top of the
model atmosphere to accommodate the zero top pressure of HIRLAM. Like the global
SLD dynamical core, the time-steps used for the two horizontal resolutions were 30 and
15 minutes, respectively. On a single NEC SX6 processor using ad hoc coding with
almost no optimization, the lowest resolution HIRLAM-DCISL dynamical core is
approximately twice as expensive as the corresponding highly optimized reference
HIRLAM dynamical core. There is no doubt, however, that the efficiency of the
HIRLAM-DCISL dynamical core can be increased considerably by a dedicated
optimization.

3.4.11. Diffusion processes
• HIRLAM use decentering with a decentering parameter ε = 0.1. The nonlinear

terms in continuity equation, the thermodynamic equation, and the momentum
equations are needed at time level n + 1/2. As they are potential sources of
instability, they are extrapolated from filtered values at time level n − 1 as fol-
lows: ψn+1/2 = (3ψn − ψn−1

f )/2, where ψ is any of the nonlinear terms and

ψn−1
f = ψn−1 + εN[ψn − 2ψn−1 + ψn−2

f ] with εN = 0.1. At the end of each time-
step, all prognostic variable, except liquid water, are diffused using an approximate
implicit ∇4 horizontal diffusion with the diffusion coefficient K = 3.5 × 1014 for
!x = 0.5◦ and !t = 300 s (see p. 12–13 in Undén 2002). The coefficients are
scaled for resolution so that the e-folding time of the 2!x wave is the same regard-
less of resolution (McDonald, 1998). There has been no attempt to tune the diffusion
coefficient for the present idealized dry adiabatic simulations. The horizontal diffu-
sion was increased at the uppermost 4 model layers. In addition, the horizontal and
vertical interpolations, using cubic Lagrange interpolation, are supposed to control
the energy at the smallest scales. No mass and energy fixers are applied.

• HIRLAM-DCISL does not use decentering and filtering of the nonlinear terms, but
it was necessary to retain a weak implicit ∇6 horizontal diffusion on T , u, and v. The
horizontal diffusion was increased at the uppermost 4 model layers. In addition,
the horizontal and vertical remapping and interpolations, using, respectively, a
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positive-definite PPM subgrid representation and cubic Lagrange interpolation, are
supposed to control the energy at the smallest scales. No energy fixer is applied

3.4.12. Results of simulations
For both resolutions of HIRLAM and HIRLAM-DCISL, the l2 difference between
the simulation and the simulation of the global highest resolution FV dynamical core
(!ϕ ×!λ = 0.25◦ × 0.3125◦) was computed. The results showed that up to day 8 both
the highest resolution (!ϕ ×!λ = 0.59◦ × 0.74◦) simulation of HIRLAM and the high-
est resolution simulation of HIRLAM-DCISLhad converted within the uncertainty of the
reference solution. For the lower resolution simulations, the simulation of the HIRLAM-
DCISL version had not converted, whereas that of the HIRLAM version had; so the FV
version needs higher resolution than the grid-point version for the same level of accuracy
(Fig. 3(a) in Lauritzen, Kaas, Machenhauer and Lindberg [2008]). The explanation
seems, as for the global FV dynamical core, to be too heavy smoothing due to the repeated
remappings and interpolations. Regarding phase error, the HIRLAM-DCISL simula-
tion is slightly better than the HIRLAM simulation. When using the cascade scheme
of Nair, Scroggs and Semazzi [2002] instead of the fully 2D CISL scheme of Nair
and Machenhauer [2002], the accuracy in terms of the l2 difference is not altered
(Fig. 3(b) in Lauritzen, Kaas, Machenhauer and Lindberg [2008]). An important
result of the idealized baroclinic wave tests is that the consistent Lagrangian discretiza-
tion of the energy conversion term, introduced in Section 3.2.1, is seen clearly to be
better with both a smaller l2 difference and a smaller phase error, than when using the
traditional Eulerian discretization (Fig. 3(b) in Lauritzen, Kaas, Machenhauer and
Lindberg [2008]).

HIRLAM-DCISL has also been coupled with the HIRLAM physics package and
initial test runs from the initial conditions of a strongly developing extratropical storm
have been performed. The mass conserving version ran stably and produced simulations
that were quite similar to the reference HIRLAM simulations, except again for slightly
more smoothing in the DCISL version. Also for the full-physics run, the Lagrangian
discretization of the energy conversion term leads to a more accurate simulation than
the traditional discretization. The results of these tests are mentioned in Lauritzen,
Kaas, Machenhauer and Lindberg [2008]. In this paper also a possible cure for the
slightly excessive smoothing is suggested, although it was not tested in practice. It is
suggested to keep the Lagrangian cells in the Lagrangian model layers for a number
of consecutive large semi-implicit time-steps before performing the vertical remapping
and interpolation to the Eulerian model layers and levels, just as it is done in the NCAR-
FFSL over 10 consecutive small time-steps. In HIRLAM-DCISL, an additional vertical
remapping and interpolation must be performed after each of the long semi-implicit
time-steps as it is needed for the physical parameterization. Thus, it will not affect the
computational efficiency.

3.5. Online and offline applications – The problem of mass-wind inconsistency

An obvious application of FV models such as the NCAR-FFSL and the HIRLAM-DCISL
is tracer transport since tracer-mass conservation is important. These quasi-hydrostatic
FV models use a pressure-based vertical coordinate and the prognostic variable for tracer
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mass is the cell averaged value 5
q
!

i !p, where p is the horizontal mean pressure over

the area !A of an Eulerian grid cell and !p is the pressure thickness of the cell. 5q
!

i is

the Eulerian cell average specific concentration6 of the tracer in question. Thus, 5q
!

i !p

is the weight of tracer mass in the cell per unit horizontal area.7 At each time-step, the
FV model solves at first the continuity equation for air mass. The input to the continuity
equation for air mass is the horizontal wind field which together with the hydrostatic
balance determines the 3D trajectories along which the air is transported. The output is
the updated values of!p. Hereafter, the continuity equation for each specific tracer mass

is solved, using the same trajectories, giving the updated values of5q
!

i !p. Thus, both the
predicted air mass and the predicted tracer mass fields are consistent with the “driving”
horizontal velocity field. If, the specific concentration qi is needed (e.g., for a compability

check as illustrated in Fig. 2.1) 5q
!

i !p must be divided by !p. In a model setup where
the tracer continuity equation is an integrated part of the dynamical core, this can be

done without loss of mass because 5
q
!

i !p and!p are internally consistent, i.e., they are
both computed by the same mass conserving transport and remapping operations.

Often a FV transport scheme is imported into a GCM, which dynamical core
does not conserve the mass of air locally. For example, in the Eulerian ECHAM5
(ECmwf/HAMburg, version 5) model, where the vertically integrated mass variable
is log ps the continuity equation for air is solved using the spectral transform method.
This model is neither globally nor locally mass conserving, while the tracer transport
is performed using the inherently mass-conserving advection scheme of Lin and Rood
[1996]. This set up is called an online coupling. Here, the FV transport scheme is solved
on the same grid as used by the GCM and the horizontal GCM winds "VGCM needed by
the transport scheme are provided by the GCM at every GCM time-step. A problem of
such an online coupling is that the GCM predicts its own air mass field !pGCM , which
is generally different from the !p predicted from the GCM wind field by the mass con-
servative tracer transport scheme with qi = 1 (see Fig. 3.6). This is a manifestation of
the so-called mass-wind inconsistency discussed in detail by Jöckel, Von Kuhlmann,
Lawrence, Steil, Brenninkmeijer, Crutzen, Rasch and Eaton [2001].

The consequences of the mass-wind inconsistency in long online coupled simula-
tions can be severe. Jöckel, Von Kuhlmann, Lawrence, Steil, Brenninkmeijer,
Crutzen, Rasch and Eaton [2001] ran a low-resolution FV transport scheme online
coupled to a nonmass conserving GCM. For passive tracers initialized at different loca-
tions in the atmosphere, the variations in the total mass were up to 70% in a one-year
simulation. The amount of artificially (spuriously) created and destroyed mass due to
the mass-wind inconsistency is strongly dependent on the vertical gradient of the tracer.
Since tracer gradients are usually steepest around the tropopause the problem is large in
the tropopause region.

6The specific tracer concentration qi is the ratio between the mass of the tracer mtand the mass of the moist
air it is mixed into mv.

75q
!
i !p = mt

mv

5
ρvg!z = mt

mv

mv
!A!zg!z = g mt

!A = the weight of tracer mass per unit horizontal area.
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Fig. 3.6 Graphical illustration of the mass-wind inconsistency. The figure shows the location of pressure
levels at the beginning of a time-step t = n!t (left), after one time-step t = (n + 1)!t using a FV transport
scheme (middle) and given by offline data or predicted by the continuity equation of the dynamical core (right),
respectively. If the vertical levels implied by the transport scheme and the dynamical core or offline data do not
coincide, an inconsistency between the mass and wind fields exists and affects the mass of the tracer advection.

If the wind and pressure data driving a FV transport model are not given at every time-
step and may be specified on another grid than used in the FV transport model (typically
an archived meteorological data-set such as ECMWF reanalysis (REA), ERA40, or
the National Centers for Environmental Prediction (NCEP)/NCAR REA) so that both
interpolation in time and space is needed, then the coupling is called offline. This is
typically the situation in a chemical transport model. (It should be noted that this does
not apply to the NCAR-FFSL model although this model for the tracer transport uses a
large time-step that is equal to an integer number m of the small time-steps, which are
used for determining the air mass transport. This is because the fluxes used in the tracer
transport during a large time-step is obtained by accumulating fluxes over the m small
time-steps.) In an offline setting, assimilated analysis or REAdata is often provided to the
FV transport scheme. Both the driving horizontal wind field VREA and the corresponding
mass field !pREA must be spatially and temporally interpolated to accommodate the
grid and time-step used by the transport scheme. In such a situation, the consistency
between the mass and wind fields cannot be achieved unless a posteriori consistency
correction methods are applied to the offline data. This inconsistency with respect to the
ECMWF analyses is discussed in Trenberth [1991].

One can attempt to restore the mass conservation by altering the specific tracer concen-
trations a posteriori. Jöckel, Von Kuhlmann, Lawrence, Steil, Brenninkmeijer,
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Crutzen, Rasch and Eaton [2001] investigated the effects of various a posteriori
mass-fixing algorithms. But all these fixers have severe disadvantages such as violation
of shape preservation or introduction of non physical transport components.

Instead of altering the specific tracer concentrations a posteriori, one can as well
adjust the horizontal velocity field such that the tracer advection equation is consistent
with the mass field, i.e., the winds are corrected so that the vertical integrated divergence
of mass matches the surface pressure tendency of the meteorological data (for details
see Prather, Mcelroy, Wofsy, Russel and Rind [1987]; Rotman, Tannahill, Kin-
nison, Connell, Bergmann, Proctor, Rodriguez, Lin, Rood, Prather, Rasch,
Considine, Ramaroson and Kawa [2001]; Cameron-Smith, Connell and Prather
[2002])8. This type of restoration algorithm is referred to as a pressure fixer. Contrary
to the algorithms described in the preceding paragraph, it ensures that constant specific
concentrations and mass conservation are retained with this pressure fixer. However,
the approach is not completely satisfactory either since “true” wind data are enforced
to provide mass-wind consistency. Introduction of a pressure fixer in a semi-Lagrangian
FV model would be somewhat different from that used by Eulerian type FV models since
divergence is defined directly by the trajectories. Therefore modifications of trajectories
are needed in such models to achieve an analogy to the traditional pressure fixer.

The pressure fixer method can be used to indicate the severity of the mass-wind incon-
sistency problem, i.e., by running a model with and without a pressure fixer and assuming
that the pressure fixer does not have a significant effect on the wind field. Horowitz,
Walters, Mauzerall, Emmons, Rasch, Granier, Tie, Lamarque, Schultz, Tyn-
dall, Orlando and Brasseuret [2003] have run the global Model of Ozone Research
version 2 (MOZART-2) with and without a pressure fixer. Near the tropopause (where
the vertical gradient of the ozone specific concentration is large) the difference between
the two runs was approximately 187 Tg/yr. Assuming that the pressure fixer is perfect,
it can be estimated that a spurious source of ozone of 187 Tg/yr is caused by the mass-
wind inconsistency problem which is not a negligible amount. For example, the spurious
source of ozone is similar in magnitude to the estimated amount of influx of ozone per
year to the troposphere from the stratosphere. This is, of course, only an indication of
the magnitude of the problem. In order to estimate the systematic spurious sources and
sinks a fully consistent model must be run. But the estimates provided by Horowitz,
Walters, Mauzerall, Emmons, Rasch, Granier, Tie, Lamarque, Schultz, Tyn-
dall, Orlando and Brasseuret [2003] suggest that the mass-wind inconsistency can
introduce significant errors.

As discussed above, the problem of performing accurate offline or online tracer
transport in a model using a pressure-based vertical coordinate is not limited to the
use of an accurate FV tracer transport scheme, but it is also a question of mass-wind
consistency. That is consistency between on one hand the mass field !p̄ determined by
the FV transport scheme and the driving wind field and on the other hand the associated
mass field !pREA or !pGCM . In offline applications using existing REA data, there
is little choice but to use some kind of correction method. However, it is hoped that

8Alternatively one may adjust the surface pressure field instead of the horizontal velocity field to achieve
consistency (P. Jöckel personal communication).
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in the future analysis data set with a better inherent mass conservation, produced by
mass conserving data-assimilation models, may become available. In an online trans-
port coupling, the consistency can be guaranteed only if the same numerical method is
used for the continuity equation of the driving model as for the tracer transport. That
is the case if a consistent FV model like the NCAR-FFSL or the HIRHAM-DCISL
is used. The problem is that the majority of the GCM models available are based on
nonlocally conservative schemes for the air mass continuity equation (e.g., traditional
semi-Lagrangian models such as the IFS at ECMWF, the HIRLAM, and the Max-Planck
Institute model (ECHAM)). The problem is, as described above, that the changes needed
to convert a non-conserving model to a locally mass conserving one, like the change of
HIRLAM to the HIRLAM-DCISL, are rather extensive. All discretizations in the model
as a whole must be carefully rethought in order to obtain inherent local mass conserva-
tion. It involves changes to almost all parts of the model and all the prognostic equations
and not only changes to the continuity equations. However, it is necessary in order to
guarantee consistency and thereby accurate tracer transport.

3.6. Extensions to nonhydrostatic models

In the quasi-hydrostatic FV dynamical cores considered in Sections 3.1–3.5, the con-
tinuity equation was solved in so-called Lagrangian (ξ) vertical coordinates, with, per
definition, ξ = constant along 3D trajectories. That is, all transport during a time-step
was assumed to be effectuated by Lagrangian finite control volumes moving with the
3D flow, usually in a semi-Lagrangian sense, starting or ending as Eulerian grid cells.
The advantage is that in such Lagrangian coordinates, the vertical velocity is zero as
expressed in Eq. (1.1), so the transport problem becomes 2D. However, the vertical
components of the 3D trajectories still need to be determined. In the quasi-hydrostatic
models considered so far, this is done hydrostatically, i.e., the vertical displacement
of the Lagrangian control-volume during a time-step was determined by requiring that
the arrival cell is in hydrostatic balance. Of course, this approach cannot be used in a
nonhydrostatic model, but instead the vertical displacement can be determined directly
from the vertical velocity, which in a nonhydrostatic model is an independent prognostic
variable. Realizing this one can formulate a DCISL solution to the continuity equation
also for the nonhydrostatic case.

We may start from the continuity equation on the form (Eq. (1.8)), which was derived
without assuming hydrostatic balance. Using the notations in Section 1.1 Eq. (1.8) is

(
ρ̃ δkh

)+
!A =

(
ρ̃ δkh

)
δkA. (3.149)

This is a prognostic equation when
(
ρ̃ δkh

)
is known in the departure area at time t. Unlike

what we did in the “exact” case, we now set the height of the Lagrangian surfaces ξk−1/2
and ξk+1/2 equal to the Eulerian surfaces hk−1/2 and hk+1/2, respectively, in the departure
area so that here δkh = !kh. Thus, Eq. (3.149) becomes

(
ρ̃ δkh

)+
!A = !kh

(
ρ̃
)
δkA, (3.150)
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Now in the nonhydrostatic case, we utilize the prognostic variable w, the vertical velocity,
to determine δkh. So it is a known constant in Eq. (3.150). Therefore, it may be written as

(
ρ̃
)+
δkh!A = !kh

(
ρ̃
)
δkA, (3.151)

or

(
ρ̃
)+ = !kh

δkh!A

∫∫

δkA

ρ̃ dx dy. (3.152)

(
ρ̃
)+
δkh!A is the updated mass in the arrival grid cell at time t +!t. According to

Eq. (3.152), it is equal to the mass in the upstream departure cell at time t, which can be
computed simply as a 2D integral over the departure area of the vertical mean density
in the Eulerian model layer considered.

This demonstrates that FV methods of the DCISL type, like the one used in HIRLAM-
DCISL, can be used also for nonhydrostatic models. It also means that the Lagrangian
(ξ) vertical coordinate approach can be used in nonhydrostatic Eulerian flux-type FV
models, just as the corresponding quasi-hydrostatic approach was used in the NCAR-
FFSL dynamical core.

Of course, alternatively, a nonhydrostatic model may be based on a traditional 3D
operator-split flux-form method, with fluxes entering an Eulerian grid cell at both hori-
zontal and vertical faces. However, it becomes rather complicated if one uses the most
accurate schemes of the symmetric FFSL type. Thus, Leonard, Lock and Macvean
[1996] presents a symmetric 3D scheme. Using a notation similar to that used in
Section 2.3.2, it becomes

ψ
n+1 =ψ

n + XC

{ ′1
6

[(
ψ

n + ψAY + ψAYZ

)
+
(
ψ

n + ψAZ + ψAZY

)]}

+ YC

{ ′1
6

[(
ψ

n + ψAZ + ψAZX

)
+
(
ψ

n + ψAX + ψAXZ

)]}

+ ZC

{ ′1
6

[(
ψ

n + ψAX + ψAXY

)
+
(
ψ

n + ψAY + ψAYX

)]}
, (3.153)

where, for example,

ψAYZ = ψAZ

(
ψAY

)
= ψAY + ZA

(
ψAY

)
. (3.154)

Such schemes have been used extensively; a recent example is the MIT-GCM (Adcroft,
Campin, Hill and Marshall [2004]).

4. Summary

Recent developments in FV methods have provided the basis for new meteorological
dynamical cores that conserve integral invariants exactly, globally as well as locally. In
particular, these new FV methods have been the basis for design of exact mass conserving
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tracer transport models. The new technologies are reviewed and the perspectives for the
future are discussed.

During about two decades, the traditional semi-implicit and semi-Lagrangian spectral
or grid-point dynamical cores have been dominating worldwide in meteorological models
applied for weather prediction and climate simulations. They are efficient and otherwise
accurate but lack exact mass conservation, which is considered a serious drawback for
the hydrometeorological variables as well as an increasing number of chemical variables
included in the models. In Section 3, we presented two recently developed pioneering
meteorological dynamical cores which potentially solve these problems. These are the
semi-implicit cell-integrated semi-Lagrangian limited area dynamical core HIRLAM-
DCISL and the global flux-form NCAR-FFSL dynamical core. Each of them extends
newly developed 2D FV semi-Lagrangian schemes, described among others in Section 2,
to 3D utilizing a common newly developed Lagrangian time-stepping technique building
on horizontally upstream and vertically downstream time-steps. Values of certain quan-
tities integrated horizontally over an upstream departure area in an Eulerian model layer
are assumed to be transported with vertical walls along 3D trajectories into a Lagrangian
layer in a column of Eulerian grid cells. The vertical coordinates of this Lagrangian layer
are then determined hydrostatically. As a result, the quantities in question are conserved
exactly globally and with high, slightly different accuracy, also locally in both dynam-
ical cores. Idealized tests presented in Section 2 showed that the local conservation is
slightly more accurate in the HIRLAM-DCISL transport schemes than in the NCAR-
FFSL scheme. With proper boundary conditions, the HIRLAM-DCISL dynamical core
conserves the global mass of moist air and tracers exactly, including water vapor, liquid
water, and solid water, if included (apart from evaporation and condensation). Also the
NCAR-FFSL dynamical core conserves exactly these masses. In addition, it conserves,
except for time truncation errors, potential temperature and absolute vorticity (in adia-
batic friction-free flow). Thus, the NCAR-FFSL dynamical core comes closer than the
HIRLAM-DCISL to the ideal CSCL model considered in Section 3.1. Both FV dynam-
ical cores have been tested and compared with nonconservative dynamical cores in an
idealized baroclinic wave test. All dynamical cores considered were found to converge
toward a common solution. However, in their present formulation, the FV dynamical
cores needed higher resolution than the nonconservative dynamical cores they were com-
pared with for the same level of accuracy. The explanation seems to be a slight smoothing
due to the repeated remappings and interpolations. As a possible cure to HIRLAM-
DCISL, it is suggested to keep the vertical Lagrangian cells for a number of consecutive
large semi-implicit time-steps before performing the vertical remapping to the Eulerian
model layers. The idealized as well as other tests with HIRLAM DCISL showed that a
consistent Lagrangian discretization of the energy conversion term in the thermodynamic
equation leads to a more accurate simulation than the traditional discretization. A further
increase in accuracy is expected from a corresponding Lagrangian discretization of the
horizontal pressure gradient term in the momentum equation. The idealized intercom-
parison tests showed that among the dynamical cores the FV ones are the most expensive
in computational costs. Thus, the conservative property is achieved at the expense of
efficiency. There is no doubt, however, that the efficiency of the present experimen-
tal ad hoc coded FV dynamical cores can be increased considerably by a dedicated
optimization.
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An obvious application of FV models such as the NCAR-FFSL and the HIRLAM-
DCISL is tracer transport since tracer-mass conservation is essential. As described in
Section 3.5, a FV transport scheme has often been imported into a GCM with a dynamical
core that does not conserve mass locally. A problem of such an online coupling is that
it leads to the so-called mass-wind inconsistency, which in long simulations can lead to
severe errors with large amounts of artificially (spuriously) created or destroyed tracer
mass. The only way to avoid completely such errors is to use a complete FV model with
exactly the same locally mass conserving algorithms for all tracers and for the moist air.

To facilitate a wider application, the limited area HIRLAM-DCISL may be extended
to a global domain. This may be done by using the extension of the horizontal FV
schemes used in this dynamical core that have already been developed in spherical
latitude-longitude coordinates. Another possibility which may be relevant also for the
NCAR-FFSL is to change to a new grid, as the icosahedral-hexagonal grid, which is
almost uniform on the sphere. Finally, the possibility of an extension to nonhydrostatic
dynamical cores is discussed in Section 3.6.The same extension, as used in the hydrostatic
dynamical cores, of the available 2D FV semi-Lagrangian schemes to 3Ds may be used
in nonhydrostatic dynamical cores. That is, utilizing horizontally upstream and vertically
downstream time-stepping. The only difference is that the vertical displacement of the
Lagrangian cells must be determined directly by predicted vertical velocities and not
from hydrostatic balance.
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