
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 0000; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld

Some considerations for high-order ‘incremental remap’-based
transport schemes: edges, reconstructions and area integration

Paul Aaron Ullrich1∗, Peter Hjort Lauritzen2 and Christiane Jablonowski1

1Department of Atmospheric, Oceanic and Space Sciences, Space Research Building, University of Michigan, 2455
Hayward St., Ann Arbor MI 48109. E-mail: paullric@umich.edu 2Climate and Global Dynamics Division, National

Center for Atmospheric Research, Boulder, CO.

SUMMARY

The problem of 2D tracer advection on the sphere is extremely important in modeling of geophysical fluids,
and has been tackled using a variety of approaches. A class of popular approaches for tracer advection
include ‘incremental remap’ or cell-integrated semi-Lagrangian-type schemes. The upstream version of
such a scheme consists of a deformation step, where a structured Eulerian grid is tracked upstream to
a “source grid,” and a remapping step, where tracer fields are remapped onto the source grid to give
the updated tracer mass in each cell. These schemes achieve high-order accuracy without the need for
multi-stage integration in time, are capable of large time steps and are very efficient when transporting
multiple tracers.

The purpose of this paper is twofold. First, the simplified flux-form implementation of the Conservative
Semi-LAgrangian Multi-tracer scheme (CSLAM) is reformulated by using quadrature for computing edge
fluxes. An improved treatment of the upstream flux region is also described by using quadratic functions for
representing the deformed edges of the source grid. Second, we present two test cases which reveal an issue
with the traditional CSLAM formulation. The first is a steady nonlinearly sheared flow which is designed to
mimic a mid-latitudinal atmospheric jet. Without the quadratic treatment of upstream edges we observe at
most second-order accuracy under convergence of grid resolution, which is returned to third-order accuracy
under the improved treatment. The second test is a shallow-water barotropic instability which shows clear
evidence of grid imprinting without the quadratic correction. Consequently, we argue that these tests reveal
a problem which might arise in tracer transport near nonlinearly sheared regions of the real atmosphere,
particularly near cubed-sphere panel edges. Although CSLAM is used as the foundation for this analysis,
the conclusions of this paper are applicable to the general class of incremental remap schemes. Copyright
c© 0000 John Wiley & Sons, Ltd.
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2 P.A. ULLRICH, P.H. LAURITZEN AND C. JABLONOWSKI

Table I. Approaches taken for incremental remapping under the CSLAM framework. The quadrature-based
formulations use Gaussian quadrature over an upstream flux volume to compute total flux through an edge,
whereas all other schemes use boundary integrals for computing the mass in the upstream region or flux

volume.

Version Flux-Form Simplified Fluxes Edges Reference
Standard Linear [3]

Traditional flux-form X Linear [2, 4]

Simplified flux-form X X Linear [8, 5]

Quadrature-based X X Linear Section 2.3

Quadrature-based with X X Quadratic Section 2.4
quadratic edges

Simplified with X X Quadratic Section 2.5
quadratic edges

1. INTRODUCTION

The problem of 2D tracer advection is extremely important in all branches of atmospheric science,
yet it can be formulated very simply via the mass continuity equation

∂ψ

∂t
+∇ · (ψu) = 0, (1)

where ψ is a passive density variable and u is the velocity vector. Solving this equation
accurately while maintaining desirable properties such as positivity or tracer correlation is extremely
challenging [1]. Nonetheless, the incremental remap / semi-Lagrangian scheme of [2] is one
approach that has been shown to be largely successful at tackling the advection problem. More
recently, the Conservative Semi-LAgrangian Multi-tracer scheme (CSLAM) has been proposed
by [3], followed by the flux-form formulation of [4] and the simplified flux-form formulation of
[5]. CSLAM has been demonstrated to be very effective at solving the advection equation on the
cubed-sphere in an accurate and efficient manner [6], and is in the process of being implemented in
the spectral element dynamical core of the National Center for Atmospheric Research (NCAR)
Community Atmosphere Model (CAM) [7]. For reference, we provide details of the various
implementations of the CSLAM scheme in Table I.

Under the traditional finite-volume semi-Lagrangian approach, the tracer mass contained in
element Zk is determined by tracing nodal trajectories backwards in time to an upstream source
element ak (see Figure 1a,b). The total mass within the upstream source element is then determined
by integration over ak using a mass distribution obtained from the sub-grid-scale reconstruction at
the previous time step. Under this formulation, (1) is effectively discretized as

ψ
n+1

k =
1

|Zk|

∫
ak

ψn(x)dV, (2)

where ψ
n+1

k denotes the element average of ψ in element Zk at time step n+ 1, |Zk| is the volume
of element Zk, dV is the volume element over the coordinate x and ψn(x) denotes some continuous
representation of the scalar density field ψ at time step n.
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES 3

Under the flux-form approach of [2] we instead trace nodal trajectories backwards in time for
each edge so as to form a flux volume. Integrating the total tracer mass within a flux volume then
yields the total flux through that edge. In this case, the integration must be performed for each edge
of Zk (see Figure 1c-f). The continuity equation (1) then takes the form

ψ
n+1

k = ψ
n

k +
1

|Zk|
[FE + FN + FW + FS ] , (3)

where FE is the mass flux into the element through the east edge, and similarly for the north, west
and south edges. The fluxes are computed by integrating over the flux volumes, i.e. for the east edge
we have

FE = σ

∫
aτ=1
k

ψn(x)dV, (4)

where σ ∈ {−1, 1} is a sign indicator which depends on whether the flux is outward or inward.
The flux is defined analogously for all other edges. Traditionally, the integration procedure involves
identifying overlap areas between quadrilateral flux-areas and the static Eulerian grid, which is
generally a non-trivial problem. If the choice of ψn(x) is the same as in (2) then the traditional semi-
Lagrangian approach is equivalent to the flux-form semi-Lagrangian approach. However, under the
swept-area approach of [8] one simply uses the sub-grid-scale reconstruction in the two elements
which directly neighbor the edge. Perhaps surprisingly, the resulting simplified scheme was shown
in [5] to improve accuracy for sufficiently small CFL numbers. In this paper we continue the work
of [5] and pursue the simplified approach to integrating flux areas. Consequently, the integration
procedure is relatively straightforward since we do not need to isolate overlaps between the flux
volume and neighboring elements.

The purpose of this paper is twofold. First, we formulate the flux-form semi-Lagrangian transport
scheme of [4] using quadrature for computing edge fluxes. An improved treatment of the upstream
flux region is achieved by using quadratic functions for representing the edges of this region. The
modification is presented for both quadrature and line integral based formulations of the CSLAM
scheme. We argue that the added cost of this adjustment is essentially negligible when multiple
tracers are being transported. Second, we present two test cases to demonstrate the rationale for
our improved treatment. The first test is a steady nonlinearly sheared flow which is designed
to mimic a mid-latitudinal atmospheric jet. In this case the quadratic correction is shown to be
necessary for the numerical method to achieve the expected third-order accurate convergence with
grid refinement. The second test is a shallow-water barotropic instability which shows clear evidence
of grid imprinting without the quadratic correction. Consequently, we suspect that these tests reveal
a problem which might arise in tracer transport near regions of strong nonlinear shear in the real
atmosphere. Although CSLAM is used as the foundation for this analysis, the conclusions of this
paper are applicable to the general class of incremental remap schemes, particularly on the cubed-
sphere grid.

The paper is structured as follows. In section 2 we present our formulation of the semi-Lagrangian
transport scheme, including a description of the quadratic correction to the flux volumes. The results
from testing our improved formulation are given in section 3, and conclusions are discussed in
section 4. For completeness, the reconstruction strategy we have used is presented in appendix A,
and includes a description of our methodology for filtering the reconstruction.
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Figure 1. An illustration of the semi-Lagrangian approach. The nodes of elementZk (a) are tracked upstream
to element ak (b). Under the traditional semi-Lagrangian formulation, the tracer mass within element ak is
obtained by directly integrating ak. Under the flux-form formulation we instead integrate over flux areas for
the (c) east aτ=1

k , (d) north aτ=2
k , (e) west aτ=3

k and (f) south aτ=4
k face. The original element (a) minus the

sum of all flux area masses (c-f) is equal to the mass in the upstream element ak, regardless of the trajectory.

2. CONSERVATIVE SEMI-LAGRANGIAN ADVECTION ON THE CUBED-SPHERE

In this section we present our improvements to the simplified flux-form CSLAM scheme, including
the quadrature-based formulation of the scheme and the quadratic treatment of the upstream flux
region. Some notation which is important for models on the cubed-sphere grid is introduced in
section 2.1, and will be used throughout this paper. The simplified flux-form approach is introduced
in section 2.2 and the quadrature formulation of CSLAM follows in section 2.3. In sections 2.4 and
2.5 we present an improved treatment of upstream flux edges for the quadrature and line integral
formulations of CSLAM. Some additional discussion comparing the conditioning of the quadrature
and line integral formulations is given in section 2.6.
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES 5

Table II. Properties of the cubed sphere grid for different resolutions. Here ∆x is the grid spacing at the
equator, RLLequatorial denotes the grid spacing (in degrees) on a regular latitude-longitude grid with the
same equatorial spacing as the cubed-sphere grid and RLLequiv denotes the equivalent grid spacing (in
degrees) on the regular latitude-longitude grid with the same number of elements. The accuracy of the
model is most closely linked to RLLequatorial, whereas RLLequiv represents the resolution required for a

similar run-time.

Resolution ∆x RLLequatorial RLLequiv
c60 165 km 1.50◦ 1.73◦

c120 82.5 km 0.75◦ 0.87◦

c160 62.5 km 0.56◦ 0.65◦

c240 41.3 km 0.38◦ 0.43◦

c480 20.6 km 0.19◦ 0.22◦

2.1. Coordinates on the cubed-sphere

The cubed-sphere grid, as described by [9] and [10], consists of six Cartesian patches arranged
along the faces of a cube, which is then ‘inflated’ to fill a spherical shell. On the equiangular cubed-
sphere grid, coordinates are given as (α, β, np), with central angles α, β ∈ [−π4 ,

π
4 ] and panel index

np ∈ {1, 2, 3, 4, 5, 6}. By convention, we choose panels 1− 4 to be along the equator and panels
5 and 6 to be centered on the northern and southern pole, respectively. Gnomonic coordinates are
related to equiangular coordinates via the transform

X = tanα, Y = tanβ. (5)

Gnomonic coordinates are particularly useful since any straight line in gnomonic coordinates is
also a great circle arc. Further, integration over regions in gnomonic coordinates is typically much
simpler than in equiangular coordinates.

The discrete resolution of the cubed-sphere is typically written in the form c〈Nc〉, where each
coordinate direction consists of Nc grid elements. Hence, the total number of grid elements on the
cubed-sphere is Nc ×Nc × 6. Grid elements on a particular panel are denoted by Zi,j with indices
(i, j) ∈ [0, . . . , Nc − 1]2, which denote the region bounded by

α ∈
[
i∆α− π

4
, (i+ 1)∆α− π

4

]
, β ∈

[
j∆α− π

4
, (j + 1)∆α− π

4

]
, (6)

where on an equiangular grid, the grid spacing is

∆α = π/(2Nc). (7)

Equiangular element center points are defined for each element as the point αi,j = (αi, βj) with

αi =

(
i+

1

2

)
∆α− π

4
, βj =

(
j +

1

2

)
∆α− π

4
. (8)

The gnomonic element center points are then defined as Xi,j = (Xi, Yj) with Xi = tanαi and
Yj = tanβj . Some properties of the cubed-sphere grid for a variety of resolutions are given in Table
II.
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2.2. The Simplified Flux-Form Transport Scheme

Once the backward trajectories have been computed for each edge, the flux across the edge can
be computed by integrating over the flux region. There are several possible valid arrangements of
nodal points (depending on the flow field) that determine the flux region, as depicted in Figure 2.
This figure depicts an edge of constant α connecting edge nodes (1,3) and the respective upstream
translation of these edge nodes (0,2) (for an edge of constant β the process is analogous, and so is
not repeated here). The flux region is then given by the quadrilateral (0,1,3,2). Note that we neglect
the possibility of point 0 being above point 2, since this corresponds to very strong divergence in the
velocity field that may have arisen due to an instability in the calculation. In this case, the simulation
is halted; if such a situation is physical for the specified problem, we suggest reducing the time step
accordingly.

Flux across the edge (4) is computed via the integral

F = σ

∫
aτk

ψ(X)JXY (X)dXdY, (9)

where aτk denotes an arbitrary flux region. The value of σ is chosen in accordance with the
arrangement of nodes: In Figure 2 lightly shaded regions lead to σ = −1 and heavily shaded regions
lead to σ = 1. Summation is implied over each flux volume if needed, such as in case 3b and 4b.
The Jacobian in Gnomonic coordinates is given by JXY , which takes the form

JXY (X) =
1

(1 +X2 + Y 2)3/2
. (10)

In general, the sub-grid-scale reconstruction of ψ in element Zi,j can be written as

ψi,j(X) =
∑
p,q

c(p,q)X
pY q, (11)

where the summation is taken over all reconstruction coefficients c(p,q). The reconstruction
coefficients are used to represent the continuous behavior of ψ within each element and are
generally constructed using neighboring element-averages. Our particular choice of reconstruction
coefficients is described in the appendix. On substituting (11) into (9) we obtain

F = σ
∑
p,q

c(p,q)

∫
aτk

XpY qJXY (X)dXdY, (12)

and so effectively reduce the problem to a linear combination of the reconstruction coefficients and
the integrated Jacobian-weighted polynomial basis functions. Multi-tracer efficiency is attained by
utilizing the fact that only the reconstruction coefficients change between tracers, and so the integrals
must only be computed once for each pair (p, q).

When the flux edge is also a cubed-sphere panel edge, the integration must be performed on the
appropriate panel to ensure consistency. For instance, in case 3b, the light-shaded region is integrated
on the left panel and the heavy-shaded region is integrated on the right panel. Under this procedure
only one flux is ever computed for each edge and so there are no conservation issues which may
arise if the integral is evaluated over the panel’s halo region.
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Figure 2. Depiction of each of the cases that must be treated by the flux integration algorithm. The edge
(1,3) denotes the edge for which the advective flux is desired. The points 0 and 2 are freely determined by
the trajectory computation algorithm. Regions which lead to an outward flux are lightly shaded, whereas
regions which lead to an inward flux are heavily shaded. The dotted lines denote the north/south edges of

the left element.

2.3. Computing fluxes via quadrature over the flux volume

Several options exist for computing the integrals over the flux volume. Under the quadrature-based
formulation, these integrals are computed via an appropriately chosen quadrature rule. For fourth-
order accuracy a four-point quadrature rule, such as the one described below, can be used. In case 3
and 4 of Figure 2 the convex property of the quadrilaterals has been lost, and so a single quadrature
rule for a quadrilateral is insufficient. Instead, for case 3b and 4b we break the region up into
two triangles and, treating the triangles as degenerate quadrilaterals, simply apply the quadrilateral
quadrature rule to each triangle. It is worth noting that a fourth-order accurate integration over a
triangular region still requires at least four quadrature points, and so there is no significant benefit
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Figure 3. A depiction of the location of quadrature points for (a) quadrilateral and (b) degenerate
quadrilateral integration. Nodal points are denoted by pi = (Xi, Yi).

to choosing a simpler quadrature rule over a triangle. For case 3a, 3c, 4a and 4c the integral is
instead over a wedge-shaped region. To integrate over the wedge, we extend the integration region
outward to form a triangle-shaped region (short dashed lines) so that the wedge can be viewed as
the difference between the triangular region and a convex quadrilateral region. A quadrature rule is
then applied to both the triangular region and convex quadrilateral and the difference taken to obtain
the integral over the wedge. In using this approach for dividing the flux region, two corner points of
our integration domain will always lie along a line of constant X . We will exploit this feature in the
definition of our quadrature rule below.

In general, defining high-order and optimal quadrature rules for arbitrarily shaped quadrilaterals
is a non-trivial problem. However, by choosing an appropriate, alternative set of coordinates, it is
possible to transform our problem into the trivial problem of integration over the unit square. To
do so, we introduce coordinates s = (s, t) ∈ [0, 1]2 (see Figure 3). On an arbitrary quadrilateral a,
bounded by points pi = (Xi, Yi) with X1 = X3, these coordinates can be implicitly written as

X(s) = X(s, t) = X1 + s(bt+ c), Y (s) = Y (s, t) = Y1 + fs+ (s(g − f) + ∆X)t, (13)

where b = X2 −X0, c = X0 −X1, f = Y0 − Y1, g = Y2 − Y3 and ∆X = Y3 − Y1. Hence,
applying integration by substitution, we obtain∫

a

ψ(X)JXY (X)dXdY =

∫ 1

s=0

∫ 1

t=0

ψ(X(s, t))JXY (X(s, t))

∣∣∣∣det

(
∂(X,Y )

∂(s, t)

)∣∣∣∣ dtds, (14)

where

Φ1(s) ≡
∣∣∣∣det

(
∂(X,Y )

∂(s, t)

)∣∣∣∣ =

∣∣∣∣∣∣det

 ∂X
∂s

∂X
∂t

∂Y
∂s

∂Y
∂t

∣∣∣∣∣∣ =

∣∣∣∣(c(g − f)− bf)s+
(X(s)−X1)∆X

s

∣∣∣∣ .
(15)

This term describes the area adjustment due to deformation of the quadrilateral.
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Figure 4. A depiction of various methods for constructing upstream edges. (a) The flux region is
approximated as a quadrilateral with the upstream edge approximated by a single line segment. (b) A slightly
more accurate approximation to the upstream edge, obtained by inserting one additional point midway along
the edge (1, 3) and tracing the trajectory backwards. In this case, straight line segments are still used to
approximate the upstream edge. (c) Further refinement of the upstream edge by inserting additional points
along (1, 3) and calculating backwards trajectories. (d) An upstream edge approximated by fitting a quadratic

through three trajectory points.

Given an arbitrary quadrature rule with quadrature points sk = (sk, tk) and associated weights
wk, the numerical integral is then computed via∫

a

XpY qJXY dXdY =
∑
k

X(sk)p Y (sk)q JXY (X(sk)) Φ1(sk)wk. (16)

For quadrilateral integration we use a four-point fourth-order quadrature rule (see Figure 3) given
by

s1 =

(
− 1√

3
,− 1√

3

)
, s2 =

(
1√
3
,− 1√

3

)
, s3 =

(
− 1√

3
,

1√
3

)
, s4 =

(
1√
3
,

1√
3

)
,

(17)

and wi = 1/4 for each i ∈ {1, 2, 3, 4}.

2.4. A quadratic treatment of edges

So far, all of our discussion has assumed that the flux region can be represented as a combination
of convex quadrilaterals and triangles. In [3] it was speculated that additional points along each
edge of the flux region could be used to improve the overall accuracy of the method. The authors
suggested that a more accurate flux region could be constructed by connecting the new flux points
via additional line segments (see Figure 4a-c), but their choice of idealized test cases showed only
a negligible or very minor improvement in error norms under this approach. Note that additional
line segments do not actually increase the formal order-of-accuracy of the representation of the
flux region, since any number of line segments will only ever be a second-order accurate to the true
upstream edge. Further, the addition of extra points along each trajectory generally does not improve
model accuracy, since these points will not affect the Lagrangian upstream area (see [1]).

In this paper, we propose an alternative form for the bounding region of the flux domain. Under
the modified approach, the upstream projection of the flux edge is approximated via a quadratic
curve (see Figure 4d). The construction of this quadratic curve requires an additional nodal value,
which we obtain by computing the backwards trajectory of point p5 to obtain p4, as in Figure 5.
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Figure 5. The location of quadrature points (empty circles) for an element with the quadratic correction
applied to the upstream flux edge. The points p0, p2, p4 and track upstream to p1, p3 and p5, respectively.

Applying the same approach as in section 2.3, we define coordinates (s, t) ∈ [0, 1]2 via

X(s) = X(s, t) = X1 + s(a2t+ bt+ c), Y (s) = Y (s, t) = Y1 + fs+ (s(g − f) + ∆X)t.

(18)
Observe that (18) is identical to (13) except with the addition of the quadratic term a2st to the X
coordinate. This modification leads to a deformational term that takes the form

Φ2(s) ≡
∣∣∣∣det

(
∂(X,Y )

∂(s, t)

)∣∣∣∣ =

∣∣∣∣(−a(g − f)t2 − 2aft− bf + c(g − f))s+
(X(s)−X1)∆X

s

∣∣∣∣ .
(19)

The quadratic coefficients (a, b, c) are defined by fitting a quadratic through points

(t,X) = {(0, X0 −X1), (t∗, X4 −X1), (1, X2 −X1)} , with t∗ =
Y4 − Y0
Y2 − Y0

. (20)

This choice leads to

a =
X2t∗ −X4 +X0(1− t∗)

t∗(1− t∗)
, (21)

b =
X4 −X0 + t2∗(X0 −X2)

t∗(1− t∗)
, (22)

c = X0 −X1. (23)

This construction requires that Y0 6= Y2, Y2 6= Y4 and Y0 6= Y4 which should not occur for
sufficiently laminar flows and small enough CFL number.

As will be demonstrated in section 3, the quadratic treatment is useful for problems where the
divergence errors (that is, the errors made by approximating the upstream flux region) overwhelm
the errors due to the sub-grid-scale reconstruction. These situations generally arise in the presence
of a strong horizontal shear in the flow, such as a midlatitudinal jet. In this case, the convergence
rate of the numerical method is expected to drop to second-order accuracy, which is consistent with
a linear approximation.
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES11

The added cost of the quadratic treatment is potentially significant, since an additional trajectory
must be computed along the midpoint of every edge. This choice nearly triples the number of
trajectories that must be computed at each time step. However, these additional computations must
only be performed once, regardless of the number of tracer species. Hence, the overhead due to this
approach is likely insignificant for the case of multi-tracer transport.

2.5. The line-integral formulation of the quadratic correction

In this section we present the quadratic treatment of flux edges for schemes which calculate the
integrals of (12) via boundary integration, such as the methods described by [4] and [5]. By
appropriately choosing a set of geometric potentials F(p,q) such that

∇ · F(p,q) = Xp Y q JXY (X), (24)

we can use Gauss’ divergence theorem to rewrite the geometric integrals in (12) as line integrals
around the boundary ∂ak of ak via∫

ak

XpY qJXY (X)dXdY =

∫
ak

∇ · FdXdY =

∮
∂ak

F · dS, (25)

where dS denotes the length-weighted normal vector to the boundary. Traditionally, F is chosen
such that F = (Fx, 0); that is, F has no component in the Y direction. This simplifies the resulting
integration and leads to a unique potential F(p,q) for each pair (p, q). The boundary integral is usually
evaluated by splitting the integral up into four line integrals along each segment of the flux volume,
such as ∮

∂ak

F · dS =

∫
X0X2

F · dS︸ ︷︷ ︸
Upstream flux edge

+

∫
X2X3

F · dS︸ ︷︷ ︸
Upper trajectory

+

∫
X3X1

F · dS︸ ︷︷ ︸
Flux edge

+

∫
X1X0

F · dS︸ ︷︷ ︸
Lower trajectory

. (26)

Each of these line integrals fall into three possible cases: (1) a straight line segment of any
orientation, (2) a quadratic upstream flux edge generated by a line of constant α or (3) a quadratic
upstream flux edge generated by a line of constant β. The algorithm for integrating along each of
these line segments is described below.

Case 1: Any arbitrary line segment connecting points Xi = (Xi, Yi) and Xj = (Xj , Yj) can be
parameterized as

X(t) = Xi + (Xj −Xi)t, (27)

for which we observe
dS = ((Yj − Yi),−(Xj −Xi))dt. (28)

Then the line integral takes the form∫
XiXj

F · dS = (Yj − Yi)
∫ 1

t=0

Fx(X(t))dt. (29)
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12 P.A. ULLRICH, P.H. LAURITZEN AND C. JABLONOWSKI

Case 2: A quadratic upstream flux edge connecting points X0 = (X0, Y0), X4 = (X4, Y4) and
X2 = (X2, Y2) and generated by a line of constant α will take the form

X = a(Y − Y0)2 + b(Y − Y0) + c, (30)

where the quadratic coefficients (a, b, c) are

a =
X0(Y4 − Y2) +X4(Y2 − Y0) +X2(Y0 − Y4)

(Y4 − Y0)(Y2 − Y0)(Y4 − Y2)
,

b =
X0((Y2 − Y0)2 − (Y4 − Y0)2)−X4(Y2 − Y0)2 +X2(Y4 − Y0)2

(Y4 − Y0)(Y2 − Y0)(Y4 − Y2)
,

c = X0.

The curve is then parameterized as

Y (t) = Y0 + (Y2 − Y0)t, X(t) = a(Y (t)− Y0)2 + b(Y (t)− Y0) + c. (31)

Differentiating with respect to t yields the length-weighted tangent vector

t = ((2at(Y2 − Y0) + b)(Y2 − Y0), (Y2 − Y0)), (32)

and hence the length-weighted normal vector

dS = (Y2 − Y0)(1,−(2aY (t) + b))dt. (33)

The line integral in this case can then be written as∫
XaX4X2

F · dS = (Y4 − Y0)

∫ 1

t=0

Fx(X(t))dt. (34)

Hence, for this case the integrand matches (29). However, these two formulations still differ in the
position at which the geometric potential Fx is evaluated.

Case 3: A quadratic upstream flux edge connecting points X0 = (X0, Y0), X4 = (X4, Y4) and
X2 = (X2, Y2) and generated by a line of constant β will take the form

Y = a(X −X0)2 + b(X −X0) + c, (35)
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES13

where the quadratic coefficients (a, b, c) are

a =
Y0(X4 −X2) + Y4(X2 −X0) + Y2(X0 −X4)

(X4 −X0)(X2 −X0)(X4 −X2)
,

b =
Y0((X2 −X0)2 − (X4 −X0)2)− Y4(X2 −X0)2 + Y2(X4 −X0)2

(X4 −X0)(X2 −X0)(X4 −X2)
,

c = Y0.

The curve is then parameterized as

X(t) = X0 + (X2 −X0)t, Y (t) = aX(t)2 + bX(t) + c. (36)

Differentiating with respect to t yields the length-weighted tangent vector

t = ((X2 −X0), (2aX(t) + b)(X2 −X0)), (37)

which leads to a length-weighted normal of the form

dS = (X2 −X0)(2at(X3 −X1) + b,−1). (38)

Hence, the line integral will take the form∫
X1X2X3

F · dS = (X3 −X1)

∫ 1

t=0

Fx(X(t))(2at(X3 −X1) + b)dt. (39)

Numerically, Gaussian quadrature is used for evaluating each line integral. For fourth-order
accuracy two Gaussian quadrature points are used along each edge, requiring eight Gaussian
quadrature points in total for each flux volume. In practice, slight asymmetries are known to arise
when we choose the geometric potential to be of the form F = (Fx, 0) since theX and Y coordinate
directions are treated differently. This problem can be alleviated by a more symmetric choice of the
flux potential.

2.6. Conditioning of quadratic and line-integral formulations

In general, the error norms for both the quadrature-based and line integral formulations of CSLAM
match very closely at low resolutions. However, at sufficiently high resolutions (the resolution at
which this occurs seems to be problem specific), an error arises in the line integral formulation
which appears to be due to nearly exact cancellation of the components of the boundary integral
(25). At high resolutions the poor conditioning of the line integral formulation seems to increase the
minimum achievable error to above machine truncation, and so leads to poor convergence behavior.
Improvements in the conditioning of the line integral approach may be achieved by an intelligent
choice of geometric potentials, but this problem is not tackled in this paper. When comparing the
simplified flux-form implementation using line integrals and quadrature in terms of efficiency, the
quadrature-based formulation also tends to outperform the line integral formulation.
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14 P.A. ULLRICH, P.H. LAURITZEN AND C. JABLONOWSKI

Notably, the line integral formulation is the only approach known to the authors that admits large
time steps while maintaining conservation properties of the method [3]. That is, under the line
integral formulation integration is performed around the boundary of upstream volumes, and so
any deformation of these volumes leads directly to exchange of mass with neighboring elements.
Further, since the upstream volumes are non-overlapping and span the entire domain all mass is
accounted for during integration.

3. NUMERICAL RESULTS

We now present results from two test cases which arise from a strong nonlinearly sheared flow.
In section 3.1 we present a steady nonlinearly sheared zonal flow, and demonstrate that without
the quadratic correction the standard CSLAM scheme will attain at most second-order accuracy. A
more realistic barotropic instability test is discussed in section 3.2, using the flow field of [12]. This
test reveals clear grid imprinting caused by the second-order treatment of upstream flux volumes
even at high spatial resolution. No explicit filtering of the reconstruction is applied for these tests,
as it does not impact the observed results.

3.1. Steady Nonlinearly Sheared Zonal Flow

3.1.1. Test case formulation. Test case 3 of [11] makes use of a compact nonlinearly sheared jet
which is isolated to the northern hemisphere. In terms of latitude θ and longitude λ, their velocity
field takes the form

uλ(λ, θ) = u0b(x(θ))b(xe − x(θ)) exp(4/xe), and uθ(λ, θ) = 0, (40)

where

b(x) =

{
0 if x ≤ 0,
exp(−1/x) if 0 < x.

(41)

and
x(θ) = xe

(θ − θb)
(θe − θb)

. (42)

For the purposes of our analysis, we choose

u0 =

(
2πa

12 days

)
, θb = −π

6
, θe =

π

2
, and xe = 0.3, (43)

where a = 6.37122× 106 m denotes the radius of the Earth. These choices lead to a flow field which
at maximal velocity completes one revolution of the sphere over a period of 12 days, and is confined
to be nonzero only in the range θ ∈ [θb, θb + θe].

This wind field is particularly useful for testing tracer advection schemes, for several reasons.
First, the wind field is infinitely smooth, implying that for a sufficiently smooth tracer field high-
order numerical methods should achieve an optimal convergence rate. Second, the wind field is
purely zonal, so the zonally integrated mass of any tracer field is not a function of time. Third,
the wind field is strongly nonlinear, and so emphasizes errors which are not captured in the
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES15

linear regime. Finally, this test is representative of motions we would expect to see in the Earth’s
atmosphere, such as upper atmospheric jets in the midlatitudes. Notably, for numerical methods
which use the latitude-longitude grid this test case is much easier when the grid is aligned with the
flow. On the cubed-sphere (or on any other quasi-unstructured grid) we do not have the luxury of
grid alignment, so we expect that grid imprinting will generate additional model errors. Further, we
expect that zonally-integrated tracer mass will vary over time.

We consider two possible tracer fields for our study. The first is the constant field ψ = 1. Although
somewhat primitive, this tracer field will allow us to very clearly isolate errors in capturing the wind
field, and avoids the inclusion of errors due to the reconstruction. The second field we consider is
ψ = u/u0, which is purposely chosen to have smooth purely meridional variation consistent with the
velocity field. This choice will allow us to verify that the reconstruction errors for a more physical
choice of tracer field are still overwhelmed by geometric errors in approximating the upstream areas.
Both fields are steady with time under the velocity field (40).

3.1.2. Discussion. The normalized root mean square L2 error measures are calculated in the tracer
field via the usual global error norms,

L2(ψ) =

√
I [(ψ − ψT )2]

I [ψ2
T ]

, (44)

where ψT is the tracer field at the initial time (the steady-state solution) and I denotes an
approximation to the global integral, given by

I[x] =
∑

all cells k
xk|Z|k, (45)

with |Z|k denoting the area of element k.
The error norms obtained from running the nonlinearly sheared flow test case with ψ = 1 are

plotted in Figure 6 for the flux-form CSLAM scheme of [4] with 0, 1 and 4 additional nodes
added along each flux edge. Under this scheme, edges are treated as straight line segments without
modification. In these tests the time step is chosen to be 3600 s at c60 resolution, 1800 s at c120

resolution, 900 s at c240 resolution and 450 s at c480 resolution. The corresponding grid spacings
are listed in Table II. The data point at c480 resolution shows clear evidence of a lower bound in
the error norms likely caused by poor conditioning of the line integral formulation. The error norms
show consistent second-order convergence under grid refinement regardless of the number of added
flux nodes. Nonetheless, we do observe a consistent decrease in the error norms as a function of the
number of nodes along each edge. Given the benign nature of the tracer field, these errors strongly
suggest that the flux volumes are not resolved with sufficient accuracy. In Figure 7 we see that
the error norms associated with the quadrature implementation of the CSLAM scheme again show
sub-optimal second-order convergence. However, under the quadratic treatment of edges the error
norms drop dramatically, with the c60 resolution scheme with the improved edge treatment even
outperforming the c480 resolution results with straight line segments. Further, with the quadratic
treatment of edges the error norms are super-convergent at near-fourth-order accuracy. However,
the quadratic formulation still appears to suffer from the poor conditioning of the line integral
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16 P.A. ULLRICH, P.H. LAURITZEN AND C. JABLONOWSKI

Figure 6. Normalized L2 errors in the tracer field ψ for the nonlinearly sheared jet (at t = 12 days) for the
traditional flux-form CSLAM schemes [4] with 0, 1 and 4 added flux points per edge and tracer field ψ = 1.

Figure 7. Normalized L2 errors in the tracer field ψ for the nonlinearly sheared jet (after 12 days) test with
initial tracer distribution ψ = 1. Errors from both quadrature-based and line integral-based schemes with

quadratic upstream flux edges are shown.

formulation at high resolutions, as we observe near-perfect convergence with the quadrature-based
fluxes but flawed results with the line integral formulation.

The deficiencies revealed by this test can also be observed in the standard CSLAM scheme of [3],
which similarly exhibits second-order convergence regardless of the number of flux points or choice
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SOME CONSIDERATIONS FOR HIGH-ORDER ‘INCREMENTAL REMAP’-BASED TRANSPORT SCHEMES17

Figure 8. Normalized L2 errors in the tracer field ψ for the nonlinearly sheared jet (after 12 days) test with
initial tracer distribution ψ = u/u0. Errors from both quadrature-based and line integral-based schemes with
quadratic upstream flux edges are shown. Both schemes with quadratic edges have roughly identical errors

and hence appear atop one another in this plot.

of CFL number. For the issues that arise from this test we surmise high-order accuracy can only be
recovered from a high-order treatment of the upstream source region in semi-Lagrangian schemes.

To verify that the loss of accuracy also occurs for a non-constant tracer field, we test the smooth
tracer field ψ = u/u0. The results from this test can be seen in Figure 8 for the formulations
of CSLAM described in this paper. The sub-optimal convergence rate is again apparent without
quadratic edges, but is immediately recovered when quadratic edges are used. At lower resolutions
the reconstruction error is more apparent, leading to error norms which do not significantly vary
between the two edge treatments. In this case, the issues we observed with the constant tracer field
at high resolutions do not seem to affect the line integral scheme, although they will likely appear
at higher resolutions.

Based on these results, one may wonder if a quadratic representation of flux edges will also
improve results in other known advection tests. In fact, the solid-body rotation test of [11] is
completely unaffected by the improved resolution of the flux region. In this case, the upstream
source region can be bounded exactly using great circle arcs, suggesting that piecewise linear
boundaries are effectively optimal. Another popular test is the deformation flow test of [6] with
either gaussian hills or cosine bells. For this test the error norms do not decrease under the
improved treatment of flux boundaries, suggesting that the nonlinear shear in the wind field is
sufficiently benign so as not lead to divergent errors that overcome the reconstruction errors at
the tested resolutions. This result can be confirmed by running the deformational flow test with
q = 1 (effectively removing the reconstruction errors from the test), in which case there is again
a degradation in the formal order of accuracy of the method to second order (results not shown)
without the quadratic treatment of edges. However, at sufficiently high resolution divergent errors
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18 P.A. ULLRICH, P.H. LAURITZEN AND C. JABLONOWSKI

Figure 9. Wind field from the barotropic instability test at day 5. The maximum wind speed in the zonal jet
is approximately 85 m s−1.

should overwhelm reconstruction errors and consequently we expect the scheme will again drop to
second-order accuracy.

3.2. Barotropic Instability

The shallow-water barotropic instability test case of [12] consists of a zonal jet with compact support
at a latitude of 45◦, with a latitudinal profile roughly analogous to a much stronger version of test
case 3 of [11]. A small height perturbation is added atop the jet which leads to the controlled
formation of an instability in the flow. Consequently, as the flow field evolves we observe many
realistic atmospheric dynamical features including sharp fronts and regions of enhanced vorticity.
The wind field after 5 days from a shallow-water simulation at c160 resolution is depicted in Figure
9. As observed by [13], this test case is particularly difficult for models using the cubed-sphere to
handle. Since the jet is significantly stronger than test case 3 of [11], is aligned in such a way that
it passes over cubed-sphere panel edges eight times, and is driven by a relatively mild perturbation,
the wave number four grid forcing of the cubed-sphere grid is usually apparent in shallow-water
simulations of this flow when the grid is coarser than c100 (which corresponds to a grid spacing of
approximately 100 km).

To test the quadrature-based flux-form CSLAM transport scheme we treat the height field from
[12] as a tracer field and passively advect it with prescribed winds from a shallow-water simulation
that are updated at every timestep. We use the quadrature-based flux-form CSLAM scheme both
without the quadratic correction (section 2.3) and with the quadratic correction (section 2.4).
Further, we run at a resolution of c160 (∼ 62.5 km as listed in Table II) with a time step of ∆t = 50 s

for 5 days. The height field after 5 days is then plotted in Figure 10, along with a high-order finite-
volume reference solution obtained from the MCore shallow-water model described in [14, 15]. The
implementation with the quadratic correction (Figure 10c) matches very closely with the reference
solution, and shows no visually apparent indications of grid imprinting. On the other hand, although
there is a rough correspondence between the solution without the quadratic correction (Figure 10b)
and the reference solution, we observe clear discrepancies between these results, many of which
appear to be driven by the underlying grid. In particular, grid imprinting is most readily apparent
where the zonal jet passes over the cubed-sphere corners at both -225◦ and -135◦ degrees longitude.
As a consequence, this test clearly identifies a benefit of the quadratic correction.
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Figure 10. Height field from the barotropic instability test at day 5, as obtained from (a) the high-order finite-
volume reference solution of [14], (b) the quadrature-based flux-form CSLAM transport scheme described in
section 2.3 and (c) the quadrature-based flux-form CSLAM transport scheme with the quadratic correction,
described in section 2.4. The height field is shown from 9000 m (northernmost enclosed contours) to 10200

m (southernmost enclosed contours) in increments of 200 m.

4. CONCLUSIONS

In this paper we have reformulated the flux-form semi-Lagrangian advection scheme of [4] using
quadrature to compute the integral over flux volumes. An improved approach using quadratics to
represent the edges of the upstream source region has also been implemented for both the quadrature
formulation and line integral formulation of CSLAM. The new approach requires one additional
trajectory calculation per flux edge, which roughly triples the number of trajectories that must be
computed to obtain the upstream source areas. However, since these trajectories only need to be
computed once, the added cost is essentially negligible when transporting multiple tracers.
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We have studied an analytic test case for tracer advection on the sphere that exhibits nonlinear
wind shear analogous to the Earth’s jet stream. This test has shown a deficiency in versions of
CSLAM that approximate upstream source regions using straight line segments which leads to a
substantial worsening of observed errors and a decrease in the scheme’s convergence rate from third-
order to second-order. The quadratic treatment of the upstream edges was observed to substantially
improve the error norms on this test and returned the convergence rate to third-order. This error
is only revealed when a strong nonlinear shear is present in the flow, and so is often missed
by other standardized tests. We have also studied a test case which mimics tracer transport in a
barotropic instability, which reveals clear grid imprinting when using line segments to approximate
the upstream flux volume. These errors are apparent even with a relatively fine grid spacing, but are
removed when the quadratic correction is applied to the transport scheme.

ACKNOWLEDGEMENT

Support for this work has been provided by the Office of Science, U.S. Department of Energy, Award No.
DE-SC0003990 and a University of Michigan Rackham Predoctoral Fellowship. The National Center for
Atmospheric Research is sponsored by the National Science Foundation.

A. THE RECONSTRUCTION PROCEDURE

In the finite-volume formulation only averaged values of the state variables are stored within each element.
That is, for each element Zi,j we know the element average of the tracer field ψi,j , defined by

ψi,j =
1

|Z|i,j

∫
Zi,j

ψdV, (46)

where |Z|i,j is the element area. Here ψ denotes an arbitrary conserved variable, which can either be the fluid
density ρ or the mass of a specific tracer hφ, for a mixing ratio φ. The volume element is dV = Jαβdαdβ

where the equiangular metric Jacobian Jαβ is given by

Jαβ =
(1 + tan2 α)(1 + tan2 β)

(1 + tan2 α+ tan2 β)3/2
. (47)

Since only element-averaged information is known, an accurate reconstruction of the sub-grid-scale
distribution of each state variable can only be obtained by using information from neighboring elements.
By utilizing second-order approximations to the first and second derivatives of a reconstruction, standard
finite-difference formula can be used to attain up to third-order accuracy. Such an approach has been used by
[3] in the upstream element-integrated semi-Lagrangian formulation of the CSLAM scheme. The approach
discussed here simplifies the reconstruction strategy of [16] by not enforcing that the integrated mass within
an element equals the integrated mass of the sub-grid-scale reconstruction. This property is not needed for
incremental remap schemes in flux-form, since conservation is automatically enforced in the formulation. In
fact, enforcement of this criteria does not even improve error norms since the maximum difference between
these reconstructions is always within the O(∆α3) truncation error of the scheme.

The reconstruction strategy proceeds as follows. The stencil we use in the reconstruction step is depicted
in Figure 11. First and second derivatives are calculated using standard finite-difference formulae, which
leads to approximations which are O(∆α2) accurate.
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Figure 11. A depiction of the stencil used for computing the third-order sub-grid-scale reconstruction on the
cubed-sphere.

Dαψi,j =
−ψi+2,j + 8ψi+1,j − 8ψi−1,j + ψi−2,j

12∆α
, (48)

Dβψi,j =
−ψi,j+2 + 8ψi,j+1 − 8ψi,j−1 + ψi,j−2

12∆α
, (49)

Dααψi,j =
−ψi+2,j + 16ψi+1,j − 30ψi,j + 16ψi−1,j − ψi−2,j

24∆α2
, (50)

Dαβψi,j =
ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4∆α2
, (51)

Dββψi,j =
−ψi,j+2 + 16ψi,j+1 − 30ψi,j + 16ψi,j−1 − ψi,j−2

24∆α2
. (52)

The final step in building a third-order reconstruction relies on obtaining a O(∆α3) approximation to
the centerpoint value of ψ. Here we follow the deconvolution procedure of [17]. Using this strategy, over a
sufficiently smooth field element-averages can be used to obtain an approximation to the centerpoint value,
according to

ψ(0) = ψ − ∆α4

12|Z|

(
∂ψ

∂α

∂J

∂α
+
∂ψ

∂β

∂J

∂β

)
− ∆α2

24

(
∂2ψ

∂α2
+
∂2ψ

∂β2

)
. (53)

If ψi,j is known to at least fourth-order accuracy and the remaining derivative terms are known to at least
O(∆α2), this formula leads to a fourth-order-accurate approximation of ψ(0)i,j , the element-centered value
of ψ in element (i, j). In this formulation, the derivatives of the Jacobian are computed analytically and
stored for later use. Hence, on substituting approximations to these derivatives we obtain the fourth-order-
accurate approximation

ψ(0)i,j = ψi,j −
∆α4

12|Z|i,j

(
Dαψ

∂J

∂α
+Dβψ

∂J

∂β

)
− ∆α2

24

(
Dααψ +Dββψ

)
. (54)
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A.1. Filtering the reconstruction

When q = hφ, the reconstruction must be filtered so that φ satisfies the constraint φ ∈ [0, 1]. Consequently,
we can extract the reconstruction for φ using the following differential relationships:

φ(0) =
(hφ)(0)

h(0)
,

Dαφ =
1

h(0)

[
Dα(hφ)− φ(0)Dαh

]
,

Dβφ =
1

h(0)

[
Dβ(hφ)− φ(0)Dβh

]
,

Dααφ =
1

h(0)

[
Dαα(hφ)− 2DαφDαh− φ(0)Dααh

]
,

Dαβφ =
1

h(0)

[
Dαβ(hφ)−DαφDβh−DβφDαh− φ(0)Dαβh

]
,

Dββφ =
1

h(0)

[
Dββ(hφ)− 2DβφDβh− φ(0)Dββh

]
.

Observe that this reconstruction satisfies mass / tracer consistency; that is, when φ = 1 the reconstructions of
h and (hφ) will be identical and hence the reconstruction of φ is exactly the constant function φ(α, β) = 1.
Further, since the formulae above are exact, this equivalence preserves the order of accuracy of the
underlying reconstruction.

The advection algorithm currently supports two filters to maintain desirable properties of the
reconstruction. A positivity-preserving limiter is available to avoid spurious negative values due to
undershoots in the reconstruction and a stricter monotonic limiter is available for removing all unphysical
oscillations. The limiters follow the approach of [18], wherein extreme values of the sub-grid-scale
reconstruction are detected and the reconstruction is scaled so that these extreme values fit within some
predefined range. For the positivity-preserving limiter the range is simply chosen to be [0,+∞], implying
maximum values of the reconstruction are left untouched while minimum values are cropped to zero if
they are anywhere negative. For many tracer quantities the positivity-preserving limiter is sufficient since
overshoots are on the order of the reconstruction, and hence if the element-averaged tracer concentration
φ� 1 it follows that the reconstructed concentration φ(α, β) will never exceed 1. For the monotonicity-
preserving limiter, the range is chosen to be [φmin, φmax], where

φmin = min
Nk

(hφ)k/hk,

φmax = max
Nk

(hφ)k/hk,

andNk is the set of all neighboring elements to element k, including element k itself. On a regular Cartesian
grid, even diagonal neighbors are considered when determining the minimum and maximum value of the
scalar field, so in total 9 elements are used. It can be shown that under a sufficiently strict CFL limit (usually
CFL < 1

2 ) the limiting procedure described above can be used to avoid spurious overshoots and undershoots
in the numerical method while retaining high-order accuracy in smooth regions.

A.2. Conversion of the reconstruction to Gnomonic coordinates

When integrating over flux areas, integration is performed in Gnomonic coordinates. Hence, the derivatives
in equiangular (α, β) coordinates must be converted to Gnomonic derivatives in (X,Y ). We initially convert
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first derivatives to Gnomonic coordinates via

DXψi,j =
1

1 +X2
Dαψi,j , (55)

DY ψi,j =
1

1 + Y 2
Dβψi,j , (56)

and then second derivatives using

DXXψi,j =
1

1 +X2

(
−XDXψi,j +

1

1 +X2
Dααψi,j

)
, (57)

DXY ψi,j =
1

(1 +X2)(1 + Y 2)
Dαβψi,j , (58)

DY Y ψi,j =
1

1 + Y 2

(
−Y DY ψi,j +

1

1 + Y 2
Dββψi,j

)
. (59)

Upon computing all gnomonic derivatives, the third-order reconstruction within element Zi,j takes the form

ψi,j(X) = ψ(0)i,j + (X −Xi)DXψi,j + (Y − Yj)DY ψi,j (60)

+ (X −Xi)2
DXXψi,j

2
+ (X −Xi)(Y − Yj)DXY ψi,j + (Y − Yj)2

DY Y ψi,j
2

,

where X = (X,Y ) is the vector form of the gnomonic coordinate.
The approach described above cannot be applied directly for elements in the vicinity of panel edges, since

accurate reconstruction relies on all neighboring element averages being defined in the same coordinate
system. To avoid this problem, neighboring panel information is remapped into “halo” regions surrounding
each panel which are defined in the same coordinate system. This approach relies on an accurate remapping
scheme, such as the one described in [14].

A.3. Conversion to a global coordinate system

The reconstruction coefficients c(p,q) which are then required in the expansion (11) are computed by
expanding (61) and collecting like terms. This procedure leads to the following set of reconstruction
coefficients:

c(0,0) = ψ(0)i,j −XiDXψi,j − YjDY ψi,j

+X2
i
DXXψi,j

2
+XiYjDXY ψi,j + Y 2

j
DY Y ψi,j

2
, (61)

c(1,0) = DXψi,j −XiDXXψi,j − YjDXY ψi,j , (62)

c(0,1) = DY ψi,j − YjDY Y ψi,j −XiDXY ψi,j , (63)

c(2,0) =
DXXψi,j

2
, (64)

c(1,1) = DXY ψi,j , (65)

c(0,2) =
DY Y ψi,j

2
. (66)
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