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ABSTRACT

The dynamical core of an atmospheric general circulation model is engineered to satisfy a

delicate balance between numerical stability, computational cost, and an accurate represen-

tation of the equations of motion. It generally contains either explicitly added or inherent

numerical diffusion mechanisms to control the build-up of energy or enstrophy at the small-

est scales. The diffusion fosters computational stability and is sometimes also viewed as

a substitute for unresolved subgrid-scale processes. A particular form of explicitly added

diffusion is horizontal divergence damping.

In this paper a von Neumann stability analysis of horizontal divergence damping on a

latitude-longitude grid is performed. Stability restrictions are derived for the damping coef-

ficients of both second and fourth-order divergence damping. The accuracy of the theoretical

analysis is verified through the use of idealized dynamical core test cases that include the

simulation of gravity waves and a baroclinic wave. The tests are applied to the finite-volume

dynamical core of NCAR’s Community Atmosphere Model (CAM) version 5. Investigation

of the amplification factor for the divergence damping mechanisms explains how small-scale

meridional waves found in a baroclinic wave test case are not eliminated by the damping.
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1. Introduction

This paper focuses on the characteristics of an explicit diffusion mechanism in the finite-

volume (FV) dynamical core (Lin 2004) that is part of the Community Atmosphere Model

CAM version 5 (CAM 5) at the National Center for Atmospheric Research (NCAR) (Neale

et al. 2010). A dynamical core is, broadly speaking, that part of an atmospheric General

Circulation Model (GCM) associated with the fluid dynamics. It includes both the resolved

and subgrid-scale flow. The spatial scale of the resolved flow is determined by the grid spacing

of the discrete mesh. The actual “believable scales” of a model are highly dependent on the

numerical scheme (Lander and Hoskins 1997). For example, Skamarock (2004) estimated

with the help of kinetic energy spectra that the “effective resolution” of the Weather Research

and Forecasting (WRF) model is 7∆x where ∆x symbolizes the grid spacing. In any case,

subgrid scales smaller than 2∆x fall below the resolution of the grid. Slightly larger scales

(for WRF these are the scales between 2∆x and 7∆x) are represented by the model, but not

resolved effectively. This paper seeks to quantify the effects of diffusive processes on these

un- and under-resolved subgrid scales in GCMs. Of particular interest here is the impact of

a specific, explicitly added diffusive mechanism on the underresolved scales.

The dynamical core of each model is engineered to satisfy a delicate balance between

numerical stability, an accurate representation of the equations of motion, and computational

cost. In an effort to balance these factors, each model employs some form of diffusion,

filtering or a-posteriori fixers (Williamson et al. 2009). Often these practices are poorly

documented, with the presumption that their impact on model performance is small. This

presumption is often justified when considering their effect on a fully resolved, isolated wave.
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However, model performance is determined by a complex spectrum of motions on many

scales and the interactions of these scales. The decay of waves, ultimately, has important

implications for the mean circulation of the atmosphere (Andrews and McIntyre 1978).

Therefore, relegating this ultimate decay to a set of poorly understood subgrid-scale processes

leaves an undocumented impact on the model circulation and possibly the climate statistics

in long time integrations. Scientific rigor requires the evaluation of the effects of adding

diffusion, filters and fixers (Jablonowski and Williamson 2011). We assert that this might be

a particularly important aspect of dynamical cores as we push models to higher resolution in

pursuit of more realistic representations of both climate and weather. This assertion is based

on the fact that it has been implicit in both model construction and dynamical meteorology

that the scales of interest are quasi-nondivergent. This will not be true for models with grid

sizes of order 10 km or finer that start to resolve motions in the meso-scale regime.

Spurious, dispersive phenomena are a common problem inherent to computational fluid

dynamics. Examples include the Gibbs phenomenon, non-propagating numerical modes and

spectral blocking (e.g. Rood (1987)). These phenomena may propagate, interact nonlinearly

and negatively impact the model solution. An economic method to reduce these dispersive

modes is to add an explicit diffusion term to the equations of motion prior to discretiza-

tion. Most often, a hyper-diffusion technique is used as documented in Jablonowski and

Williamson (2011). This provides a mechanism to dissipate these known spurious modes,

presumably, before they have a negative impact on the overall dynamics.

Generally, the strength of the diffusive process is empirically tuned so that the kinetic

energy spectra imitate observation (Boville 1991; Takahashi et al. 2006). This technique

is classically utilized in spectral transform based schemes where the Gibbs phenomenon is
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present when sharp gradients in the flow field arise. Explicit diffusion or filtering processes

are also widely used in finite-difference or spectral element dynamical cores. In contrast, flux-

limiting finite-difference and flux- or slope-limiting finite-volume methods typically introduce

an inherent nonlinear diffusion via the numerical scheme that prevents unphysical oscillations

from appearing (Durran 1999). Here, the phrase “unphysical” refers to obvious overshoots

and undershoots of numerical estimates. Sometimes the modeler will deliberately choose

an inherently diffusive, low-order, numerical scheme to “manage” such numerical issues,

and hence avoid or alleviate the need for an additional explicit diffusive term. Considering

the treatment of dispersion errors, the management of nonlinear or linear computational

instabilities, the effects of grid staggering, and inherent diffusion, all models have some forms

of diffusion mechanisms that are not fully grounded in the basic physics of the fluid flow.

The overarching goal is to avoid the accumulation of energy or enstrophy at the smallest

scales near the truncation limit.

In this paper we explore the linear von Neumann stability characteristics of a second-order

and fourth-order horizontal divergence damping mechanism applied on a regular, equal-angle

latitude-longitude grid. As a specific instance, we consider the divergence damping imple-

mentation in the FV dynamical core of CAM 5 (Lauritzen et al. 2011) which utilizes explicit

time-stepping (Neale et al. 2010). The second-order divergence damping mechanism in CAM

5 is also implemented in earlier versions of CAM (CAM 4 and the finite-volume dynamical

core in CAM 3.1, see Collins et al. (2004)). This FV dynamical core was developed at the

NASA Goddard Space Flight Center, and has some similarities to the Goddard Earth Ob-

serving System version 5 model (GEOS5) (Rienecker et al. 2008) and the NOAA Geophysical

Fluid Dynamics Laboratory’s (GFDL) atmospheric model AM2.1 (Delworth et al. 2006).
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The analysis carried out in the following sections is not specific to the finite-volume dy-

namical core and is relevant to any model that employs divergence damping on a regular

latitude-longitude grid with an explicit time-stepping scheme. Our particular analysis is

carried out on a staggered D-grid (Arakawa and Lamb 1977). However, the analysis tech-

nique generalizes to other grid staggering options and is, in fact, identical for C-grids. We

explore the divergence damping mechanism from both a theoretical and practical viewpoint.

The latter includes selected dynamical core test cases that demonstrate the impact of the

diffusive processes directly on the model simulations. This provides a guiding method to

analyze the additional diffusion incorporated in other climate or weather models. Similar

tests and analysis can be performed on other forms of explicit diffusion, providing a sys-

tematic framework that brings to light the various methods for introducing diffusion to a

model. Simulations for two different idealized dynamical core test cases indicate that this

linear stability analysis is very accurate, providing more impetus to perform similar stability

analyses on other models’ methods of explicit diffusion or damping.

This paper is organized as follows. In section 2 we review the finite-volume dynamical core

as set up in CAM and discuss the implementation (and motivation) of horizontal divergence

damping on a latitude-longitude grid. In sections 3 and 4 we present stability analyses of

both the second-order and fourth-order divergence damping mechanisms. In addition, we

analyze the impact of various formulations of the divergence damping coefficient on idealized

dynamical core simulations and compare these to the theoretical analyses. Conclusions and

future work are presented in section 5. The Appendix incorporates the effects of the polar

Fourier filter into the stability analyses.
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2. The Finite-Volume Dynamical Core in CAM

a. Design aspects

The finite-volume dynamical core in CAM 5 (CAM-FV) is constructed in a flux form

which is mass-conserving by design. The hydrostatic approximation allows the horizontal

discretization to be built from a 2D shallow water algorithm (Lin and Rood 1997). The ver-

tical discretization of the model utilizes a floating Lagrangian coordinate that is remapped

to an Eulerian reference grid after several sub-cycled dynamics time steps (Lin 2004). In

this study, we do not directly investigate the effects of this vertical discretization, nor the

remapping algorithm. The following is primarily concerned with the horizontal discretiza-

tion.

The horizontal discretization is based on one-dimensional finite-volume schemes. The

prognostic variables are cast on a staggered D-grid that “favors” the conservation of vorticity.

In order to compute the mass and momentum fluxes across cell boundaries, a dual C-grid

formulation (a “CD” grid) is utilized. First, the variables on the C-grid are advanced by half

a time step to estimate the time-centered “advective” C-grid winds. These are then used

to advance the prognostic variables on the D-grid which assures a second-order accuracy

in time. As an aside, the CD-grid approach introduces some inherent numerical diffusion

due to grid interpolations. This is discussed in Skamarock (2008) who reviewed the linear

stability characteristics of the CAM-FV dynamical core.

Finite-volume methods are developed with the general supposition that diffusive behav-

ior near steep gradients is preferable to dispersive waves which generate unphysical extrema

in the solution (see Bala et al. (2008) for a specific example). CAM 5 primarily uses the for-
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mally third-order Piecewise Parabolic Method (PPM, Colella and Woodward (1984)) for the

integration of the prognostic variables on the D-grid. In addition, a second-order van Leer

method is applied for the computation of the C-grid winds (Lin and Rood 1997). Both algo-

rithms also incorporate a first-order upwind scheme to represent advective inner operators in

the cross directions. This approach is designed to eliminate the directional bias or splitting

error. However, as pointed out in Lauritzen (2007) this limits the overall accuracy of the

entire scheme, introducing nonlinear diffusive effects and possible instabilities. In CAM-FV

there are also several choices for the finite-volume slope- and curvature-limiters which are

applied near steep gradients (Lin and Rood 1996; Lin 2004). In addition, enhanced inherent

diffusion is included near the model top to provide a sponge layer. This is accomplished

by lowering the order of the flux operators to a first-order upwind or second-order van Leer

scheme and increasing the effects of the divergence damping mechanism in the uppermost

few levels (typically 3 levels for a 26-level configuration).

b. The need for polar filtering

The Lin-Rood algorithm (Lin and Rood 1997) is developed on a latitude-longitude rect-

angular grid, with constant (in angle) mesh spacing. This leads to a convergence of the

longitudinal (zonal) grid points near each geographic pole. To lessen the corresponding

strict time step restriction near the poles, a semi-Lagrangian extension of the transport

scheme is implemented in the longitudinal direction (Lin and Rood 1996). However, the

semi-Lagrangian method does not filter small-scale noise inherent to this grid and numerical

method. Therefore, a polar Fourier filter is applied poleward of the midlatitudes starting
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at approximately 36− 40◦ N/S. The Fourier filter coefficients gradually increase in strength

as the poles are approached and follow the formulation in Fox-Rabinovitz et al. (1997) (see

also Eq. (A1)). The Fourier filter removes linear and nonlinear computational instabilities,

but only selectively damps the waves in the zonal direction. No filtering is applied in the

meridional direction. It will be shown that the Fourier filter interacts very closely with the

horizontal divergence damping discussed in this paper, and both should be considered with

some care.

c. Inherent diffusion in CAM-FV

The Lin-Rood algorithm is built to conserve and transport vorticity monotonically. This

is done by considering the vector invariant form of the horizontal equations of motion (Lin

2004). Limiters are applied to the vorticity fluxes in a highly nonlinear fashion to ensure that

unphysical extrema are not generated. These limiters introduce a certain level of inherent

diffusion to the vorticity. This provides, conjecturally, a nonlinear imitation of the kinematic

viscosity of a viscous fluid, but does not model the bulk viscosity that appears in divergent

flows. As the order of the scheme is increased, this kinematic diffusive process will increase

in order which can be concluded from a short calculation of the modified equation for a

linear highly simplified flow (not shown here). As an example, the formally third-order

PPM scheme corresponds to a fourth-order damping of the vorticity, while the first-order

upwind scheme corresponds to a second-order diffusive term. The inherent diffusion in this

algorithm is only applied to the vorticity. Divergence damping can therefore be thought of as

a “fix” to imitate an equivalent diffusive force on the divergence. Explicitly added horizontal
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diffusion of the momentum would have the same effect, but would unnecessarily damp the

vorticity as well.

The previous discussion may lend an intuitive and qualitative reasoning for the need of

divergence damping in CAM-FV, but it does not provide a quantitative method for esti-

mating the needed damping coefficient. Instead, this coefficient intuitively depends on grid

size, time step and latitude; that is, physical attributes of the scales of motion. In general,

diffusion coefficients are often chosen empirically to match the model with observations and

believed “truth”. One measure of “truth” is the behavior of the kinetic energy spectrum at

large wavenumbers (Nastrom and Gage 1985; Lindborg 1999; Jablonowski and Williamson

2011). This is an indirect measure and should not be used as the sole criterion. As shown

in the next section, the choice of the damping coefficient has a significant impact on the

dynamics, as a large enough value will introduce instabilities at a fundamental level due

to the explicit time-stepping in CAM-FV. Too little damping on the other hand will allow

small-scale oscillations to propagate or even fail to prevent instabilities (both linear and

nonlinear) from developing.

d. The formulation of horizontal divergence damping

Horizontal divergence damping was suggested by Sadourny (1975), Dey (1978), Haltiner

and Williams (1980) and Bates et al. (1993) to control numerical noise in weather fore-

cast models and for numerical stability reasons. The particular form of the second-order
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horizontal divergence damping mechanism is

∂u

∂t
= · · ·+ 1

a cosφ

∂

∂λ

(
ν2D

)
(1)

∂v

∂t
= · · ·+ 1

a

∂

∂φ

(
ν2D

)
, (2)

where u and v are the zonal and meridional components of velocity, a is the radius of the

earth, φ ∈ [−π/2, π/2] and λ ∈ [0, 2π] stand for the latitude and longitude, t is time, and ν2

symbolizes the second-order divergence damping coefficient. The horizontal divergence D is

given by

D =
1

a cosφ

(
∂u

∂λ
+
∂(v cosφ)

∂φ

)
. (3)

If we apply the divergence operator to Eqs. (1) and (2) we arrive at the evolution equation

for the divergence

∂D

∂t
= · · ·+∇2 (ν2D) . (4)

This Laplacian type (∇2) diffusion of the divergence damps all scales, but with more damping

at higher wave numbers (akin to the square of the wave number). A standard practice in

atmospheric modeling is to invoke a fourth-order hyper-diffusion that is meant to be more

scale-selective (fourth power of the wave number, Collins et al. (2004)). This practice is

based on the premise that lower-order damping may overly damp the larger scales that

are physically relevant, and the presumption that it is the smallest scales that need to be

eliminated. Because of this practice, we also explore higher-order damping mechanisms. In

particular, the fourth-order divergence damping is given by

∂u

∂t
= · · · − 1

a cosφ

∂

∂λ

(
ν4∇2D

)
(5)

∂v

∂t
= · · · − 1

a

∂

∂φ

(
ν4∇2D

)
, (6)
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where ν4 is the damping coefficient for the fourth-order divergence damping. This leads to

the following evolution equation for the horizontal divergence (if we assume that ν4 has no

dependence on φ or λ)

∂D

∂t
= · · · − ν4∇4D. (7)

In the following we perform a linear stability analysis on (4) and (7).

Eq. (4) is easily recognized as the heat (diffusion) equation, and (7) can be seen as

the hyper-diffusion equation. Therefore, analyzing the stability of the divergence damping

reduces to determining the stability of the diffusion or hyper-diffusion equation on the sphere.

The corresponding details of the discretization will likely change somewhat between different

model implementations, and this will affect the stability of the scheme; however, the basic

analysis should carry over to each individual model. In the following sections we analyze

the stability of (4) and (7) using the finite-difference discretization with an explicit time-

stepping scheme as implemented in CAM 5. The default CAM 5 configuration employs the

second-order divergence damping. The fourth-order damping can be selected as an option

at run time. Because we analyze the scalar equations (4) and (7) the nature of the analysis

is universal to both the C- and D- grid staggerings, as long as a latitude-longitude geometry

is maintained.
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3. Second-Order Divergence Damping

a. Stability analysis

For all that follows, subscripts indicate locations on the discretized grid, with the first

letter i indicating the east-west (longitudinal or zonal) direction, and the second index j

denoting the north-south direction (latitudinal or meridional). ∆λ and ∆φ are the constant

longitudinal and latitudinal grid spacings, respectively. The divergence damping is applied

to the prognostic horizontal wind components that are discretized on the D-grid as discussed

above. This is shown in Fig. 1. In this figure the cell is centered at (i∆λ, j∆φ) and the

winds are staggered appropriately around the cell so that the discretized vorticity ζi,j lies at

the cell center. This places the divergence at the cell corners as illustrated in Fig. 1.

The divergence of the flow field with

ui,j−1/2 = u (i∆λ, (j − 1/2)∆φ)

vi−1/2,j = v ((i− 1/2)∆λ, j∆φ) ,

is given by

Di−1/2,j−1/2 =
1

a cosφj−1/2

[
ui,j−1/2 − ui−1,j−1/2

∆λ
+
vi−1/2,j cosφj − vi−1/2,j−1 cosφj−1

∆φ

]
. (8)

We then write the discretized versions of Eqs. (1) and (2) as follows (the superscript ‘n’

refers to the time index, i.e. χni,j = χ(i∆λ, j∆φ, n∆t)):

un+1
i,j−1/2 − uni,j−1/2

∆t
=

ν2

a∆λ cosφj−1/2

[
Dn
i+1/2,j−1/2 −Dn

i−1/2,j−1/2

]
vn+1
i−1/2,j − vni−1/2,j

∆t
=

ν2

a∆φ

[
Dn
i−1/2,j+1/2 −Dn

i−1/2,j−1/2

]
.
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Note that we have assumed that the coefficient ν2 is independent of φ and λ (in reality we only

need to assume that cosφ does not vary on the grid level, as discussed below). In practice,

ν2 is chosen to be dependent on the time-step ∆t and grid spacing (possibly latitudinally

dependent). Suppression of this dependence at this point simplifies the algebra. Ideally

we want to analyze the stability of this system, however this becomes prohibitive, as the

eigenvalues inherent to the problem are not conducive to calculation. Instead we consider

the evolution of the divergence (Eq. (4)) in CAM-FV which is discretized with the finite-

difference approach

Dn+1
i−1/2,j−1/2 −Dn

i−1/2,j−1/2

∆t

=
ν2

a2 cosφj−1/2

cosφj

(
Dn
i−1/2,j+1/2 −Dn

i−1/2,j−1/2

)
− cosφj−1

(
Dn
i−1/2,j−1/2 −Dn

i−1/2,j−3/2

)
(∆φ)2

+
Dn
i+1/2,j−1/2 − 2Dn

i−1/2,j−1/2 +Dn
i−3/2,j−1/2

(∆λ)2 cosφj−1/2

}
. (9)

The same analysis holds on the C-grid if each of the indices above are shifted by 1/2, not

affecting the results obtained below.

In practice the divergence damping coefficient is defined as

ν2 = C2 cosr φ
a2∆φ∆λ

∆t
, (10)

where r = 0 is the default in CAM 5.0. The parameter r can be chosen to modify the

latitudinal dependence of the damping coefficient. The empirical “tuning” parameter C2

depends on the position in the vertical direction to provide increased damping near the

model top. More information on C2 is provided below. This formulation of ν2 with r = 0 is

proportional to the area of a grid cell at the equator, and inversely proportional to the time

step. Dimensionally this is an appropriate choice of damping coefficient, however reliance
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on the area of the grid cell at the equator, and not the true area of the grid cell (with

appropriate latitudinal dependence) places the same damping effect on a given physical

wave-length, regardless of discretization or latitudinal location.

Using (10) we now assume that cosφ is approximately constant at the grid level (cosφj+1 ∼

cosφj ∼ cosφ, which is the same approximation alluded to in deriving the evolution of the

divergence). We consider a standard von Neumann stability analysis of Eq. (9), following

Lauritzen (2007). In Lauritzen (2007) the discretization was formulated as a cell average

approach. This is identical to the above, if we simply replace each Di−1/2,j−1/2 with the

corresponding cell average at each grid cell. Hence, we consider the growth of each wave

number k (or combination of longitudinal and latitudinal wave numbers kλ and kφ in this

case) by looking at solutions of the type

D(λ, φ, t) = D0e
ı(ωt+kλλ+kφφ)

⇒ Dn
i,j = D0Γn2e

ı(ikλ∆λ+jkφ∆φ), (11)

where D0 denotes the initial amplitude of the wave, ω stands for the frequency, Γ2 = eıω∆t

is the complex amplification factor, and ı =
√
−1 represents the imaginary unit number.

The scheme described previously is stable if the growth in each wave number, given by |Γ2|,

is less than or equal to unity (although a more realistic restriction is to force Γ2 to remain

positive as well). Inserting the ansatz (11) in the discretized divergence equation (9), and

dividing by the common factor D0Γn2e
ı[(i−1/2)kλ∆λ+(j−1/2)kφ∆φ] we identify the amplification

factor as

Γ2 = 1− 4 C2 cosr φ

{
α sin2

(
kφ∆φ

2

)
+

1

α cos2 φ
sin2

(
kλ∆λ

2

)}
, (12)

where α = ∆λ/∆φ is the grid aspect ratio. Note that Eq. (12) is real because this dis-
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cretization is symmetric. In our model simulations, α will be identical to 1. In default CAM

5 configurations an aspect ratio of α ∼ 1.33 is also often chosen with wider longitudinal grid

spacings.

As mentioned, the minimum requirement for stability in a linear flow is to restrict C2

such that |Γ2| ≤ 1, although it would be preferable to restrict 0 ≤ Γ2 ≤ 1 ensuring that

the modes do not change sign with each time step. At the equator with φ = 0◦, these

requirements are equivalent to

C2

{
α +

1

α

}
≤ 1

4
and C2

{
α +

1

α

}
≤ 1

8
,

where the stricter requirement does not allow the sign of the wave to change with each time

step. However, near the poles Eq. (12) becomes increasingly more restrictive, indicating

that instabilities in the divergence field will emerge in the polar regions (particularly for

r = 0). Note that this singularity appears in the zonal direction as the poles are approached

(|φ| → π/2) and originates from the second term in the curly brackets in Eq. (12). The

polar Fourier filter is designed to remove zonal instabilities near the poles, and so in practice

this instability is not revealed in CAM-FV. To see how the polar Fourier filter removes this

instability, the reader is referred to the Appendix.

While the singularity at the poles found in (12) for r = 0 is controlled by the polar filter,

it is of interest to consider r = 1 as well, which takes the latitudinal dependence of the grid

cell’s approximate area into account. In this instance, the singularity in the zonal direction

is reduced near the poles, but now there is an additional cosφ on the meridional modes (first

term in the curly bracket in (12)) which reduces the effective damping of such modes near the

poles. In essence, this indicates a delicate balance between the zonal and meridional waves;
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using r = 0 damps the wave numbers in the meridional direction sufficiently, but is only

marginally stable (with the application of the Fourier filter) for the zonal wave numbers,

while using r = 1 reduces this instability in the zonal direction, but does not damp the

meridional waves as efficiently. To visualize these effects, Fig. 2 provides a plot of the

amplification factor Γ2 (without Fourier filter) for both r = 0 (CAM default) and r = 1 at

a latitude of φ = 60◦. The top row is shown for the typical CAM 5 values of C2 = 1/128

and α = 1.33, the bottom row displays the extreme case (critical at the equator at least)

C2 = 1/4 with α = 1. These constant C2 values neglect the sponge layer at the model top

that is discussed later. Note that the axis labels are described by x = kλ∆λ and y = kφ∆φ

where the value of x=y=π denotes the smallest wavelength 2∆λ or 2∆φ.

At this latitude of φ = 60◦ the typical CAM 5 configurations (Figs. 2(a,b), (b) is the

default) are stable since the amplification factors are bounded by |Γ2| ≤ 1. However, there

is a latitude close to the poles for which both r = [0, 1] become unstable. In particular,

the instability occurs when the (2∆λ, 2∆φ) = (π, π) wave drops below −1. For r = 1 this

does not occur until |φ| > 89◦ (not shown). For r = 0 the amplification drops below −1

for |φ| > 83◦. Both instabilities are adequately controlled by the polar Fourier filter, as

illustrated in the Appendix.

The key observation to take away from Fig. 2 is that at these higher latitudes the waves

in the zonal direction become unstable, while for r = 1, the purely meridional wave numbers

become less damped with increasing wavenumber (decreasing scale). This can partially be

seen from Fig. 2c where we observe that the 2∆φ wave (0, π) has an amplification factor

of Γ2 ∼ 0.8 for r = 1, whereas the corresponding amplification factor for r = 0 is Γ2 ∼ 0.4

(Fig. 2d). This implies that at high latitudes (here φ = 60◦), using r = 1 will not quickly

16



damp out small-scale purely meridional waves. However, as noted in the previous paragraph,

the choice of r = 0 implies that the polar filter is required to maintain the computational

stability at a lower latitude than would be needed for r = 1.

b. Vertical Profile of the second-order damping coeffcient

As mentioned previously, the parameter C2 is designed to depend on the vertical position

in the FV dynamical core. This dependence introduces a diffusive sponge layer near the

model top to absorb rather than reflect outgoing gravity waves. This concept of a diffusive

sponge layer is outlined in Jablonowski and Williamson (2011). The use of sponge layers

has come under questioning (Shepherd et al. 1996) as it also introduces an artificial sink for

momentum, and some nonlinear transfer of energy takes place due to the total energy fixer

employed by all default versions of CAM (Neale et al. 2010). The purpose of this discussion

is to determine the characteristics that arise when utilizing an artificially determined sponge

layer for the divergence damping, as employed in CAM 5 and its predecessor versions CAM

4 and CAM-FV 3.1.

In the following we rely on the discussion in the previous section, with all the same

definitions. Let ptop be the pressure at the model top (in most default CAM runs this is

taken to be ptop ∼ 3 hPa) and let plref be the reference pressure at a given model level with

index l. The computation of plref is based on the definition of the hybrid η-coordinate (see

also Collins et al. (2004)) and assumes a surface pressure of 1000 hPa. Then, as implemented

in the FV dycore, the parameter C l
2 depends on the model level and is given by

C l
2 = c max

{
1, 8

[
1 + tanh

(
ln

(
ptop
plref

))]}
. (13)
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The default value for c is 1/128 which (modulo the cosφ) is certainly within the stable

range at most latitudes determined in the previous section. For typical model runs this

provides a rather flat vertical profile until the final two to three model levels, whereupon the

damping coefficient is increased rapidly by up to a factor of 8. It means that the strength

and frequency of the polar instabilities increase near the model top due to this increased

damping coefficient, requiring a stronger diffusive fixer to remove them, perhaps in addition

to the polar Fourier filter. Such a fixer is, possibly serendipitously, already in place in the

form of lowering the order of the numerical scheme near the model top. The latter aspect is

a specific attribute of CAM-FV, i.e., this result is implementation-dependent.

Investigating the functional dependence of (13) on the location of the model top also

raises another issue. Most model runs will be performed with the model top prescribed near

2− 3 hPa, however test cases specifically designed to test the dynamical core (Jablonowski

et al. 2008a) lower the model top so as to highlight different aspects of the model’s numerics.

One such instance is a gravity wave test case without the Earth’s rotation and an initial

state at rest in which the squared Brunt-Vaisala frequency of the hydrostatic background

conditions is prescribed as N2 = 10−4 s−2. An overlaid potential temperature perturbation

then triggers the propagation of gravity waves. The surface temperature and pressure are

set to 300 K and 1000 hPa, respectively. With a constant (in height) vertical grid spacing

of ∆z = 500 m and 20 vertical levels (L20), this forces the pressure at the model top to

be ptop = 273 hPa. The dependence of the multiplicative factor C2 on the position of such

a rather high (low-lying) ptop value is illustrated in Fig. 3. The figure depicts the vertical

profile of C2 (Eq. (13)) for a model top at 3 hPa (solid line) and 273 hPa (dashed line).

When the model top is lowered to 273 hPa the damping strengthens throughout the entire
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model, but particularly at the upper levels. This leads to not just a sponge layer, but an

entire spongy model, detrimentally affecting the outcome of the gravity wave test case.

This observation explains a result by Jablonowski et al. (2008b) that compared the CAM-

FV simulations to several other dynamical cores at their default configurations. It was noted

that the default CAM-FV dynamical core with second-order divergence damping appeared to

be extremely diffusive for this test case. Figure 4 displays this result. It depicts the potential

temperature perturbation (Θ′ = Θ−Θ) along the equator from the zonally symmetric initial

state Θ, after the wave has developed for 96 hours. Note that there is a significant difference

in the Θ′ amplitudes and gradients between the 1◦ × 1◦ L20 CAM-FV simulation with

default divergence damping (Fig. 4a) and no divergence damping (Fig. 4c). For comparison,

Figs. 4b,d display the corresponding results of an alternative CAM dynamical core which

is the spectral transform Eulerian (CAM-EUL) model (Collins et al. 2004). It is run at a

comparable resolution with the triangular truncation T85 and the identical 20 levels. In Fig.

4b the CAM-EUL default fourth-order hyper-diffusion with the coefficient K4 = 1 × 1015

m4 s−1 is used, in addition to a second-order diffusive sponge layer at the top with the base

coefficient K2 = 2.5 × 105 m2 s−1. In (d) both the CAM-EUL K2 and K4 coefficients were

set to zero.

Figure 4 showcases several effects. First, the divergence damping in Fig. 4a significantly

suppresses the evolution of the gravity wave along the equator and also seems to introduce

a positive potential temperature perturbation in CAM-FV at the model top (near 180◦).

Secondly, the shape of the gravity waves in CAM-FV appear to be influenced by both the

explicit diffusion via divergence damping (Fig. 4a) as well as the intrinsic diffusion via the

numerical scheme (Fig. 4c). The latter can be concluded when CAM-FV is compared to
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CAM-EUL. The EUL simulations are characterized by sharper Θ′ gradients at the leading

edge of the gravity wave, even when hyper-diffusion is applied in the simulation (Fig. 4b).

However, the perturbation amplitudes in the simulations without explicitly added damping

(Figs. 4(c,d)) are comparable in both models. As an aside, omitting the explicit damping in

CAM-FV and CAM-EUL is only feasible in idealized test cases such as the gravity wave test

described here. It truly isolates the effects of the damping. In practical applications though,

the damping is needed to avoid an accumulation of energy at the smallest scales and prevent

CAM-EUL from becoming unstable.

4. Fourth-Order Divergence Damping

a. Stability analysis

Higher-order forms of divergence damping act more strongly on the higher wave numbers,

while limiting the effects on the large-scale well-resolved features of the flow. We now analyze

the stability constraints for fourth-order divergence damping using the notation introduced

in section 3.

As before, we analyze the scalar equation (7) which we discretize with the help of (8)

and the following expression for the Laplacian of the divergence (also refer to Fig. 1)

(
∇2D

)
i−1/2,j−1/2

=
Di+1/2,j−1/2 − 2Di−1/2,j−1/2 +Di−3/2,j−1/2

a2 (∆λ)2 cos2 φj−1/2

(14)

+

(
Di−1/2,j+1/2 −Di−1/2,j−1/2

)
cosφj −

(
Di−1/2,j−1/2 −Di−1/2,j−3/2

)
cosφj−1

a2 (∆φ)2 cosφj−1/2

.
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It yields the discretized version of (7)

Dn+1
i−1/2,j−1/2 −Dn

i−1/2,j−1/2

∆t
= − ν4

a2 cosφj−1/2

{
cosφj

(∆φ)2

[(
∇2Dn

)
i−1/2,j+1/2

−
(
∇2Dn

)
i−1/2,j−1/2

]
− cosφj−1

(∆φ)2

[(
∇2Dn

)
i−1/2,j−1/2

−
(
∇2Dn

)
i−1/2,j−3/2

]
(15)

+
(∇2Dn)i+1/2,j−1/2 − 2 (∇2Dn)i−1/2,j−1/2 + (∇2Dn)i−3/2,j−1/2

(∆λ)2 cosφj−1/2

}
.

Here we again assume that ν4 does not depend on φ or λ. While this is not entirely accurate

in CAM-FV, it is permissible because we also make the assumption that cosφ does not

change on the grid level.

To analyze the stability of Eq. (15), we consider solutions of the form (11). The fourth-

order damping coefficient ν4 in CAM 5 is defined as

ν4 = C4
a4 (∆λ)2 (∆φ)2 cosr φ

∆t
, (16)

where r = 2 (the CAM 5 default if the optional fourth-order damping is invoked) lets ν4

vary as the square of the area of each grid cell (dependent on latitude or cosφ which again is

assumed constant at the grid level). In CAM 5, the parameter C4 is set to a default value of

0.01. Note that ν4 does have a latitudinal dependence, but for the local analysis considered

here with an approximately constant cosφ at the grid level we can use (7). Once again we

desire the modulus of the amplification factor |Γ4| = |eıω∆t| to have magnitude less than or

equal to unity. Γ4 is found to be

Γ4 = 1− 16 C4 cosr φ

{
α sin2

(
kφ∆φ

2

)
+

1

α cos2 φ
sin2

(
kλ∆λ

2

)}2

, (17)

where α = ∆λ/∆φ as before. The effect of the polar Fourier filter on the amplification

factor, and the corresponding stability constraint are described in the Appendix.
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At the equator with φ = 0◦ the stability constraint |Γ4| ≤ 1 implies that C4 needs

to be less or equal 1/32. However, the more conservative (and more desirable) constraint

0 ≤ Γ4 ≤ 1 demands the more restrictive bound C4 ≤ 1/64. Both values are quoted for α = 1

and r = 2. The first estimate of the maximal value of C4 is experimentally confirmed by

considering baroclinic wave tests with CAM 5. This baroclinic wave test for dynamical cores

is described in Jablonowski and Williamson (2006a,b). In essence, a perturbation in the zonal

wind is added to a steady-state flow field that is initially in gradient-wind and hydrostatic

balance. This perturbation develops into a baroclinic wave in the northern hemisphere. The

wave breaks after nine days and creates sharp temperature fronts. However prior to day

5, the flow is primarily linear, and hence amenable for comparisons to the linear analysis

performed here.

Leaving all other parameters fixed, the parameter C4 was adjusted near the maximal

value of 1/32 for the baroclinic wave. It was found that the evolution of the baroclinic

wave with C4 < 0.031 remained stable, whereas the model quickly developed numerical

instabilities when C4 exceeded this critical value. The simulation blew up after a few model

hours. Figure 5 shows this development for C4 = 0.031 after 4 hours and 45 minutes in the

baroclinic wave test case at the resolution 1◦ × 1◦ with 26 levels. Here, the vertical pressure

velocity at the model level near 867 hPa is depicted. A similar situation developed for the

gravity wave test (not shown). The instability develops in the (2∆λ, 2∆φ) = (π, π) wave.

Note that the instability in Fig. 5 develops near φ ∼ 36◦N which is precisely the position

where the polar Fourier filter begins to take effect (with α = 1). This also explains the

slight discrepancy between the predicted value of 1/32 = 0.03125 and 0.031 as observed in

the model runs. If the previously omitted grid-level latitudinal dependence of Γ4 is taken
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into account, an instability is expected to develop at almost exactly C4 = 0.031 for φ = 36◦.

Poleward of this latitude the polar Fourier filter removes the zonal portion of this instability,

and evidently controls its development. Eventually however, the developing instability at

36◦ overcomes the polar filter, and cascades throughout the model.

The relaxed bound C4 ≤ 1/32 allows the solution to change sign at each time step.Therefore,

we expect that this constraint would not be sufficient for a more realistic, nonlinear flow. In-

stead, the more conservative restriction C4 < 1/64 = 0.015625 (for α = 1) is recommended,

which is quite close to the CAM 5 default value of C4 = 0.01. For the default CAM-FV

settings where α = 1.33, the recommended restriction at the equator is C4 < 9/625 = 0.0144

according to Eq. (17).

b. Latitudinal dependence and meridional waves

Figure 6 illustrates how Γ4 (without applying the Fourier filter) with r = 2 depends

on latitude and shows the amplification factors at both the Fig. 6(a,c) equator and Fig.

6 (b,d) |φ| = 60◦. Both the Fig. 6(a,b) CAM 5 default configuration as well as the Fig.

6(c,d) extremal cases are depicted. At higher latitudes Fig. 6(b,d), Γ4 is smaller for the

smallest zonal wave numbers (x = π). Γ4 < −1 indicates the appearance of the grid-induced

instability. For the extremal case (α = 1, C4 = 1/32), this happens for any latitude away

from the equator. In contrast, for the default CAM-FV settings of C4 = 0.01 and α = 1.33

this occurs for |φ| > 76◦. This lies in the region where the Fourier filter is active.

Figure 6 demonstrates that the cosr φ (with default r = 2) dependence of the meridional

wave modes (first term in the curly bracket in Eq.(17)) causes the purely meridional waves
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(0, y) to be damped very little at high latitudes. In particular, Figs. 6(b,d) show that the

purely meridional 2∆y (or (0, π)) wave is hardly damped at all at φ = 60◦. While this

does not introduce an instability, it does not quickly remove the high-order modes either.

This can be confirmed by analyzing model runs of the baroclinic wave test in Fig. 7. The

figure shows the vertical pressure velocity at the model level near 867 hPa at day 4 in CAM-

FV for both the second-order (top row) and fourth-order (bottom row) divergence damping

mechanism. Both the default CAM 5 damping coefficients (left column) and runs with

doubled coefficients (right column) are depicted. The careful consideration of this test case

indicates that a meridional wave is triggered shortly after the initialization, with wavelength

around 6◦. For the depicted 1◦× 1◦ grid spacing, this corresponds to (0, π/3) in Figs. 2 and

6. Figure 7 illustrates the persistence of these waves in the vertical pressure velocity despite

a doubling in the magnitude of the damping coefficients. The default second-order damping

does not remove these waves either, but a simple doubling of the coefficient C2 removes most

of their effects. However, this comes at the cost of damping the resolved large-scale signal

as well which might be unacceptable from a physical viewpoint.

To understand the damping characteristics at the equator, we can evaluate the amplifica-

tion factors (12) and (17) for this particular example with α = 1. For the default CAM-FV

values C4 = 0.01 and C2 = 1/128 with a meridional wavelength of 6◦ the amplification

factors are Γ4 = 0.99 and Γ2 = 127/128 = 0.9921875. If the 6◦ wave is introduced at time

step n = 0, then it would take approximately until n = 70 and n = 90 time steps for the

fourth-order and second-order damping to damp the wave to half its original amplitude, re-

spectively. When the damping coefficients are doubled as displayed in Fig. 7 (right column)

this corresponds to Γ4 = 0.98 and Γ2 = 63/64 = 0.984375. These values require approx-
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imately n = 35 and n = 45 time steps for the fourth-order and second-order divergence

damping to reduce the wave’s amplitude by half (at the equator).

The apparent inability of divergence damping, and in particular fourth-order divergence

damping, to adequately damp these small-scale modes is not immediately intuitive. An

understanding can be gained by again considering Fig. 6. Note that along the line x = 0

the damping coefficients for both forms of damping is maximal, i.e. the amplification factor

at (0, y0) is greater than at (x, y0) for any x 6= 0. Physically this means that of all the

modes damped by divergence damping, the purely meridional waves will be damped the

least, whereas modes with mixed directions will be damped more adequately.

To understand why the second-order damping is more effective at removing these purely

meridional waves, we must consider the effect that changes in latitude have on the amplifica-

tion factors. Using the example from above but now at the high latitude of φ = π/3 = 60◦,

the amplification factor for the 6◦ purely meridional wave is Γ4 = 0.9975 which requires

n = 280 time steps to damp the wave adequately for the default value of C4 = 0.01. When

using C4 = 0.02, the amplification factor is Γ4 = 0.995 which requires approximately n = 140

time steps to halve the amplitude of the 6◦ purely meridional wave. The second-order di-

vergence damping employed in the runs illustrated in Fig. 7 (bottom row) uses Eq. (10) so

that the amplification factor for purely meridional waves are independent of latitude, and

thus only require approximately n = 90 or n = 45 time steps for c = 1/128 and c = 1/64

to reduce the amplitude by half. Hence, it is this latitudinally dependent weakening of the

fourth-order damping that allows the meridional waves to remain undamped for so long.

In an effort to efficiently remove these modes and to obtain a damping coefficient meant

to damp physical modes of a given size, regardless of latitudinal location and resolution, a
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modified fourth-order damping coefficient with r = 0 could be considered.

While it is not likely that such a modified formulation completely eliminates the merid-

ional waves displayed in Fig. 7, it should damp these waves more effectively than the

previous formulation. However one can also notice that the instability present at kλ∆λ = π

and kφ∆φ = π will then be stronger in this case. This 1/ cos4 φ instability near the poles

will be stronger than the polar Fourier filter is designed to remove, so additional application

or strengthening of the Fourier filter would be required. This is due to the current formu-

lation of the damping coefficients in the Fourier filter itself. The coefficients (Eq. (A1)) are

proportional to cos2 φ, and can remove an instability in the zonal direction that depends

on 1/ cos2 φ which is the case for r = 2. Γ4 with r = 0 presents a unique problem in that

there is an additional 1/ cos2 φ instability in the mixed direction, i.e. it is no longer the case

that only zonal wave numbers become unstable near the poles. This implies that a simple

application of the Fourier filter may not be sufficient to maintain stability.

c. Direct comparison of second-order and fourth-order divergence damping

As a final summary, Fig. 8 provides a direct comparison of the second- and fourth-order

damping characteristics with the amplification factors Γ4 with r = 2, and Γ2 with r = 0, 1

at the (a,c) equator and (b,d) |φ| = 60◦. The amplification factors are plotted for identical

wave numbers in both directions along the x-axis where ∆x is a placeholder for both ∆λ

and ∆φ. In Figs. 8a,b the default CAM 5 Γ4 and Γ2 formulations with C4 = 0.01, r = 2 and

C2 = 1/128, r = 0 are compared for the default aspect ratio α = 1.33. In addition, Figs.

8c,d compare the extremal values (region of marginal stability at the equator) with aspect
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ratio α = 1 for Γ4 with C4 = 1/32, r = 2 and Γ2 with C2 = 1/4, r = 1. The reason for

evaluating the latitudinally dependent r = 1 case for the second-order damping instead of

the default r = 0, is because the fourth-order divergence damping with r = 2 has the same

area-dependence of the damping coefficient built-in.

Figures 8a,b show that the fourth-order damping is significantly stronger at the small-

est scales. However, any amplification factor below 0.95 damps out the specified modes

very effectively for long-term simulations since the damping is applied at each time step.

Therefore, the damping rates of 0.3 or 0.85 in (b) for the 2∆x mode are not very different

from each other in long climate runs. In general, we see that both forms of damping ef-

fectively eliminate the small-scale features such as the 2, 3, 4 ∆x waves. The difference in

the speed of the removal is evident, but is expected to play a minor role in climate simula-

tions. However, this difference is important for data assimilation applications similar to the

ones employed by the CAM Data Assimilation Research Testbed (CAM-DART) (Anderson

et al. 2009) where the unbalanced nature of the model repeatedly introduces small-scale

waves that must be damped out quickly. For this application of CAM (as well as for nu-

merical weather prediction) the fourth-order damping mechanism is much more effective at

small scales, while hardly influencing the well-resolved wave modes. This, combined with

our observations for the purely meridional waves, explains recent observations that CAM-

DART with fourth-order divergence damping adequately removes small-scale waves in the

zonal direction (which is not the case for second-order damping), but maintains some noisy

meridional waves in the polar regions (Lauritzen et al. 2011).

Figure 8b also shows that for modes larger than 6∆x the second-order divergence mecha-

nism at φ = 60◦ becomes stronger than the fourth-order scheme. The damping is only slightly
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stronger, but since the effect of the amplification factor is exponentially scaled, small dif-

ferences near unity have major impact. In addition, these scales are well-resolved and have

physical relevance. If the second-order mechanism damps them more, the effects are more

likely to be evident in simulations. Overall, the fourth-order divergence damping or even

high-order damping schemes are more scale-selective and more aggressive at removing the

smallest scale waves while providing less damping at the larger modes. On the downside,

higher-order schemes lead to a very restricted region of stability when applied in explicit

time-stepping schemes.

Figures 8c,d clearly show for the extreme case that the fourth-order divergence damping

barely damps the longer wavelengths until they reach 10∆x size. In contrast second-order

divergence damping damps all modes except those of the very largest wavelength. The

strongly negative values (< −1) of the amplification factors in Fig. 8d are not necessarily a

concern as this choice of C4 lies at the edge of the equatorial stability region and should not

be used in practice for high latitudes. Instead, plots (c) and (d) are meant to only illustrate

the qualitative behavior of the two damping mechanisms.

Fourth-order divergence damping is implemented as an option not only in CAM 5, but

also in other GCMs such as the forthcoming GFDL/NASA finite-volume dynamical core on a

cubed-sphere grid (Putman and Lin 2009). Even sixth- and eigth-order divergence damping

mechanisms have been tested with the finite-volume algorithm on the cubed-sphere grid

(S.-J. Lin and W. Putman, personal communication, 2010). Note that the cubed-sphere

grid does not suffer from the convergence of the meridians, or equivalently discretization

on the grid avoids the 1/ cosφ singularity that appears in this analysis. The intent of the

damping mechanisms is to remove small-scale waves to prevent an accumulation of energy
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at the smallest scales. The singularity introduced by the latitude-longitude grid at the

poles forces a trade-off between instabilities at the smallest resolvable scale (2∆λ, 2∆φ) and

the inability of the damping to efficiently remove small-scale meridional waves. With the

latitude-longitude grid, there is no clear winner, and while it may seem more acceptable to

retain small-scale meridional waves longer than desired, as opposed to the introduction of

grid-scale instabilities, this raises the question whether or not the fourth-order damping is

truly damping sufficiently.

5. Conclusions

A linear von Neumann analysis is applied to the divergence damping implemented in

CAM 5. Although care is taken to follow definitions and notation used within the CAM-FV

framework, the analysis performed is not specific to CAM-FV. This analysis is specific only

to divergence damping applied on a latitude-longitude grid with an explicit time-stepping

scheme. This type of analysis can easily be adapted to other models, especially to those on

other rectangular grids.

Stability restrictions are derived for both the second- and fourth-order divergence damp-

ing coefficients with homogeneous (in angle) grid spacing. While these restrictions are valid

at the equator, the general formulas for the amplification factors provide the freedom to

consider restrictions at other latitudes. In addition, the stability constraint depends on the

grid resolution aspect ratio α which is accounted for in the derivation. All model simula-

tions utilized an equal grid spacing in both horizontal directions with α = 1. The paper also

demonstrates that different values of α alter the derived stability restriction.
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The vertical dependence of the second-order divergence damping in CAM-FV is investi-

gated. While most model runs with typical pressure values of 2-3 hPa at the model top are

not negatively affected by the artificial ‘sponge layer’, it adequately explains the diffusive

characteristics of idealized CAM-FV simulations with low-lying model tops around ptop = 273

hPa. In general, the effect of a sponge layer on the model needs to be carefully considered,

as near the poles this sponge layer becomes increasingly unstable, and can become a source

of divergence, rather than a sink of it.

The validity of the derived stability restrictions on the damping coefficients is experi-

mentally confirmed through gravity wave and baroclinic instability tests of CAM-FV. The

dynamical core simulations indicate that the analysis is very accurate for linear flows. The

theoretical analyses and model simulations suggest that the fourth-order divergence damping

parameter should be restricted by C4 ≤ 1/64 for α = 1 and C4 ≤ 9/625 for the CAM 5

default α = 1.33 setting. In addition, the latitudinal dependence of the damping has been

investigated. For the fourth-order divergence damping it is found that the control of the

grid-inherent singularity at the pole sacrifices the efficient reduction of small-scale purely

meridional waves. Employing a damping coefficient that neglects the latitudinal variation

of the grid cell area will likely damp these meridional waves more effectively, but the polar

singularity will then be more apparent.

Most of the issues raised in this paper appear to be dependent on the choice of the

computational grid. This analysis quantifies part of the effect that the two singular poles

in a latitude-longitude grid have on the subgrid-scale dynamics. In order to extend this

analysis, the same method will be applied to other grid formulations, such as the finite-

volume cubed-sphere dynamical core which is in development at GFDL and NASA. While
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this grid is presumably an improvement over the latitude-longitude grid, it also has its own

peculiarities that must be accounted for in an analysis of the divergence damping.

Other sources of diffusive behavior in CAM-FV or other GCMs include inherent numerical

diffusion, the use of ‘sponge layers’ at the model top, and filters and fixers that are meant

to remove spurious waves that do not have physical origin. This paper quantifies the effect

of one of these processes on the dynamics of a GCM. As illustrated, the divergence damping

introduced to maintain numerical stability has the potential to introduce instability which

negates the intended effect. Careful consideration of these processes should be high priority

in the development of future models, so that their spurious impact on climate or weather

predictions can be minimized.
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APPENDIX

Incorporating the Polar Fourier Filter

We include the effect of the polar Fourier filter in the derivation of the amplification

factors Γ4 and Γ2. The discretization provided in CAM 5 applies the filter only to the time

tendencies of the winds, and not directly to the prognostic variables. For our analysis of the

divergence equation this is equivalent to considering the update equation of the divergence

(without any filtering) as

Dn+1
i,j −Dn

i,j

∆t
= βni,j

where β represents the ‘tendency’ of the divergence. For a von Neumann stability analysis,

one considers the Fourier decomposition of the discrete equation, which for the tendency can

be written as

βni,j =
∑
kλ,kφ

b̃kλ,kφ
e−ı(kλ∆λ+kφ∆φ).

The stability of the scheme for a single wave number is then considered, i.e. for one b̃kλ,kφ
.

The Fourier filter is applied directly to the tendency βni,j, producing a filtered tendency

β̂ni,j that is then used to update the divergence as

Dn+1
i,j = Dn

i,j + ∆tβ̂ni,j.

To see how β̂ni,j is computed, we consider the purely zonal Fourier decomposition of the

original tendency

βni,j =
∑
kλ

b̃kλ,je
−ıkλ∆λ
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The filtered tendency is then given by

β̂ni,j =
∑
kλ

dkλ,j b̃kλ,je
−ıkλ∆λ

where

dkλ,j = min

{
1,

cos2 φj
cos2 φc

1

sin2 (kλ∆λ/2)

}
(A1)

denotes the formulation of the Fourier damping coefficients following Fox-Rabinovitz et al.

(1997) (their Eq. 9). φc is the critical latitude where the Fourier filter begins to take effect,

which is dependent on the aspect ratio α = ∆λ/∆φ of the grid. In particular, CAM-FV uses

the condition

φc = arccos
[

min
(
0.81,∆φ/∆λ

)]
. (A2)

For α = 1 as generally considered in our dynamical core simulations, the critical latitude is

φc ∼ 36◦, whereas for the CAM-FV default aspect ratio α ∼ 1.33 the threshold lies around

φc ∼ 41◦. The damping is not applied to the zero mode (which represents purely meridional

motion) or the largest represented wave (smallest wave number). This restricts the filter

from directly affecting purely meridional motion.

To incorporate the effect of this filter into the stability analysis, we only need to consider

the meridionally Fourier-transformed term dkλ,j b̃kλ,j. Invoking the assumption that cosφ

does not change at the grid level, we can view dkλ,j as constant. Using the linearity of the

Fourier transform, we see that the filtered tendencies of a single wave-number are given by

dkλ,j b̃kλ,kφ
. (A3)

Hence, when including the effect of the Fourier filter into the stability analysis, we only

need to multiply the tendency terms by dkλ,j. To see how this affects the stability, consider
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latitudes poleward of the critical latitude φc and wave numbers that involve some zonal

component (not the zeroth mode, or the largest represented zonal wave). This implies

Γ2 = 1− 4 C2
cosr φ

cos2 φc

{
α cos2 φ

sin2 (kφ∆φ/2)

sin2 (kλ∆λ/2)
+

1

α

}
(A4)

Γ4 = 1− 16 C4
cosr φ

cos2 φc

{
α cosφ

sin2 (kφ∆φ/2)

sin (kλ∆λ/2)
+

1

α cosφ
sin

(
kλ∆λ

2

)}2

. (A5)

These equations show that the Fourier filter removes any instability present in the second-

order divergence damping so long as r ≥ 0. However, even with application of the polar filter

to the fourth order divergence damping, the purely zonal wave-numbers have an amplification

factor that scales as cosr−2 φ which can be controlled near the poles only for r ≥ 2 which

corresponds to the default value chosen for CAM5.0.
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Fig. 1. Discretization of the prognostic winds (u, v) and corresponding divergence D as well
as the vorticity ζ.
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Fig. 2. Amplification factor for the second-order damping (a,c) Γ2 for r = 1 and (b,d) Γ2

with r = 0. The top row (a,b) shows the CAM 5 default configurations with C2 = 1/128
and α = 1.33, the bottom row (c,d) shows the extreme case with C2 = 1/4 and α = 1. All
four plots are created at a latitude of φ = π/3 = 60◦. The axis labels are x = kλ∆λ and
y = kφ∆φ. Thus x = π corresponds to the smallest resolvable wavelength of 2∆λ. Note the
differences in scale.
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Fig. 3. Vertical profiles of the pressure-dependent multiplicative factor in the unitless pa-
rameter C2 (Eq. 13) for a configuration with the model top at ptop = 3 hPa and ptop = 273
hPa.
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Fig. 4. Latitude-height cross section of the potential temperature perturbation (in K) at the
equator in the gravity wave test case after 96 hours. (a) CAM-FV with default second-order
divergence damping (vertical dependence follows the dotted line in Fig. 3), (b) CAM-EUL
(spectral transform Eulerian dynamical core) including a default fourth-order hyper-diffusion
term and second-order sponge layer diffusion, (c) CAM-FV without divergence damping, (d)
CAM-EUL without diffusion. The resolutions are (a,c) 1◦ × 1◦ and (b,d) T85 with 20 levels
and a model top at 273 hPa.

45



Fig. 5. Vertical pressure velocity (in Pa/s) after 4 hours and 45 minutes at the CAM-FV
model level near 867 hPa in the baroclinic wave test case. This shows the development of
the (2∆λ, 2∆φ) instability of the fourth-order divergence damping when C4 = 0.031. The
resolution is 1◦ × 1◦ with 26 vertical levels.
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Fig. 6. Amplification factor for the fourth-order damping Γ4 with r = 2 (a,c) at the equator
and (b,d) at φ = π/3 = 60◦. Top row (a,b): CAM 5 default configurations with C4 = 0.01
and α = 1.33. Bottom row (c,d): extreme case for C4 = 1/32 and α = 1. The axes are
labeled as described for Fig. 2. Note the difference in scale.
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Fig. 7. Vertical pressure velocity (in Pa/s) at day 4 at the CAM-FV model level near 867
hPa in the baroclinic wave test. The vertical velocity is closely related to the divergence,
and at the model levels is not interpolated, so the meridional waves are most apparent. Left:
The default fourth-order damping r = 2 employs C4 = 0.01, the default second-order r = 0
uses C2 = 1/128. Right: the 2X dampings use C4 = 0.02 and C2 = 1/64. The resolution is
1◦ × 1◦ with 26 vertical levels.
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Fig. 8. Scale-selective nature of the second and fourth-order divergence damping with
kλ∆λ = kφ∆φ along the x-axis. Top row (a,b): default CAM 5 with aspect ratio α = 1.33
for Γ2 (r = 0) with C2 = 1/128 and Γ4 (r = 2) with C4 = 0.01. Bottom row (c,d): extreme
cases using α = 1 for Γ2 (r = 1) with C2 = 1/4 and Γ4 (r = 2) with C4 = 1/32. (a,c) are at
the equator, (b,d) are at the latitude of φ = π/3 = 60◦.
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