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Preface

The group of scientists assembled at the WCRP symposium on global transport mod-
els held in Bermuda in December 1990 [WCRP, 1990] recognized that the use of the
semi-Lagrangian technique is desirable. Judging from the continuous stream of arti-
cles published each year on the topic, one may safely conclude that the desirability of
the semi-Lagrangian approach has not lost its glance during the last decade. Despite
the huge amount of work in the field, replacing conventional Lagrange interpola-
tion with a least squares polynomial fit seems unexplored. Therefore my supervisor,
professor J. R. Bates, suggested an investigation of the numerical consequences of
employing least squares interpolation. After the preliminary analysis I independently
constructed a more general semi-Lagrangian scheme based on Taylor series expan-
sions. Accuracy requirements were chosen to leave one degree of freedom which may
be exploited to improve desirable properties. The conventional Lagrange interpola-
tor, as well as the least squares one, are special cases of this more general scheme.
The investigation of the least squares approach and the extension to a more general
scheme is the subject of this study. The analysis is directed towards applications in

atmospheric transport problems.
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Abstract

The choice of interpolation method in a semi-Lagrangian scheme is crucial to its
performance. Given the number of grid points one is considering to use for the
interpolation, it does not necessarily follow that maximum formal accuracy should
give the best results. Relaxing one order of accuracy creates one degree of freedom.
Varying this free parameter generates a family of stable integration schemes of which
conventional semi-Lagrangian schemes and schemes using least squares interpolation
are special cases. This permits a simultaneous analysis of the properties of the least
squares approach and other schemes of the same order of accuracy. The analysis is

restricted to the one-dimensional case.
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”To those who do not know mathematics it is difficult to get across a real feeling
as to the beauty, the deepest beauty, of nature. ... If you want to learn about nature,

to appreciate nature, it is necessary to understand the language that she speaks in.”

Richard P. Feynman
The Character of Physical Law



Contents

Preface
Acknowledgments
Abstract

1 Introduction
1.1 Finite difference schemes . . . . . . . . . . . . ... ... ... ....
1.1.1  Conventional semi-Lagrangian schemes . . . . . ... ... ..

1.1.2  Mixed Lagrangian-Eulerian formulations . . . . . .. ... ..

2 Accuracy of Least Squares Schemes
2.1 Least squares schemes . . . . . . ... .. .. ... .. ........
2.2 Amplification factor . . . . . .. ..o L Lo
221 Analysis . . . . ...
2.3 Relative phase speed . . . . . . . . .. ... ... ... ...
2.3.1 Analysis . . . . ...

2.4 Possible improvements . . . . . . .. ... .. ...

3 A more General Scheme
3.1 Consistent schemes . . . . . .. ... ... Lo
3.1.1 Truncation error . . . . . . . ... Lo
3.2  General three point schemes . . . . . . . . ... ... ... ......

3.2.1 Stability analysis . . . . ... ..o o oo

ii

iii

T W NN -

10
11
11
17
18
21



3.2.2 Conservation . . . . . . . . . o, 35

3.2.3 Monotonicity . . . ... 42

3.3 Higher order schemes . . . . . . . ... oo oL 44
3.3.1 Theschemes. . . .. .. ... ... ..o, 45
3.3.2 Stability analysis . . . . . ..o o oo o oo 45
3.3.3 Beyond the stability analysis . . . . . ... ... ... ... 51

4 Conclusions 58
A Appendix 60
Al Listofsymbols . .. . .. ... .. .. L 60
A.2 Method of least squares . . . . ... .. ... .. .. ... .... 63
A.2.1 Linear least squares . . . . . . . . . . . . .. .. ... ... 65
A.2.2 Quadratic least squares . . . . . . .. ... 66
A.2.3 Cubic and quartic least squares . . . . ... ... ... ... 67
A.2.4 Weighted least squares . . . . . ... ... ... ... ... .. 68

A.3 Detailed amplification factor computations . . . . . . . ... .. ... 70
A4 Proofs for theorems and lemmas . . . . . . .. .. ... ... ... .. 71
A.5 List of explicit formulas for higher order schemes. . . . . .. ... .. 73
A.5.1 Lagrange interpolation, £ . . . .. ... ... .. .. ..... 73
A.5.2 The amplification factors of higher order schemes . . . . . .. 73
A.5.3 Unconditionally stable interval, [A=, AT] . .. ... ... ... 74
A.5.4 The A; value for which the 2A wave is completely damped, A* 75
A.5.5 Least squares value of A, A% . . . ... ... ... .. .... 75

A.5.6 The A; value yielding the (N — 1)th-order conventional semi-
Lagrangian scheme . . . . . . ... ... ... ... ... 76

A5.7 The A; value yielding the (N — 2)th-order conventional semi-

Lagrangian scheme . . . . . . ... ... ... ... 76
A.5.8 The relative phase speeds of higher order schemes . . . . . . . 77
A.5.9 Relative phase speed of the 2A wave . . . ... ... .. ... 77

Bibliography 79



Chapter 1
Introduction

It seems reasonable to start off by requiring that any numerical algorithm designed
for solving geophysical flow problems should, before anything else, get advection
right. Hence, investigating an unexplored numerical algorithm evidently restricts the

preliminary analysis to the unforced transport equation

Dy _ o

(1.1) Dt—8t+v-V¢:0,

defined on a domain D C R™, where t(x,t) is a fluid variable. The variables x € R™
and ¢t € R have their usual meaning of spatial and temporal coordinates. The prede-
termined velocity of the fluid is denoted v € R™. Since %Z’ = 0, ¢ is constant along
the trajectories of the flow. Despite the simple analytical solution, it has proven to be
a highly challenging task to design satisfactory transport schemes for general applica-
tions (see for example [Rood, 1987] for a review of many numerical approaches’). It
is safe to conclude that there exist no universal best choice. Since the seminal work
of Robert [Robert, 1981], the semi-Lagrangian methods have attracted increasing at-
tention, leading to substantial literature over the past decades. Since the extensive
review of [Staniforth and Coté, 1991] many new and interesting semi-Lagrangian al-
gorithms have been developed. It is not the purpose of this section to try to update

the excellent work of Staniforth and Coté, but rather to provide a brief overview of

Inote that real applications to atmospheric transport problems reveal that the conclusions of
[Rood, 1987] were, at least naive, if not wrong [Lin and Rood, 1996]
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some conventional and more recent semi-Lagrangian methods.

Traditionally semi-Lagrangian schemes were finite-difference schemes derived in
a Lagrangian framework. That is no longer the case. For example, the term “semi-
Lagrangian” has extended into the world of finite volume methods. Existing Eulerian
finite volume methods have been extended to a formulation that can be stable un-
der large Courant number. See for example the semi-Lagrangian extensions of the
piecewise parabolic method (PPM) [Rancic, 1992], [Rancic, 1995] and the flux-form
conservative semi-Lagrangian scheme in [Lin and Rood, 1996]. In the sense of mete-
orological terminology, these schemes are termed semi-Lagrangian, although they are
quite different from the traditional semi-Lagrangian approach. Also the CIP-method
(cubic interpolated propagation) has recently been developed into a semi-Lagrangian
and conservative form [Yabe et al., 2001]. These are just a few examples of a longer
list of semi-Lagrangian extensions.

It is beyond the scope of this introduction to discuss these newer developments
which extend the traditional conception of semi-Lagrangian schemes. Hence, we will
formally exclude finite volume methods and other non-finite-difference approaches.
However, one should be aware of alternative semi-Lagrangian methods, since they
intrinsically offer a combination of properties which are not a prior: in the traditional

semi-Lagrangian framework.

1.1 Finite difference schemes

Assume that the domain D is discretized into some kind of computational grid.
[Smolarkiewicz and Pudykiewicz, 1992] present a very elegant and unifying way of
interpreting finite difference approaches for solving the advection equation:

From Stokes’ theorem and (1.1), the fluid variable ¢ satisfies

(1.2) Y (x1,t1) = 9 (X0, t0) + / (dx —vdt) -V,

c

where C denotes an arbitrary contour connecting the two points (xg,t9) and (x1, %)

of a space-time continuum D x R. For computational reasons, it is convenient to let
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x1 be a grid point on the computational mesh but it is of course not a requirement.
Similarly, x, may be any point in the time-plane ¢ = ¢;,. The formal solution of
(1.2) unifies the conventional Eulerian and Lagrangian approaches: Selecting xo = x;
results in the purely Eulerian integral of (1.1), whereas selecting xo = x,, where

(X4, to) is the departure point of the trajectory arriving at (xi,t;), more precisely

to
(1.3) X, = X1 —|—/ v(x,t)dt,
t1
leads to a purely Lagrangian integral. In essence, the Lagrangian method depends on
accurate integration of (1.3) to obtain the previous position of the particle. Trajectory

integration is discussed in [Smolarkiewicz and Pudykiewicz, 1992].

1.1.1 Conventional semi-Lagrangian schemes

The latter contour selection leads to the conventional semi-Lagrangian formulation
when x; is chosen to coincide with a grid point. Since the particle path is followed,
the formal integral in (1.2) vanishes and the numerical problem is reduced to the
approximation of 1(x,,%y). Since the departure point (x.,%;) does not necessarily
coincide with a point on the mesh, one has to invoke some kind of interpolation
procedure in order to determine the value of 1(x,,%p). Any consistent interpolation
method known to the author provides a scheme which circumvents the Courant-
Friedrichs-Lewy (CFL) stability condition typically required in Eulerian methods.
Therefore the time step may be chosen based on accuracy considerations rather than
stability?. Simultaneously we have the convenience of a regular mesh discretization
in contrast to purely Lagrangian methods.

In the meteorological community the most widespread interpolation methods
are cubic Lagrange interpolation (e.g.,[Bates and McDonald, 1982]) and cubic splines
(e.g. [Purnell, 1976]; [Riishjgaard et al., 1998]). A remarkable fact about cubic splines
is that they conserve mass exactly® for non-divergent flow fields [Bermejo, 1990]. This

is normally not the case in conventional semi-Lagrangian schemes and the lack of it

2if the velocity field does vary rapidly instability may occur
3we assume that ¢ is some mass specific quantity
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is a matter of some concern. Since conventional semi-Lagrangian schemes are always
cast in non-conservative form, it is very difficult to construct finite difference schemes
which conserve mass without using post adjustment algorithms. Nevertheless, one
should be aware of the fact that many so-called conservative schemes, derived in
an Eulerian framework?, are strictly conservative only if time is kept continuous.
Therefore conservation is only accomplished with accuracy to the truncation error
of the time differencing. However, for some applications (for example long term cli-
mate studies) mass conservation is often regarded as indispensable and hence inhibits
many semi-Lagrangian schemes for direct use. Triggered by the intrinsic difficulties
in deriving conservative formulations, a posteriori restoration methods have been
developed. See for example the algorithm of [Priestly, 1993] which, by an iterative
procedure, attempts to regain mass conservation.

An unfortunate property of conventional semi-Lagrangian schemes is that they
tend to produce overshooting and undershooting in the interpolation of unsmooth
regions. [Bermejo and Staniforth, 1992] suggested a simple and efficient algorithm
which converts conventional semi-Lagrangian schemes to quasi-monotone ones. It
does so by preventing the interpolation method in generating new extrema. Any a
posteriori method may, however, interact undesirably with favorable properties of
the scheme. A simple example is: Suppose cubic splines are used during the inter-
polation process. As mentioned before, cubic splines will provide a scheme which
conserves mass. By implementing the quasi-conservative algorithm presented in
[Bermejo and Staniforth, 1992], possible undershoots and overshoots will be clipped
to prevent the generation of new extrema. As numerical values are altered, a possible
consequence of employing the a posterior: method is that the conservation of mass
is violated. Furthermore, clipping extrema in the data might produce results which
resemble highly diffusive numerical schemes.

Alternatively, overshoots and undershoots can be eliminated by using shape-
preserving interpolation. An example of an interpolation method which optionally is
shape-preserving, is Hermite interpolation. Apart from interpolating the fluid vari-

able (like any other interpolation method), the Hermite interpolator also interpolates

4flux form schemes
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estimates of the derivatives of ¢ at grid points. Appropriate constraints on the deriva-
tive estimate enforce monotonicity. See for example [Williamson and Rasch, 1989]
and [Holnicki, 1995]. The results of the numerical tests using shape-preserving inter-
polators presented in the two articles just cited show slight mass increase or decrease
when using the shape-preserving interpolator.

From the above discussion, one could naturally ask the question if it is possible to
achieve monotonicity and mass conservation simultaneously without post adjustment.
This seems very hard, if not impossible, within the conventional semi-Lagrangian
framework. Using semi-Lagrangian finite volume schemes, however, one can achieve
both conservation and monotonicity at the same time without a posteriori methods
(see for example [Lin and Rood, 1996]).

Though the conventional semi-Lagrangian approach, in general, lacks intrinsic
conservation and monotonicity properties, it has several virtues. Conventional semi-
Lagrangian methods show very good phase speeds with little numerical dispersion.
There is some damping due to interpolation, but it is fortunately very scale selective.
Furthermore, conventional semi-Lagrangian schemes are associated with simplicity
and relatively long time steps. Therefore they may be computationally more efficient
than their Eulerian counterparts.

Apart from conventional semi-Lagrangian schemes and classical Eulerian methods,
the freedom associated with the selection of xg and C in (1.2) offers a variety of mixed

Lagrangian-Eulerian formulations.

1.1.2 Mixed Lagrangian-Eulerian formulations

Over 15 years ago [Ritchie, 1986] formulated a non-interpolating semi-Lagrangian
scheme by choosing an alternative trajectory in the space-time continuum. As in
conventional semi-Lagrangian schemes, x, was chosen as the departure point of the
trajectory arriving at grid point x;. But instead of letting the contour C follow
the Lagrangian particle trajectory, the contour was replaced by two vectors: One
connecting the departure point and the nearest grid point in the ¢ = ¢y-plane, and

the other is the residual. Integration of the first contour is exact, while the residual
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is approximated by an Eulerian scheme. Hence non-interpolating. The scheme keeps
the favorable property of a semi-Lagrangian scheme, circumvents the CFL limitations
on the time step, and removes the computational damping inherent in conventional
semi-Lagrangian schemes. It does, however, suffer problems if the velocity field varies
too much ([Durran, 1998] p.327).

More recently [Smolarkiewicz and Pudykiewicz, 1992 presented a class of semi-

Lagrangian schemes choosing another contour in the space-time continuum:

Let 7" denote the contour which is followed by the Lagrangian trajectory of a fluid
parcel which arrives at grid point (x1,¢;). Of course, integrating along this contour
will result in a conventional semi-Lagrangian scheme. Let C’' denote a trajectory
in the #y-plane connecting the departure point, x,, with the nearest grid point, x,.
Choosing the union of these two trajectories, 77UC’, as the contour C in (1.2), it may
be proved [Smolarkiewicz and Pudykiewicz, 1992] that the numerical solution can be
represented by an advection equation, in which the local Courant number vector is
replaced by a normalized displacement vector between x; and x,. In principle, this
transformed advection equation may be solved using any known algorithm. Since its
“Courant” number is normalized, one may use algorithms whose time step is normally
limited by the CFL stability criterion. In other words, we have a semi-Lagrangian
scheme, in the sense that it supports long time steps, and the convenience of em-
ploying Eulerian schemes with favorable properties. For example, using a positive
definite Eulerian scheme for solving the parametrized advection equation will result

in a positive definite semi-Lagrangian algorithm.

It is quite clear that finite difference semi-Lagrangian schemes make up a broad
spectrum of algorithms. Apparently, there are still an abundance of possibilities wor-
thy of exploration providing a fertile breeding ground for this study. The work sum-
marized in the thesis is entirely restricted to conventional semi-Lagrangian schemes.
In the light of the current discussion, that means finite-difference schemes, where
(1.2) is formally integrated along the contour 7. At the root of the trajectory the
value of the fluid variable is interpolated by using surrounding grid point values of

1. As the use of a least squares polynomial fit for interpolation in a semi-Lagrangian



1.1. FINITE DIFFERENCE SCHEMES 7

scheme seems unexplored in literature, the derivation of such schemes and their sta-
bility properties will be investigated first. An obvious further development within the
least squares framework is to introduce weighting functions (weighted least squares),
as it is often done when employing the least squares method in a statistical context.
One may hope that proper choice of weighting functions enforces desired properties.
These considerations are used as a motivator for the derivation of a more general
semi-Lagrangian scheme which may be interpreted as an analysis of the possibilities
in introducing weighted least squares. It is derived on the basis of accuracy consid-
erations which are chosen to leave one free parameter®. This gives a lot of flexibility
which may be taken to advantage in trying to formulate a scheme with improved over-
all properties. Furthermore, schemes using Lagrange interpolation and a least squares
polynomial fit are special cases of the more general scheme. Therefore comparative

analysis of the latter schemes is facilitated.

Sthe idea is certainly not new and has been explored in an Eulerian framework by [Takacs, 1985]



Chapter 2
Accuracy of Least Squares Schemes

When referring to conventional semi-Lagrangian schemes, we refer to semi-Lagrangian

schemes using Lagrange interpolation to interpolate upstream points.

Consider the advection equation (1.1) in one dimension

W2

2.1 . =
(2.1) ot o0z 0,

where the wind speed U is constant. Without loss of generality, we can assume
U > 0. In order to formally define the approximation schemes, we assume equidistant
spatial discretization with the step A; the time resolution step will be denoted At.
Integrating over the trajectory of a particle, which arrives at grid point A at time
(n + 1)At, equation (1.2) reduces to

;H—l = wn(x*) ’

where ¢™(z,) is the value of 1) at the departure point, z,, of the particle at time nAt.

Since U is constant, the departure point is simply
z,=1A—-UAt.

The value of 9" (x.) is obtained by performing a least squares polynomial fit using

values of 9 at grid points nearest to x,. We will refer to a linear fit when minimizing



the squared distance between a straight line and grid point values of . For higher
order fits the line is replaced by a parabola, third or fourth order polynomial. These

are referred to as quadratic, cubic and quartic fits, respectively.

Notation In principle, this paragraph follows the one outlined in [McDonald, 1984].
Let N be the number of grid point values used by the interpolating polynomial. The

non-negative integer p is chosen such that
(2.2) (I-p-1)-A<az <(I-p+1)-A,

for schemes using an odd number of points (N odd). For schemes using an even

number of grid point values for the interpolation (N even) choose p such that
(2.3) I-p—-1)-A <z, < (I=p)-A.

If o and & are defined as

At
2.4 =U—
( ) « A 7
. a—p N odd
(2.5) =
a—p—% N even,

then p defined in equations (2.2) and (2.3) guarantee that

(2.6) —3 < & < 3.

N [—

The relationship between the grid point axis and the value of & for N odd is illus-

trated on the following diagram:

jo}
Il
o
o}
Il
|
N —

(o)
I
N

[ ] ) [ ] ) [ ]

(I-p—-1)A (I-p)A (I-p+1)A
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A I U At I

tn—|—1 -

1V —
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(o)
>
1

t

] ] ] ] ] ] =
Tr—p-1 X4 Tr—p Tr—pt1 x

Figure 2.1: A space-time diagram illustrating the backward trajectory and the rele-
vant notation for formulating the semi-Lagrangian solution in the case of N odd.

For N even we have

N[

o=—

(o}
Il
o

1
2
° o °

o=

(I-p—1)A (I-p)A

Having introduced appropriate notation figure 2.1 graphically illustrates the strategy

behind the semi-Lagrangian approach using this notation.

2.1 Least squares schemes

The least squares method is explained in depth in appendix A.2. The basic idea is
to find the polynomial which fits grid point values of ¢/ best in a least squares sense.
That is to minimize the squared difference between grid point values of @ and the
fitting polynomial. Given the degree of the polynomial, we use a minimum number of
points for the least squares approximation. That is, 3 points for a linear fit, 4 points
for a quadratic fit, 5 points for a cubic fit and 6 points for a quartic fit!. Explicit
formulas for the finite difference schemes, using first to fourth degree polynomial fits,

are listed in table 2.1 (the formulas are derived in appendix A.2). By substituting

Inote that if we use one point less in the fit we would perform a conventional Lagrange interpo-
lation that fits grid point values exactly !
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Taylor series expansions into the finite difference formulas, one may prove that the

schemes are consistent and (N — 2)th-order accurate?.

2.2 Amplification factor

By performing a Von Neumann analysis we obtain the stability properties of the

schemes. Assume a solution in the form
¢} =T"exp (i j6) ¢°,

where § = kA (k is the wave number), 4 is the imaginary unit and T" is the amplifica-
tion factor. By substituting the assumed solution into the finite difference formulas
given in table 2.1 and defining ¢ = 1 — cos §, the amplification factors can be writ-
ten® as listed in table 2.2. The unconditional stability of the schemes can be proven
by verifying that the expressions enclosed in the “curly” brackets, {}, in table 2.2
are non-negative for the range of values ¢ and & may take. Note that in the long
wave limit, 6 — 0, all amplification factors converge towards neutral amplification,
IIT|| = 1 (since ¢ — 0 for 6 — 0). By having proved consistency and unconditional
stability of the family of least squares semi-Lagrangian schemes, the Lax equivalence

theorem ensures convergence of this numerical method.

2.2.1 Analysis

A contour plot of the amplification factors as a function of & and § is given in figures
2.2 and 2.3. The figures may be compared to the numerical dissipation in conventional
semi-Lagrangian schemes outlined in figure 1 of [McDonald, 1984] (the a-axes on
figure 1 in [McDonald, 1984] is not identical to the ones on figures 2.2(a) and 2.3(a)).

2a formal proof is part of the construction of the more general scheme (see chapter 3)
3details are given in Appendix A.3
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where the coefficients in the linear and quadratic cases are given by

(1) 1
AL = _ 4 14 (2) _ _1 4344142
+ T3Etga AL = -0+ 74
M _1 () _ 9 4 14 _ 1352
B 3 Bi'= {+a—za
For cubic and quartic fits the coefficients are given by
AP =—2c1s 162224 AD = B2 524 0 68 L
3 T 12 7 12 + = 256 T 3024 96 108 48
B _ 124 24 1 22 1 23 4) _ 1249 ~3 1 24
By’= gHE+3a—-d Fga B’ = 256i3024a+32a :Fmso‘ 16 &
(@) — 17T _ 132 (4) _ 75 4 163 & 17 22 _ 1 23 | 1 ~4
CV= 5 —7a Ci'= 1tr@—g® T30 +504

I —p+2

I —p+2

Table 2.1: Explicit formulas for up to fourth order accurate least squares schemes. ¢} is the numerical approximation

to the true solution ¢ at (z,t) = (A, nAt).

¢l
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IT@|? =1 = ¢ { (365 — 256! + 88962 1+ 2) + o (—%a® + 4568 — B2Lat + 5867 4 15
e (- 5+ BB’ - R+ ) |

Table 2.2: Explicit formulas for the amplification factors for up to fourth order accurate least squares schemes.

'™ refers to the amplification factor of the scheme using a straight line fit, I'® refers to ' of the scheme using a
parabola fit. IT'® and I'® refers to I' of the cubic and quartic schemes, respectively.
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Figure 2.2: Isolines of the modulus of the amplification factor, ||T'||, as a function of
& and kA for (a) the linear and (b) the quadratic least squares schemes. The circle,
o, marks the point where the linear scheme damp totally. Note that the amplification
factor is plotted for & exceeding the predefined d-interval (see equation (2.6)).
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Figure 2.3: Same as figure 2.2, but for (a) the cubic and (b) the quartic least squares
schemes. In (@) Qupnq, refers to the maximum unconditionally stable value of &.
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Linear and cubic schemes The amplification properties of the linear and cubic
schemes are quite similar. The amplification factors do not increase monotonically
as a function of wavelength. In the linear case the 3A wave is damped completely
for & = 0. The same happens when using the cubic scheme, but for the wavelength

given by

8. = cos ! (1 — @) ,

in terms of 0 (corresponds to a wavelength of approximately 2.67A). Having exceeded
the wavelength of maximum damping the dissipation decreases monotonically towards
neutral damping.

Figures 2.2(a) and 2.3(a) indicate that the schemes are stable even for |&| values
exceeding £. The linear scheme is unconditionally stable for |&| as large as \/g . The
amplification factor actually improves for |&¢| > . When considering only ampli-
fication properties, the original choice of p in equation (2.2), which was chosen for
symmetry reasons, seems not to be an optimal choice. In order to improve dissipation
properties of the scheme, one could shift the interval by the amount: \/g — %

The cubic case is similar to the linear one. |&| can take values as large as Gmag,

given by*

- %\/ 10850 — 70/13945,

without changing unconditional stability. When exceeding |&| = 3, the amplification

1
29

factor improves, apart from very short wavelengths (less than gA) Again, one could
simply shift the a-interval to improve dissipation properties. However, note that in
both cases a shift in the a-interval will not remove the regions of poorest amplification

properties (& = 0).

Quadratic and quartic schemes Figures 2.2(b) and 2.3(b) reveal that the choice
of p given by equation (2.3) gives a better amplitude representation than if, for in-
stance, p had been chosen by equation (2.2). Contrary to the linear and cubic schemes,
only very small wavelengths (less than 3A) would benefit from such a shift.

For given &, the damping decreases for increasing wavelength. In other words, |||

4 Qmas ~ 0.726
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is a monotonic function of §. Compared to conventional semi-Lagrangian schemes,
the damping is quite uniform with respect to varying & values. Unless the wave-
length is very short (less than 3A) the amplitude representation is best when the
departure point is located in the center of the fitting interval (& = 0). This stands in
contrast to conventional semi-Lagrangian schemes, which have the poorest amplitude

representation when the departure point is located midway between grid points.

2.3 Relative phase speed

Another calculable measure of the quality of a scheme is its ability to represent the

correct phase-speed. Write the numerical amplification factor in the form
I'= ||| exp (—iw"At),

where ||I'|| is given in section 2.2. By basic algebra with complex numbers we have

) %{F . e””m}
(27) w At = pk A — arctan (W .

iPkA may easily be computed from the expressions

The real and imaginary part of I'-e
given in appendix A.3. It is useful to characterize the phase error through the relative

phase change, R, which is defined as

Il

I’

w*
2.8 R=—
(28) i
where w is the analytical frequency given by kU. In terms of p and &, the wind speed

U can be written as

(2.9) T A. (p+ &) N odd
(p—f—éz—l— %) N even.

By using equations (2.7), (2.8) and (2.9), one can write down the explicit formulas

for the relative phase-speed error as a function of & and p.
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2.3.1 Analysis

A contour plot of R as a function of wavelength and distance between the x value of
the departure point and the x value of the arrival point is given in figures 2.4 and
2.5. These figures may directly be compared to figure 2 of [McDonald, 1984], if a
comparison to conventional semi-Lagrangian schemes is desired®. As for conventional
semi-Lagrangian schemes, the phase representation improves as advection becomes
more and more dominant (p increasing). For fixed & the phase errors decrease as the
wavelength increases (for linear and cubic schemes this is only correct if we require

the wavelength to be longer than the for & = 0 completely damped one).

Linear and cubic schemes A first glance at the contour plot of figures 2.4(a) and
2.5(a) unveils rather complicated behavior at short wavelengths. When the departure
point coincides with grid points, it was observed in section 2.2 that for a certain
wavelength the schemes were completely damping. At this (&, d)-point, w* is not
defined as R{I'} is zero, while {I'} is non-zero. In other words, this (&, d)-point
defines a singular point for R. When the departure point is in the neighborhood of
grid points and the wavelength is close to the for & = 0 completely damped one, the
relative phase change has strong gradients.

When the departure point coincides with grid points, the phase-speed represen-
tation is exact but the damping is maximal. When U is small (p = 0 and & small)
and the wavelength is less than or equal to the for & = 0 completely damped one, the
finite difference schemes become extremely accelerating.

It was noted in section 2.2.1 that these schemes were unconditionally stable and
less damping for |&| values exceeding % The question is whether the phase-error
improves as well ? Figures 2.6 and 2.7 show the phase representation when |G|
exceeds % for p equal to 0 and 1. Comparing to the original choice of p given in
figures 2.4 and 2.5, the phase representation improves as well when going to larger
& values. Considering both amplitude and phase errors, we may conclude that the

choice of p given in (2.2) is not an optimal choice. The scheme would improve both

Salthough the notation on the z-axises on the figures of this study and figure 2 in [McDonald, 1984]
differ, the axises are in fact identical
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Figure 2.4: Isolines of the relative phase change, R, plotted as a function of £ A and

departure point for (a) the linear and (b) the quadratic least squares schemes.
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Figure 2.5: Same as figure 2.4, but for (a) the cubic scheme and (b) the quartic

scheme.
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amplitude and phase representation by a simple shift of the a-interval. However, the
regions of poorest amplitude and phase properties are not eliminated by performing

a shift in the a-interval.

Quadratic and quartic schemes For these schemes there is no wavelength which
is completely damped, and R does not have singular points. By keeping & fixed,
the phase representation improves as the wavelength increases. Again, we can notice
an extreme acceleration when U approaches zero. This time the acceleration covers
nearly the entire range of wavelengths. An interesting fact is that the phase repre-
sentation is exact midway between grid points. So the damping is least and phase
representation exact when the departure point is furthest away from grid points,
a=0.

Ordering the schemes according to ability to represent phase is highly dependent
on where the departure point is located. It is not obvious which scheme is superior.
The odd-order schemes are preferable when the departure point is near grid points
and the even-order schemes are most faithful in between grid points. Performing
the above mentioned shift to the odd-order schemes would add more regions of little
phase-error in between grid points. It was also noticed that all schemes are quite
accelerating when U is little. The odd-order schemes, however, only demonstrate this

property for short wavelengths.

2.4 Possible improvements

Summing up amplitude and phase properties of the family of least squares schemes, we
must conclude that this approach does not provide any significant advantages in terms
of stability. However, in order to make a complete analysis of a numerical advection
scheme, one has to evaluate many other properties [Rasch and Williamson, 1990].
Rather than continuing the investigation of properties restricted to the family of least
squares schemes, a more general approach is taken. The generalization was triggered
by the poor results obtained and the subsequent question of whether improvements

within the least squares framework are possible or not. Answering this question
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Figure 2.6: Isolines of R as a function of & and § for the linear scheme for (a) p = 0,
(b) p = 1. For comparison, the d-axes is identical to the grid point axes of figure 2.2.
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Figure 2.7: Same as figure 2.6, but for the cubic scheme.
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may be used to motivate a more general analysis as demonstrated in the coming
paragraphs.

It might be argued that the least squares approach violates the principle of locality.
Near a grid point the least squares method weights all points equal. Consequently,
distant grid point values have as much influence as nearby grid point values. This
causes excessive damping at short wavelengths and prevents the scheme from being
exact when departure points coincide with grid points.

One way to improve the locality property is to make a, in principle, simple mod-
ification to the least squares method by introducing weighted least squares®. For

example, the weighted linear least squares scheme given by

gl 2(1+ &) o2 + Gos? " N 1+a)o*+ (1 —a)os?\ ,
I B O'12+4O'22+0'32 I=p=1 012+4022+032 I=p

N <2 (1—a)oy? — d012) n
012 + 4092 + 032 I-p+1>

where 0—12 (1 = 1,2, 3) are weighting functions. By applying this method, the influence
of diSta;lt grid point values can be reduced. The fit can even be made exact at grid
points if desired (o2 = 0). However, introducing weighted least squares also introduces
a non-obvious choice of weighting functions. Apart from general intuitive guidelines,
such as choosing distance dependent weighting functions (o; = 0;(&)), there seems to
be no straightforward way of constructing them. Relying solely on intuition might
be misleading. Instead of using a brute force method of simply trying out different
weighting functions one might try to take a more constructive approach. Based on
Taylor series expansions, we will derive a class of schemes which permit comparison of
possible convergent weighted least squares schemes, without explicit construction and
brute force testing of various “random” weighting functions. Investigating properties
of the latter class of schemes provides insights which are very useful when trying to

construct a feasible interpolation method for semi-Lagrangian schemes.

6see A.2.4



Chapter 3
A more General Scheme

Notation The same notation as introduced in chapter 2 will be used, except for
the definition of the interpolary parameter & given by equation (2.5). The former
definition was chosen in order to introduce symmetry in derived formulas and simplify
computations. In this context it will simplify notation not to let & depend on whether
the number of grid point values used during the interpolation, N, is even or odd.

Therefore redefine equation (2.5)

a=a—0p.

Note that the change in notation implies that (2.6) is no longer valid for N even, in

which case we have

(3.1) 0<a<l
In addition define

N N even N _1 Neven
(3.2) N-={ °? Nt={"2

“ [N N odd, (Y] N odd,

where [-] is the smallest integer less than or equal to the argument.

Again, consider the one-dimensional advection equation (2.1) and let it be defined

25
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on a periodic domain D, which is discretized using M equidistant increments of A.

3.1 Consistent schemes

In general, a semi-Lagrangian scheme using /N points for interpolation can be written

in the form

(3.3) ;H_l = A1¢?I—p+N*) + A2¢?I—p+N7+1) + e + AN_1¢?I—])+N+—1) + ANQS?I—p—FN"‘) .

The functions A;, Ao, ..., Axy_1 and Ay are to be chosen. In general, A; is a function
of & and grid point values ¢711*p+N—’ ¢?7P+N_+1, ""¢7Ilp+N+' Conventional schemes
using Lagrange interpolation, as well as the least squares method, use A;’s which are
only functions of the interpolation parameter & and do not depend on the specific
distribution. The same is the case for a weighted least squares scheme using weight
functions which depend only on &. If the A;’s are functions of grid point values,
the scheme becomes non-linear, which complicates the analysis. An example of a
scheme using distribution dependent A;’s is one which uses Hermite interpolation.
Note that a scheme using spline interpolation is not' a scheme on the form (3.3). A
spline interpolant is a global interpolation method contrary to local ones which only
use a fixed number of neighboring grid point values. Clearly (3.3) defines a local

interpolant.

To facilitate the coming analysis consider distribution independent choices of
the A;’s unless else is explicitly stated. Thereby we formally exclude Hermite type
schemes from the coming analysis and narrow the discussion to schemes using local

interpolators.

lunless N = M
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3.1.1 Truncation error

Substitution of Taylor series expansions about the departure point, (z,,t"), into the

general finite difference formula (3.3), yields the truncation error

Ya

(34) (1—Ai— Ay~ .- Ay)
ii A(@+N)"+A(@+N + 1)+ +Ax(G+NT)"] omy| A™
— il | oz |, At’

where 14 = (x4, nAt). Obviously a necessary condition for consistency is that
(3.5) A+ Ay + A3+ ...+ Ay =1.

Furthermore, inspection of the first term in the sum reveals that a second necessary

condition for consistency is that this term vanishes as well, i.e.
(3.6) Ay (G+ N7 )+A3 (G4 N+ 1) 4.4 Ay 1 (G+ Nt —1)+Ay (64 N*) = 0.

These two conditions guarantee that the scheme will be consistent and at least of
order O (At A, At) Note that, in general, we must require the Courant number to
be held constant when performing the limit At, A — 0. Higher order formal accuracy,
say kth-order, is obtained by fulfilling (3.5), (3.6) and by assuring that all terms in
the sum (3.3) from m = 2 to m = k — 1 vanish. The A;’s yielding maximum order of

accuracy are calculated by solving the system

A1+A2+A3++AN—1 :0,
Ai(@+N)+..+Ay(a+NT) =0,
A (G+N) 4. +Ax(@+ N =0,

A(a+N) T+ L+ Ay @+ N =0,
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of N equations for N unknowns. Consequently, the coefficients, Ay, ..., Ay_1 and
Ap are uniquely determined and can easily be shown to be equal to the coefficients
of the (IV — 1)th-order conventional Lagrange interpolator. It is evident that seeking
even higher order accuracy will result in having to solve an overdetermined system of
equations, which in general does not have any solution. Hence the highest possible

order of accuracy is (N — 1)th-order.

Given the number of grid points one wishes to use for the interpolation, con-
ventional Lagrange interpolation is optimal in terms of formal accuracy. High order
of spatial accuracy is, of course, a much desired property. However, in the vicinity
of discontinuities or shocks the former analysis based on Taylor series expansions is
rather useless. Increasing accuracy may even be counterproductive in the vicinity
of abrupt changes in the field ¥. Other important information not revealed by an
accuracy analysis is information about concepts like monotonicity and conservation.
These are among many properties which are important to consider when trying to

construct a feasible scheme for modeling of geophysical flows.

Relaxing one order of the maximum obtainable accuracy creates one degree of
freedom. The idea is to exploit this degree of freedom in order to try and enforce
desirable properties. The least squares interpolation method is of (N —2)th-order, i.e.
one order less than the maximum obtainable order of formal accuracy. The scheme
did not improve amplitude or phase properties. However, it will be shown shortly,
that the least squares scheme is only one among many convergent (N — 2)th-order

schemes on the form given by equation(3.3).

For simplicity let N be equal to three. The results are, however, in general charac-
teristic of equivalent higher order schemes using more points during the interpolation

Pprocess.
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3.2 General three point schemes

Solving the two consistency equations, equations (3.5) and (3.6), for A, and Aj yields

A2:1+d—2A1,

(3.7)
Ag = A1 - éz .

Hence consistent three point schemes are on the form
n+1 n ~ () y n
(3:8) O = AL gt + (L4 6= 241) ¢+ (A1 = &) ¢y,

where A; is the free parameter. Note that varying A; may be regarded as an analysis
of the possibilities in introducing weighted least squares, since by proper choice of A,
any linear and consistent three point semi-Lagrangian scheme can be written on the
form (3.8). For example choosing A; equal to & in (3.8) yields the conventional first
order semi-Lagrangian scheme?, A4; equal to &(1 + &) results in the conventional
quadratic semi-Lagrangian scheme and A; equal to % + %d yields the linear least
squares scheme. As will be shown shortly, these are only three out of many conver-
gent schemes on the form (3.8). Instead of constructing rather “random” weighting
functions, which might result in unstable schemes, the “free parameter” approach

seems more constructive.

3.2.1 Stability analysis

Performing a Von Neumann analysis yields the amplification factor and relative phase
speed. Performing the substitutions outlined in sections 2.2 and 2.3 yields the squared

modulus of the amplification factor

(3.9) T =1—2¢ (24, — & — &%) — 44,¢% (& — Ay)

2only if @ > 0, otherwise the central grid point,zr_,, does not correspond to the one of the
conventional semi-Lagrangian scheme
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and the relative phase speed

R 1 51+ arctan & sin o
Toarp) P MM T T 1 cos0) (24, —a) ) [

where 6 = kA and ¢ =1 — cos .

Amplification factor of convergent schemes

To guarantee the highly desirable property, unconditional stability, the following
lemma imposes bounds on the values which A; may take. The proof is given in

appendix A.4.

Lemma 1 A consistent three point scheme is unconditionally stable if and only if A;

s in the interval given by

[A7, AT] = [3a(1 +4),5(1+a)] -

We will refer to A and A~ as the maximum and minimum unconditional stable value
of A;, respectively®. As a consequence of Lax’s theorem, the family of schemes on
the form (3.8) are convergent when A, is in the above interval. The squared modulus
of the amplification factor is plotted in figure 3.1 as a function of wavelength and the
free parameter A; for selected & values. Note that the A; value corresponding to the
conventional quadratic Lagrange interpolation yields overall optimal amplitude prop-
erties. This is true for all valid & values. Hence, the three point scheme with highest
possible formal accuracy has superior amplification properties. It will, however, be
demonstrated later that this is not always the case for schemes using more points
during the interpolation process. Figure 3.1 also shows that there exists no A; value

for which all wavelengths are non-damped or equally damped.

3the notation A~ and A* has nothing to do with N~ and Nt defined on page 25
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AQcL Ach A* ALCS A+
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Figure 3.1: Isolines of the squared modulus of the amplification factor plotted as a
function of A; and ¢ for (a) & = I and (b) @ = —3. The circles/(bullets), o/(e), mark
the points where the scheme is completely/(neutrally) damping. A* is explained in
section 3.2.1. A%S/(Al°l) denote the A; value resulting in the linear least squares
scheme/(first order conventional semi-Lagrangian scheme). Similarly, A%L is the
A; value for which the scheme equals the conventional quadratic semi-Lagrangian
scheme. Note that A%l is equal to A~.
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Relative phase speed of convergent schemes

Optimizing the relative phase speed, R, with respect to A; is less obvious than op-
timizing the amplification factor. We do not have a requirement of keeping R less
than some value as was the case when considering amplification. However, we have
restrictions on A; from the amplification analysis. An additional complication is that
R is a function of (A;,&,d,p). Therefore visualization including all parameters is
impossible. From experience with conventional semi-Lagrangian schemes as well as
the least squares schemes, the phase speed properties improve when advection gets
more and more dominating (p increasing). Therefore in most of the coming analysis
we consider only the expected worst case of p = 0. By keeping either & or ¢ fixed we

can make contour plots of R and analyze the tendencies at different A; values.

2A wave Begin the analysis by considering the shortest resolvable wavelength (§ =

7). For that wavelength R reduces to

_ mp+im {1l —sgn(l—44;, +2a&)}

R
7 (p+ &)

Y

where sgn() denotes the signum function which equals 1 if the argument is positive
and —1 if the argument is negative. For fixed p and & values there is a discontinuous

jump at the A; value, A*, given by*

A*

I
NS
+
I
o}

between two constant values

RT for A} > A*

R|, .=
f=28 R~ for A; < A*,

“note that A; = A* also marks the point where the 2A wave is completely damped (see figure
3.1)
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Figure 3.2: Isolines of the relative phase speed R for & = i are plotted as a function
of (Ay,6) for (a) p=0 and (b) p = 1. Notation is equivalent to figure 3.1. Note that
A* marks the abrupt change in R at short wavelengths, as well as the A; value for
which the 2 A wave is completely damped. Its value is given by equation (3.12).
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where

p and Rt = btsen(@)

(3.10) R = - -
p+a pt+a

Note that increasing the p value reduces the discontinuous jump. In the special case

of p equal to zero R* reduce to

(3.11) R~=0 and R'=

Q=

Consequently, Rt — oo for @ — 0, which is an unfortunate property. For arbitrary

p values we have
IR 1| < [|RT =1 & |&] < [sgn(&) — & ,

which demonstrates® that, except for & = —%, R~ is always closer to 1 than R*.
So in terms of phase properties of the 2A wave it is preferable to choose A; such

that

(3.12) A < A*.

Constant interpolary parameter, & = i Now keep & constant at the represen-

tative value of %. Figure 3.2 shows that not only for the 2A wave, but for all short
wavelengths, fulfilling (3.12) results in superior phase representation. The overall op-
timal choice of A; in terms of phase speed seems to be in the vicinity of A* (see figure
3.2), which is very close to the overall worst amplitude representation, A; = A*.
This is yet another demonstration of the tedious reality often encountered when
working with numerical advection algorithms: Improvement of one property comes
with the magnification of the error of another property. In this case an improve-
ment in phase properties will worsen the overall amplitude representation and vice
versa. It is not clear how phase and amplitude error should be weighted when choos-

ing an optimum value of A;. Nevertheless, in this simple case any choice of A; will

<a<

N =

Susing that —1
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produce a scheme with a numerical diffusion too high for any practical use. Advan-
tages are, however, not negligible when using first order methods selectively in the
vicinity of shocks or discontinuities [Bermejo and Staniforth, 1992]. First order meth-
ods can also be used in a post adjustment algorithm to insure conservation of mass
[Priestly, 1993]. Moreover, the first order schemes show characteristics which are to
be found in equivalent higher order schemes. Arguments for thorough investigation

of first order methods are numerous.

3.2.2 Conservation

When the wind speed U is constant and when we use periodic boundary conditions,

we have the conservation property

o [t .
(3.13) &/0 Wi de =0,

for any integer k. We say that the £th moment of 1 is conserved. In the analytical
case any moment of ¢ is conserved. It is desirable that discrete analogs of (3.13)
are fulfilled as well. The following theorem demonstrates that the first moment is

trivially conserved®.

Theorem 2 Consider the general three point semi-Lagrangian scheme (3.8) and sup-
pose the domain is of length M. Furthermore, assume periodic boundary conditions.

If Ai + Ay + A3 =1, then the scheme has the discrete conservation property

S

-1

S

-1

1
o1 =) 9F-
0

~
Il

0

~
Il

In general conservation of higher moments of ¢ is not guaranteed.

6the proof is given in appendix A.4
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Second moment conservation

Define the schemes deviation from conservation of the second moment of 1), denote

the error &, as

(3.14) £= Z_ {07} - Z_ {ort1}”.

Substitute the formula for consistent three point schemes (3.8) into (3.14) and rear-
range terms using periodic boundary conditions. Then the error, £, can be rewritten

as

(3.15) E=2P(2A,—a—38%) +4QA, (6 — Ay,

where

P
Q

3 [or (67— or)] s
ST er (ot — 207, + L60s)]

where the sum is from 7 =0 to M — 1.
Solving the quadratic equation
(3.16) £E=0,

for A; (at each time level) will yield a scheme which conserves Y ¢?. The two solutions
of (3.16) are

_P+aQ+VP?+4a2Q2-242PQ
= 20 :

(3.17) A

Either value of A; can not be eliminated using stability arguments, since by conserva-

tion the solution is bounded. Instead, consider the special case where the departure
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point coincides with grid points, i.e. & = 0. Equation (3.17) reduces to

P+P
20

(3.18)

If A, vanishes, the numerical solution will be exact. This suggests that choosing the
minus solution in (3.17) is the physically relevant one. Test simulations advecting
various profiles (isolated waves as well as more complicated initial conditions) for
arbitrary & values support this choice. Hence, the plus solution in (3.17) is definitely
eliminated.

Although the conservative scheme will turn out to be rather theoretical, because
of intrinsic problems with extending the method to higher dimensions and non-trivial
flows, some interesting observations may be made. For the moment restrict the anal-

ysis to a very simple situation.

Pure waves

Consider the isolated wave of domain length, MA. It is obvious that £ and the
squared modulus of the amplification factors deviation from neutral damping, 1 —
|T||%, are proportional. Nevertheless, a mathematical proof of the latter statement
will be given, since extrapolation of the results may be used to interpretate the second
moment conservative scheme when applied to arbitrary distributions.

First of all, note the similarity in form between (3.15) and the deviation from

neutral damping,
1—||T|° = 2¢ (241 — & — &%) + 44,2 (6 — Ay) .
This observation motivates the following lemma.

Lemma 3 For the MA wave defined on a periodic domain of length MA we have

2
M

2

d = —.
an i

9l o
SIIRY
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1 T T T
Conserve 2™ moment —>—
1L | Quadratic Lagrange —e—
2 Exact solution
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Figure 3.3: The 10A wave after four complete translations of the periodic domain
using a three point semi-Lagrangian scheme with interpolation conserving )2 and the
conventional semi-Lagrangian scheme. All dimensional variables are written in SI
units.

Insertion into the formulas of £ and 1 — ||I‘||2 proves the proportionality. From lemma

3 we have

2w A _ 4 Q
(319) T = COS (]. - 5) y

i.e. given the grid point values of an arbitrary pure wave one can, with the aid of P
and Q, compute the wavelength of the pure wave. Note that there exists no choice of
A, for which the scheme conserves 1?2 for arbitrary wavelengths. To find an A, value
for which the scheme is neutrally damping one must solve (3.17). As can be depicted
from figure 3.1, we must leave the unconditionally stable interval defined in lemma 1
to find a neutrally damping’ value of A,. Figure 3.3 shows the 10A wave advected
160 time steps using a three point semi-Lagrangian scheme conserving 2 and, for
comparison, the conventional quadratic semi-Lagrangian solution. In principle, the
algorithm recognizes the isolated wave (finds ¢) and can thereby choose a neutrally
damping value of A;, for example by equation (3.9), as if we knew the wavelength

beforehand. Evidently, the scheme is neutrally damping but more dispersive than the

Tunless the pure wave is the 2A wave and 4; = AT or & = 0 (see figure 3.1)
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‘ Interpolation method ‘ (a) EDISS EDISP H (b) EDISS EDISP ‘
Conservation of 2" moment 0.12(-16)  0.97 0.30(-18) 0.33(-1)
Quadratic Lagrange 0.12(-1) 0.79 0.18(-3)  0.28(-1)
Least squares - - 0.41(-1)  0.12(-1)

Table 3.1: (a) Eprss and Eprsp after 160 time steps advecting the 10A wave (see
figure 3.3) and (b) after 200 time steps advecting the sine squared wave (see figure
3.4).

conventional semi-Lagrangian scheme.

Arbitrary distributions

A simulation of a less trivial test profile has been performed. To judge the results
by other means than their degree of being visually pleasing, some calculable measure
of error is used. The variable chosen to make the analysis quantitative is the mean-
square error. Following [Takacs, 1985], the mean-square error is divided into two
parts, one indicative of dissipation error, Fprsg, and one indicative of the dispersion

error, EDISP,

% Z (d)? — @[)?)2 = FEprss + Eprsp,
j=0
where
(3.20) Eprss = [0(8) —o W) + (6-9)",
(3.21) Episp=2(1-p) o(¢) o(¥),

where 97 is the analytical solution evaluated at time nAt and at z value jA. U
denotes the mean value, o( ) the standard deviation and p the correlation coefficient
between the numerical and analytical solution on the set of grid points: 0, A, ...,(M —
1) A.

Note that when two wave patterns differ only in amplitude, but not in phase, their
correlation coefficient p is one. According to (3.21), Eprsp = 0, which is a reasonable

result.
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Quadratic Lagrange ——

Least squares —n

1.0 -

Exact solution —

0 10A 20A 30A 40A 50A

Figure 3.4: Integrating the one-dimensional advection equation for 200 time steps
using different three point methods. The initial condition is a sine squared wave.
The legends indicate interpolation method used. All dimensional variables are given
in ST units.

In table 3.2.2(a) Fprss and Eprsp are listed for the simulation of the 10A wave.
As expected, the dissipation error Fprgs indicates neutral damping and Eprsp con-

firms increased dispersion for the conservative scheme.

The second simulation is the advection of a less simple test profile

0 for 0 <z < 20A
Y (z) = { sin? (ﬂ-(xl_()i)A)) for 20A <z < 30A
0 for 30A < z < 50A,

which consists of a sine-squared wave of width 10A. 1 as well as all its derivatives
are continuous guaranteeing a smooth initial distribution. The profile has strong
gradients, which is often of great challenge for the numerical scheme. Figure 3.4
shows the sine-squared wave after one complete translation of the periodic domain
using different interpolators. The corresponding errors associated with dissipation

and dispersion are to be found in table 3.2.2(b). Note that the dissipation error of
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the 1% conservative scheme is negligible. The same result as for pure waves. As
expected, the least squares interpolator is excessively damping, reducing the initial

profile to a near constant.

The value of A; may vary during the integration process using the conserva-
tive scheme. Slight monotonic increase from the value of 0.15371 to 0.154232 is
observed. These values are slightly outside the unconditional stable interval [A~ =
0.15625, AT = 0.62500] of A; values.

The P and @ values, which are part of the conservative algorithm, might be used
together with the results of section 3.2.2 to give a generalized interpretation of the
A; value yielding conservation of the second moment of . Although the results
of lemma 3 are derived for pure waves only, one could extrapolate by substituting
P and Q into equation (3.19) to find the pure wavelength for which the scheme is
neutrally damping. The wavelength found using the above extrapolation increases
monotonically from a value of 10.56 A to 11.88 A during the simulation. So the
neutrally damped wavelength chosen by the algorithm seems to describe the scale of
the disturbance. Figure 3.5 shows the squared modulus of the amplification factor
as a function of wavelength for the start and end value of A; calculated during the
simulation (for comparison also for the value of A, yielding the 2nd-order conventional
semi-Lagrangian scheme). The conservative scheme is slightly unstable for longer
wavelengths and less dissipative than the conventional semi-Lagrangian scheme for

shorter wavelengths.

Once an A; value is chosen, the scheme will be neutrally damping for the particular
wavelength, as described in the above interpretation of the conservative choice of
A;. The distribution is, however, a superposition of many wavelengths. Hence,
dispersion will be present as the class of semi-Lagrangian schemes are unable to
produce equal or no phase errors at all wavelengths for a fixed A; value (see figure
3.2). From figure 3.4 it is apparent that the dispersion errors of both the conventional
semi-Lagrangian scheme as well as the 1? conservative one produce strong trailing
waves. Qualitatively, these trailing waves are identical though slightly more damped
using the conventional Lagrange interpolant. As the waves disperse, undershoots and

overshoots are produced. Furthermore, the shape of the initial profile is distorted.
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Figure 3.5: The squared modulus of the amplification factor as a function of wave-
length, L, given in units of A for selected A; values.

This indicates that closely related to dispersion errors is the concept of monotonicity.
Modeling physical quantities monotonicity (or rather the lack of it) gives rise to great

concern and deserves a section of its own.

3.2.3 Monotonicity

If 9 represents the concentration of chemical constituents, humidity or any other
positive definite quantity, the results obtained with the conventional semi-Lagrangian
scheme and the conservative scheme pose major conceptional problems. The numer-
ical advection scheme erroneously produces areas where the field is negative, contra-
dicting underlying physics. Negative humidity or concentrations are, of course, not
physical acceptable. Less noticeable, but equally serious, are areas of overshooting.
For example, if the concentration of water vapor during an overshoot erroneously
supersaturates, irreversible physical parameterizations are invoked. This might result
in spurious precipitation if the advection scheme is part of a forecast model.

It is quite clear that undershoots and overshoots might trigger physical processes
to spurious behavior which alter the subsequent evolution of the system. Special care
to try to avoid this unfortunate behavior is highly recommended, if not a necessity.

Spurious numerical oscillations in regions of steep gradients of the interpolated

variables are eliminated if the scheme is monotone. A monotone scheme is free of
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undershoots and overshoots, since monotonicity by definition prevents the formation
of new extrema. The class of linear monotone schemes is, however, very limited.
Godunov’s theorem [Godunov, 1959], which states that any linear, monotone scheme
is of most first order accurate, excludes the majority of feasible schemes. Note that
even if the scheme is only of first order, monotonicity is not guaranteed. Requiring
preservation of monotonicity sacrifices accuracy to such an extent that in many ap-
plications these schemes are condemned useless. Nevertheless, selective use of linear
schemes in numerical algorithms can make the highly diffusive first order methods

feasible for practical use as discussed in section 3.2.1.

The consistency requirements (3.7) guarantee first order accuracy and keeping A,
not equal to A~ implies less than 2nd-order accuracy. Hence, there is no conflict
with Godunov’s theorem but, as already noted, a linear scheme is not necessarily
monotone. This will be demonstrated in the coming monotonicity analysis of the

general three point semi-Lagrangian scheme.

By definition, a finite difference scheme expressed in functional form

?H =H (¢I—N—, ey ¢I+N+) )

is monotone if

8H (¢I*N_7""¢I+N+) >0
9 T

for each integer 7 in the interval [[ — N, I + NT]. For the general three point semi-

Lagrangian scheme (3.3) the condition for monotonicity is simply
A;j >0 for j5=1,2,3.

Using the consistency equations (3.7) and that A; has to be non-negative, the finite

difference formula is monotone if and only if the value of A; is restricted to
max (0,&) < A; < AT

Note that if @ > 0 then A'F = 4. Looking at amplification properties on figure 3.1 it
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is evident that any value of A; larger than A'¢’ will worsen the overall amplification
properties. So, in terms of dissipation properties, the conventional linear Lagrangian
scheme is the optimal monotonicity-preserving scheme. Again, phase properties may
be improved while keeping the scheme monotone, but with the consequence of major

increase in overall damping.

Fixers

In order to suppress monotonicity violating overshoots and undershoots characteristic
of quadratic and higher order interpolation schemes, one may adopt linear interpola-
tion in regions of step gradients [Bermejo and Staniforth, 1992]. The quasi-monotone
algorithm presented in [Bermejo and Staniforth, 1992] alters the high order interpo-
lation if it overshoots or undershoots. The method has very straightforward imple-
mentation: After the high order non-monotone interpolation, the resulting value is
restricted to stay within the interval bounded by the two surrounding grid point
values of ¢ used during the fit.

In this context, the altering of grid point values may be viewed as a modification
of the A; value. A consequence of altering A; values is that conservation of first
moment might be violated. Again, a good example of how improvement of one
property is invoked at the expense of another. Furthermore, fixers may introduce
excessive numerical diffusion that smears out sharp features of the interpolated fields.
It is, however, a necessity to use fixers if a scheme produces non-physical values during

undershoots, unless the scheme is intrinsically positive definite.

3.3 Higher order schemes

By using more than three points during the interpolation process, the formal accuracy
may be increased to more than first order. In a N point scheme the requirement of
at least (N — 2)th-order accuracy results in one free parameter. Hence, an analysis
that in principle is identical to the one of the three point scheme can be carried out.

We will consider up to at least 4th-order accurate schemes i.e. up to N = 6.
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3.3.1 The schemes

Consider an N point scheme on the form (3.3). The definitions of N*, p and & are
unchanged. Following the procedure for obtaining at least (N — 2)th-order accuracy,
outlined in section 3.1.1, one obtains a family of schemes which all have similar forms.
They can all be split into a part which is identical to a (N — 2)th-order Lagrange
interpolation®, denote it £, and a product between the free parameter A; and a rest

term, which will be denoted R. That is
?—H - E + R . Al s

where £ uses ¢} 1, 7 N9 e OF o+ fOr the interpolation®. The rest
term, R, is given by
72— 3011+ 3 97— &1, for N=4
R = T o— 4¢7 ,+ 6 97 —4¢7  + P, for N=
7_3—5 @7 o +10 ¢7_, —10 @7 +5 ¢7,, — ¢}, for N =6.

3.3.2 Stability analysis

The amplification factor and the relative phase speed are obtained by a standard
Von Neumann analysis (see section 2.2). Again, the formulas can be split into a part

related to the Lagrange interpolation and a part related to the rest term R - A,
ITI* = Tl + [IT= 1%,

where [|T'z||? is the squared modulus of the amplification factor resulting from the

Lagrange interpolation £. ||[I'z|? is a rest term'® introduced by R - A;. Explicit

8but, in general, not identical to the Lagrange interpolant of a conventional scheme (the central
point z;_, for the two interpolations are not always identical)
9the explicit formulas for £ can be found in appendix A.5

10T is not the amplification factor of the scheme ¢! =R - 4,
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formulas for ||T'z||* and ||T'z||? for up to six point schemes can be found in appendix

A.5 as well as the explicit formulas for the relative phase speeds.

In order to be able to visualize stability properties, consider two situations: One
where the departure point is located iA upstream from x;, and another where z,
is located 3A upstream from z;. Plotting isolines of ||T'||* and R as a function of
(A1, 0) for the selected departure points using the four point scheme (figure 3.6), five
point scheme (figure 3.7) and six point scheme (figure 3.8), one quickly notices that
all schemes show similar stability properties in a qualitative sense. Therefore the
variables AT, A=, A* A/£S (j = N —2) and A7°" (j = N—1orj = N —2),
introduced during the three point analysis to mark A; values resulting in schemes of
interest or qualitative changes in stability, can be used equivalently for this analysis.
That is, A* refer to the maximum and minimum unconditionally stable value of A;.
As in the three point case we find that all schemes damp the 2A wave completely at
Ay = A*. Ay values resulting in schemes of interest are denoted with superscripts LS
or cL referring to least squares schemes or conventional semi-Lagrangian schemes.
The numbers in the superscript refer to the formal order of accuracy of the schemes.
For example, A3£S refers to the A; value resulting in the 3rd-order least squares
scheme. Explicit formulas for all of the before mentioned values of A; are listed in

appendix A.5 for the four, five and six point schemes.

Symmetry in the amplification factor As may be noticed on figures 3.6, 3.7
and 3.8, the squared modulus of the amplification factor, ||T'||?, which is a function
of the free parameter Ay, the interpolary parameter &, and the wavelength expressed
in terms of ¢ (we will write ||T" (A4, &, c)||?), has the following symmetry property

2
HF(A“L|1_& —AA,1-a, c) H for N even

2

P (a7], + 24,40

N (4|, +a4, —d,c)H2 for N odd,

where AA can be any real number and A*|_ signifies the evaluation of A* replacing

& with z in the formula for A*.
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Optimal amplification properties During the analysis of the three point scheme
it was noticed that the A; yielding maximum accuracy corresponded to the (N —1)th-
order conventional semi-Lagrangian scheme. Furthermore, this A; value was located
at one of the end points of the interval of A; values, securing unconditional stability.
When using more points for the interpolation, these observations are only correct if
N is odd.

Let N be even. In that case AN~YeL islocated in the interior of [A~, A*] and does
not yield superior amplification properties. Note also that the (N —2)th-order conven-
tional semi-Lagrangian scheme has dissipation properties superior to the (N — 1)th-
order conventional scheme. The A; value generating a scheme with overall superior
dissipation properties is to be found at either AT or A~, depending on the sign of é.
More precisely, an optimal choice of A; value regarding overall amplification proper-
ties is to be found at

A~ for @ <z (N even)

A1 =
At for & >

N[ N

(N even),

(N-1)

For a given N, choosing A; equal to A L defines a scheme with near optimal

phase speed properties for longer wavelengths. Note that the isoline indicating exact

(N—1)cL

relative phase speed, R = 1, converges towards A in the long wave limit.

The relative phase speed of the 2A wave As in the three point case, for fixed
& and p values the relative phase speed of the shortest resolvable wave can take two
constant values, either Rt or R~, depending on the value of A;. These limit values
of R do not depend on N. Again, the range of A; values for which the relative phase
speed is equal to RT, and the range of A, values for which R is equal to R™, are
separated by A; = A*. However, if for example A; is less than A*, it is dependent on
N whether R will take the value RT or R~. See appendix A.5 for details concerning
the four, five and six point schemes. About the performance of the scheme with

respect to phase errors in the 2A wave limit, one may generally conclude: If N is
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even, then
R~ is always closer to one than R™ for & <

N N—

R* is always closer to one than R™ for & >

For odd N, R~ is always closer to one than R*. On figures 3.6, 3.7 and 3.8, note
that A; values resulting in conventional semi-Lagrangian schemes are always located
in the interval of optimal limit value of R. Furthermore, note that this is not the case

for the least squares schemes.

General comments on stability properties As superior amplification and phase
speed properties are not found for equal A; value, some kind of compromise must
be made if an optimal value must be chosen. It seems plausible that it is located in
between the A; value yielding optimal dissipation properties and the A; value towards
which the R = 1-isoline converges in the long wave limit. Note that the least squares
schemes are always outside this interval and that A; values yielding conventional

semi-Lagrangian schemes are always located in this interval.

3.3.3 Beyond the stability analysis

In order to try to gain a more practical understanding on how the more general
schemes perform in situations more complicated than the pure wave case, a series
of advection experiments have been performed. In conventional semi-Lagrangian
schemes the 3rd-order interpolator is often selected, since it seems to be a good com-
promise between accuracy and computational efficiency [Staniforth and Cété, 1991].
Therefore we choose the general five point scheme, which is at least 3rd-order ac-
curate, for the advection experiments. In literature, numerous simple profiles have
been used for numerical tests of the performance of schemes of interest: For exam-
ple, the rectangular wave, Gaussian distribution, sine squared cone and the irregular
signal described in [Smolarkiewicz and Gabowski, 1990]. In the coming advection
tests, qualitatively similar results are obtained when advecting all these distribu-
tions. Using the rectangular wave as initial condition, the errors are more apparent

and serves well for illustrative purposes. Therefore we will focus on this distribution
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although geophysical fields of interest might have quite different distributions. One
should, however, keep in mind that a scheme may perform miserably using one test
function and work very well with other test distributions (an example is given in
[Ostiguy and Laprise, 1990]). Therefore results of simple advection tests should be

taken with a grain of salt.

A 10 A wide rectangular wave is advected 200 time steps on a domain of length
50A with constant wind speed corresponding to & = % and p = 0. The initial distri-
bution, after having been advected one domain length using the five point scheme, is
depicted on figure 3.9(a,b,c) for selected A; values. Also to be found on one of the

plots on figure 3.9 is the mean square error, Fp;ss and Eprsp as a function of A;.

The numerical solution, after one complete translation of the domain, undergoes a
series of qualitative changes in shape as a function of A;. In a narrow interval starting
at A~, the solution is exceedingly noisy (figure 3.9(a)). Increasing the A; value a bit
makes the solution smooth and free of small scale noise. Increasing A; even further
improves the schemes ability to localize the discontinuity of the true solution (figure
3.9(b)). Note also that the solution is symmetric around x = 25A. This symmetry
is broken by further increase in the A; value (4; > A%L) and stronger trailing
waves develop (figure 3.9(c)). On the plot of the practical measures of total error,
dissipation error and dispersion error (mse, Eprsp and Ep;ss), it may be noticed that
an increase in A; improves all of the three before mentioned error measures, except
in a narrow interval starting somewhere in between A% and A*. The minimum
in Eprgp, A1 = A, is located at an A; value larger than the optimal value of
A; for the phase speed representation observed during the Von Neumann analysis.
Eprss decreases monotonically as a function of A;, as was also observed for the
amplification factor for wavelengths longer than the 3A wave. Note that the error
representative of numerical dissipation is approximately one order of magnitude less
than the dispersion error, Eprsp. Increasing A; to the largest unconditionally stable
value improves Eprgss even more but the trailing waves start to disrupt the shape of
the solution. On figure 3.10 measures of the conservation of first and second moment
of 1 are plotted, as well as the maximum overshoot and undershoot. The scheme

automatically conserves mass as has been proven for the three point scheme. Second
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Figure 3.9: (a,b,c) Results of advection tests for selected A; values using the five point scheme and a rectangular wave as

initial distribution (n = 200, U = %21 The so d 11 ows the exact solution. (figure in lower right corner)
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0.8
A~ ASES A* A3cL A4cL

Figure 3.10: The largest overshoot, the largest undershoot, the schemes ability to
conserve first and second moment of ¢ as a function of A; for the advection experiment
as described in the caption of figure 3.9.

moment, conservation improves for increasing A; as was also observed for Ep;gg. If
one increases A; so that it exceeds A* the scheme will conserve 2. Unfortunately,
the trailing waves, which are very strong already for A; = A™, will grow even more
in amplitude if A is increased beyond A™. Hence, the 2nd-order conservative scheme

is not of any practical interest.

If positive definiteness is indispensable, one may eliminate undershoots by imple-
menting the quasi-monotone algorithm of [Bermejo and Staniforth, 1992] described
in section 3.2.3. The numerical advection experiments just described have been per-
formed with this algorithm (see figure 3.11). For A; = A~, the noise of the previously
observed numerical solution is filtered away. Again, the accuracy improves for increas-
ing A, except for a very narrow interval ending at A; = A*. Now the minimum in
the mean square error and Fp;sp is smeared out. Furthermore, the error measures
(mse, Eprss, Eprsp) have increased in magnitude, especially Eprss. The advantages
in using the free parameter approach to minimize error measures seem to have been
more or less neutralized by the post-adjustment algorithm. With respect to these er-
ror measures the 3rd-order and the 4th-order conventional semi-Lagrangian schemes

seem to be near optimal.

During the analysis the interpolary parameter has been kept constant. One might
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Figure 3.11: Same as figure 3.9, but performing the simulation with the implementation of the
algorithm of [Bermejo and Staniforth, 1992].
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T
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Figure 3.12: Isolines of Eprsp as a function of the free parameter o and A; (in
terms of the dimensionless variable p) after advecting the 10A wide rectangular wave
one complete translation of a 50 grid point domain. The dash-dot line mark the A
values yielding the 3rd-order least squares scheme, and the dotted line the A; values
resulting in the 3rd-order conventional semi-Lagrangian scheme. Note that p =1
corresponds to A; = AL,

question how the scheme performs at other & values. To illuminate this question a
simulation similar to the one discussed in [Takacs, 1985] has been performed. Con-
sider the previous setup for the advection experiment without the quasi-monotone
algorithm: A 10A wide rectangular wave is advected a 50A distance, i.e. one com-

plete translation of the domain. The wave is advected for o ranging from 0 to i

2
and for A; values ranging from the minimum to the maximum unconditionally stable
value. Having completed a simulation for given («, A;), the dispersion error is cal-
culated and scaled by the maximum mean square error and the number of iterations
required to advect the rectangular wave the 50A grid point distance. Hence, one gets
a more complete picture of how the scheme performs at different wind speeds and A;
values. The result of the before mentioned simulation is shown on the contour plot
on figure 3.12. Note that the tendencies observed during the analysis where & was
kept fixed are qualitatively identical to the ones observed at other wind speeds. If

desired, one could fit the line yielding minimal Fp;sp to obtain A; as a function of
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«, providing a scheme which is optimal with respect to Ep;sp.

o7



Chapter 4
Conclusions

A thorough investigation of the possibilities in improving linear finite-difference semi-
Lagrangian schemes to solve the one-dimensional advection equation has been carried
out. The starting point of the analysis, the least squares approach, did not provide
any significant advantages, but served as a motivator for developing a more general
scheme. The class of stable schemes included any linear semi-Lagrangian scheme
which use the same number of points for the interpolation, and facilitated comparative
analysis between the least squares and conventional approach. Given the number
of grid points one wishes to use for the interpolation, it was confirmed that it is
possible to construct schemes with slightly improved properties by carefully tuning
the free parameter. Nevertheless, the more general analysis strongly suggested that
conventional semi-Lagrangian schemes perform quite well, and it might be argued that
the additional work required in the free parameter approach is worth while. None of
the schemes succeeded in removing spurious ripples and related monotonicity violating
phenomena without post adjustment algorithms. A second moment conservative
scheme was constructed, but experiments demonstrated that the scheme was not of
practical interest.

To be eligible for use in larger models, an advection algorithm must nearly always
be at least two-dimensional and possibly also be in spherical geometry. It is not trivial

to choose a way of extending a one-dimensional algorithm to two free dimensions'.

Williamson and Rasch, 1989] discuss several ways of extending a one-dimensional algorithm to

o8
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Suppose that the scheme was extended to two dimensions using a tensor product
approach. Then one would have two free parameters, one for each direction of the
unit vectors. Conservation of the first moment of ¢ for non-divergent flows would
no longer be trivial, and it might be possible to take the free parameter approach to
advantage. It is, however, beyond the scope of this thesis to analyze extensions to

more dimensions.

two dimensions



Appendix A

Appendix

A.1 List of symbols

A list of symbols and notation used in this thesis.

A
ALS
AcL
AY
BY
¢t

Interpolary parameter.

Coefficients for the least squares fit used in appendix A.2.

Free parameter used in the general scheme defined and analysed in
chapter 3.

The maximum value of A; for which the general scheme is
unconditionally stable.

The minimum value of A; for which the general scheme is
unconditionally stable.

The A, value for which the 2A wave is completely damped.

The A; value yielding a least square scheme.

The A; value yielding the conventional semi-Lagrangian scheme.
Coefficients for the least squares schemes (see table 2.1).
Coefficients for the least squares schemes (see table 2.1).
Coefficients for the least squares schemes (see table 2.1).
Parameter defined to simplify computations: ¢ = 1 — cosd.

Parameter defined for convenience: § = kKA.
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At

EDISP

Episs

S T e

=
+

5

or R~

%ﬁﬁwl@%ﬁ”ﬁg

sgn()

Grid spacing.

Time step.

Domain on which the advection equation is solved.

Dissipation error (defined in equation (3.21)).

Dissipation error (defined in equation (3.20)).

Derivation from conservation of 1)? (defined in equation (3.14)).
Amplification factor.

Imaginary unit which has the property i2 = —1.

Refers to departure point at TA.

Function taking the imaginary part of a complex number.

Wave number.

wavelength.

Referring to a Lagrange interpolant.

Length of domain is M A.

Time level.

Integer used in the definition of the general N point schemes (see
equation (3.2)).

Integer used in the definition of the general N point schemes (see
equation (3.2)).

Of order.

I — p is the grid point nearest to the departure point.

Refers to a sum used in the conservative algorithm (see section 3.2.2).
The numerical approximation to the analytical solution .

Refers to a sum used in the conservative algorithm (see section 3.2.2).
Relative phase speed.

Relative phase speed of the 2A wave.

Refers to the rest terms in higher order schemes (see section 3.3.1).
Function taking the real part of a complex number.

Signum function: Equals 1 for positive argument and -1 for negative argument.
Wind speed in one dimension.

Wind speed vector
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Departure point.
Analytical frequency used in Von Neumann analysis.
Numerical frequency used in Von Neumann analysis.

Mean value.
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A.2 Method of least squares

Suppose that a qth-order polynomial
q
f(z;a) = Zarxr , where a = (a1, as, ..., aq) ,

r=0

must be fitted through N given points

(mla yl) ) (:EQa 92) FRERS) (xN: yN) 3

so that the sum of the squares of the distances of those points from the polynomial

is minimum. More precisely, minimize

N
2
[y — [ (z3;@)]",
i=1
with respect to a;. The resulting estimate for a - denote it a - is obtained by differ-

entiating with respect to a; and setting the result equal to zero

N

(A.1) Yk,
=1 i{i_zflraﬁr]:o k=0,1,2,...,q.

r=0

Defining the Vandermonde matrix

1 I .T12 $13 xlq

1 T2 CCQQ .1'23 P ,’IJQq

Q
If

1 N 15N2 $N3 .’L‘Nq
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and

<
Il

permits one to rewrite the normal equations (A.1) in matrix form
CT [y - Cé] =0 )
which, in principle, easily can be solved for a

(A.2) a=(CTC)™'CTy.

Equidistant = values Now suppose equidistant z values. In order to facilitate
coming computations all x values are shifted by an amount which results in symmetric
x values. That is: If V is odd the x values are shifted to

0, A, +2A, +3A, ..., ,i%A ,
and if N is even the z values are shifted to
ié, i%, i%, iE, JN1A
2 2 2 2 2

Consequently, the mean value of x to the power of odd integers vanishes

d z*=0  kodd.
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A.2.1 Linear least squares

Consider the simplest case of fitting a straight line!, f(z;a) = ap+a;z, to N equidis-

tant points. Matrix C is given by

1 I
c-| ' ®
1 TN

-1
L _
(A.3) a= ’ v,
T x2 Ty
—_——— —
cTC CTy

where () denotes the mean value

O=+x>0.

i=1

Il

Shifting the z values as described in section A.2 makes the mean value of x vanish.

Consequently, equation (A.3) can be rewritten as

(1o 7
N0 122 ) \zm )’

after a trivial matrix inversion. For N = 3 the linear least squares fit is given by?

v (5).
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A.2.2 Quadratic least squares

Fitting a parabola, f(z;a) = ag + a;z + apr?, to N equidistant data points is a
straight forward extension of the first order polynomial fit explained in section A.2.1.
However, inversion of the matrix CTC is no longer trivial despite the high degree of

symmetry and regularity in its structure.

Matrix C is given by

1z 22
1 zy 22
C= L
1 zn %y
Equation (A.2) takes the form
N
1 0 a2 ]
a= 0 22 0 zy |,
2 0 2t 12y
1 gTC NgTy

after performing the z-axis shift which makes Z and 23 vanish. The inverse can be

written as

(A.4) (CCT) =—_——""—"™7" 0 ot — 12 2 0



A.2. METHOD OF LEAST SQUARES

For N = 4 we have

2 — ZA?
xT 4 s
_ 41
4 = ZA4
T 16~ °
. A
Ty = ¢ (=3y1 — y2 + Y3 + 3y4) ,
. A2
ly = 6 (9y1 + y2 + y3 + Yya) .

67

By insertion in equation (A.4), and after performing the matrix multiplications, one

obtains the coefficients for the least squares parabola fit

N 1

ay = _6( Y1+ 92 + 9ys — va)
; L1 3 + s + 3y)
aq = —— -

1 10A Y1 —Y2TY3 Ys) ,
A 11 ( n )

az = A A2 Y1 = Y2~ Yz T Ys) -

A.2.3 Cubic and quartic least squares

Extension to the cubic and quartic cases is in principle a straight forward extension

of the linear and quadratic cases. The calculations are quite lengthy, therefore only

the results are given. A four point least squares fit to a cubic polynomial, f(z;a) =

ag + a1 + apx? + azx®, yields the coefficients

ag = 315 (—3y; + 12ys + 17ys + 12y, — 3ys) ,
. 11

i =75Rx (1 — 8y2 + 8ys — ¥s) ,

11

a2 = 7735 (291 = Y2 = 293 — ya +245)

az = ! (=11 + 22 — 2ys + y5) .

12 A3
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Similarly, performing a least squares fit with a quartic polynomial, f(z;a) = ag +

a1T + apx? + agx® + asx?, to five points yields the coefficients

1

Go = 5 (3y1 = 25y + 150y + 150y, — 25ys + 3ys) ,

) 11

n = oot & (275y1 — 124995 — 652y5 + 652y, + 1249y5 — 275y5)
.11

Gy = ooz (—5Y1 + 39y2 — 34ys — 34y, + 39ys + 5ye) |

. 11

a3 = mg (—5y1 + 7y2 + 4y3 - 4y4 - 72/5 + 5?/6) ’

1

a4 = 18 AL (y1 — 3y2 + 2y3 + 2ys — 3ys + Ys) -

Conversion In order to convert the formulas to the notation of the semi-Lagrangian
framework one needs to revert the z-axis and replace z by @A. That is to perform
the transformation

T — —QaA.

Of course y; has to be replaced by an appropriate ¢. For example, in the linear least

squares case y1, y2 and y3 are replaced by ¢7_,_;, #7_, ¢7_, 4, respectively.

A.2.4 Weighted least squares

To do a weighed least squares fit we associate an weight, %, to each grid point value,

y;- To obtain the coefficients of a weighted fit minimize
N 2
Z [yi -/ (ﬂﬁi;a)]
X Oi
i=1

Following the same method as outlined for the non-weighted least squares fit, the
solution is given by
a=(c"vc) 'C"vy,



A.2. METHOD OF LEAST SQUARES

where V is a diagonal matrix containing the squared weights

1
2
o7

q
roro| ™

<
Il

2

69
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A.3 Detailed amplification factor computations

Here are some of the computations leading to the formulas for amplification factors
of least squares schemes listed in table 2.2.

Seeking a solution
¢; =T"exp (i 76) ¢°,

the substitution into the finite difference schemes given in table 2.1 yields

r® = ”’5{ (14 2cos?) —zasmé}

I® =e P {1—c(6’—c(—2+2a%)) +iasiné (-1+1c(6>—1))},

where T'™) refers to I' of the straight line fit and ['® refers to the cubic case. For the

quadratic and quartic schemes we have
I = {1 —D’+ G’ +i (D +Gc)sind},
and

TW =P -Dlet e+ FS+i (-D+Ec+FP)sind},

respectively, where

N[

+a,

L (34 2a) (14 24) (1 +24)

275 » 5A2 5 23 1 ~4
—+ﬁ06+ ﬁa EO{ s

D
£
T
g=

(=5 + 246 + 2067) .
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A.4 Proofs for theorems and lemmas

Proof for lemma 1, chapter 3 To insure unconditional stability we must have
that ||['||* < 1 for all values that ¢ and & may take. Solving ||T||> = 1 for A; yields

At 12¢a+ 2+ 2242 +1 — 2ca?
= )
4 c

For fixed (&,c) and having A; confined to the interval bounded by A7 and A will
guarantee unconditional stability®. As the value of ¢ can take any value in between 0
and 2, the lemma is proved by minimizing the upper bound of A; and maximizing the
lower bound of A; with respect to c. It can easily be verified that AT is monotonic
and decreasing on the domain of interest. That is

QAT N

8—01S0 for (c,&) € 10,2] x [-31,1].
Therefore the maximum/(minimum) unconditional stable value of A, is obtained for
¢ =2/(c=0). Calculating A] with ¢ =2 and A] with ¢ = 0 completes the proof.

Proof for theorem 2, chapter 3 Write out the sum of the left hand side using
(3.3) and periodic boundary conditions for some fixed p and M value. For example

for p=0and M = 5 we have

Arps + Ao + Aszgr +
Ao + Aspr + Azds +
Aidr + Aspy + Aszgz +
A1y + Aspz + Azds +
Aigz + Asps + Az

3calculating [|T'||? for any allowed (&, c) value and any A; in [A], Af] will yield a value less than
or equal to unity. Choosing A; outside [Al_ , Aﬂ yields a value greater than one. Continuity then
proves the statement
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Collecting terms (diagonal) and using the necessary condition for consistency (3.6)

proofs the theorem?. O

“the theorem may easily be extended to N point schemes
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A.5 List of explicit formulas for higher order schemes

Here is a list of explicit formulas for quantities used in the higher order analysis
(section 3.3). In all the following formulas &, p, ¢ and § are defined as in section
3.1.1.

A.5.1 Lagrange interpolation, £
For the four point scheme, N = 4, the Lagrange interpolation using ¢7_, ;, ¢7_, and
@Y_,41 18 given by

L=36(1+a) g7, +(1-6)¢] — 3a(1 - G) d7,, -

For the five point scheme, N = 5, the Lagrange interpolation using ¢7_, ;, ¢7_,
@7 i1 and @7 ., is given by
L=

& (@+2) (a+1) o7, — 072—1) (& +2) @7

(NN

~2

G (6+2) (G—1) ¢ty — = (62— 1) ¢s.

| =

For the six point scheme, N = 6, the Lagrange interpolation using ¢7_, 5, ¢7_, 1,

QS?—pa ¢?_p+1 and d)?—p—}-Q is given by

A.5.2 The amplification factors of higher order schemes

The squared modulus of the amplification factor is split into a part associated with

the Lagrange interpolation, £, and a rest term R (see section 3.3.2 for details)

ITI” = T )l” + 1T
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The squared amplification associated with the Lagrange Interpolation, ||'z||?, is given

1— c%a? (1-a62) for N =
1ca (1-62) (24+a) 1-2ca®>(1+a) for N=
1—:a?(1-a6%) (4—a) [1—1c(a®—1)] for N =6.

( 4A P [1+2Ac —a2c—24a+cd] for N =
Tl 8412 [1+24,%—d*c—1a (62 —1) & for N =
RIIT =
—8A; P [1—4A P -2a+1a(2a—-1) (@a—1)c
\ +ia(@?-1)(@—-2)c? for N=6

A.5.3 TUnconditionally stable interval, [A~, AT]

The interval of A; values yielding unconditionally stable schemes has lower bound,

A~ given by

2@ —-1) for N=4
A-={ % (@&*-1)(2a+3) for N=5
ﬁo? (6> —4) for N =6,
and upper bound, A*, given by
1a? for N=4
At={La(@-1)(2+a) for N=5
& (@2 —=1) (6*—3) for N =6.
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A.5.4 The A; value for which the 2A wave is completely
damped, A*

Solving ||T||2 = 0 for the 2A wave yields an A; value, A*, given by

for N=4

N—r

1
2
A*={ & 2a+1) (26*°+2a—-3) for N=5
4 for N =6.

A.5.5 Least squares value of A;, A

For schemes using an even number of points for interpolation the definition of & has
been redefined in chapter 3. Therefore the coefficients from table 2.1 from the least
squares analysis need to be shifted using the following transform: & — & — 1 (N
even). For N odd the definition of & in the least squares analysis and in the analysis
of the more general scheme are identical. The A; values yielding (N — 2)th-order

least squares schemes are given by

—i—i—i&—l—iéﬁ for N=14

AN-2) LS _ Af) for N=5
5 11~ 13 22 1 ~3 | 1 a4 —
o5 ~ g O~ 1 O+ @+ & for N=6.

where the superscript (N — 2) has to be replaced by the value of N-2.
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A.5.6 The A, value yielding the (N — 1)th-order conventional

semi-Lagrangian scheme

Given N, the A; value yielding maximum order of accuracy, is the A; value generating

the (N — 1)-th order conventional semi-Lagrangian scheme. This A; is given by

(@*2—1) for N=4
AN=1)eL _ At for N=5
50 (62 —1) (6> —4) for N =6,

where the superscript (N — 1) has to be replaced by the value of N-1.

A.5.7 The A; value yielding the (N —2)th-order conventional

semi-Lagrangian scheme

The (N — 2)th-order conventional semi-Lagrangian schemes uses (N — 1) points for
the interpolation. Hence either A; or Ay must equal zero. As it may be deduced
from footnote 8 on page 45, an A; value yielding the (N — 2)th-order conventional
semi-Lagrangian scheme does not exist for all & values since the central grid point
for the interpolation, x;_,, not always corresponds to the one used in a conventional
semi-Lagrangian scheme. For N even and & < % a vanishing A; value, A; = 0, will
yield the (N — 2)th-order conventional semi-Lagrangian scheme. For & > 3 no value
of A; will yield the (N — 2)th-order conventional semi-Lagrangian scheme (“wrong”
central grid point for interpolation). For N odd and & positive, solving Ay = 0 for
Ay will yield the (N — 2)th-order conventional semi-Lagrangian scheme. For N =5
we have

ta(6*—1) for a4>0

A3CL —
does not exist for & <0.
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A.5.8 The relative phase speeds of higher order schemes

The relative phase speed, R, is given by

( 5p + arctan (%) for N=4
(a+%d(1—a2)) siné

1-a2 c—|—(% a(1-62)+4 41 ) ¢2

R— _1 <5p+arctan( ) for N =5

a+(1—a) ct+4c? Ay) siné
( )

0p + arctan ( ) for N =6.

1-44) 3—a2 e+ G c? (62-1)

\

A.5.9 Relative phase speed of the 2A wave

Define the limit values R™ and R~ by

T pta
and
=2
=T

where sgn() is the signum function. In the special case of & = 0 would need to be
treated separately. However, as discussed in section 2.4, an interpolation method

with the cardinal property is preferred.

For N =4 and N =5 the relative phase speed, R, converges to

Rt for A, < A*,

(A.5)
R~ for A > A",

in the 2A wave limit. Note that for a fixed departure point, z,, the & value of the
four and five point schemes may not be identical. Consequently, R* of the four point

scheme is not necessarily equal to R of the five point scheme. For N = 6 R converges
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to
Rt
A6
(A6) -

for 6 — 2.

for

for

A1>A*,
A1<A*,
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