A History of Coupled Climate Modeling

Peter R. Gent

Senior Scientist National Center for Atmospheric Research

Climate Calculations with a Combined Ocean-Atmosphere Model

SYUKURO MANABE AND KIRK BRYAN

Geophysical Fluid Dynamics Laboratory, ESSA, Princeton University, Princeton, N. J. 13 March 1969 and 6 May 1969

FIG. 1. Ocean-continent configuration of the model.

The first coupled ocean/ atmosphere model with idealized continents was run at the GDFL: results published in JAS in 1969.

5° x 5° Horizontal grid: 9 levels in atm, 5 in ocean.

A Global Ocean-Atmosphere Climate Model. Part I. The Atmospheric Circulation

SYUKURO MANABE, KIRK BRYAN AND MICHAEL J. SPELMAN Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, N. J. 08540 (Manuscript received 8 February 1974, in revised form 28 June 1974)

5° x 5° Hor grid

9 levels in Atm, 5 in Ocean

JPO 1975

FIG. 2. The smoothed topography of the ocean model. Depth is given in kilometers.

FIG. 12. Heat transport by the ocean model in a northward direction compared to estimates based on heat balance calculations.

The conservation equations for potential temperature (θ) and salinity (S) under conditions of stable stratification are

JPO 1975

 $(\theta, S)_t + \mathbf{v}\nabla(\theta, S) + w(\theta, S)_z = \kappa(\theta, S)_{zz} + A_H \nabla^2(\theta, S).$ (8)

6

Fig. 4. a Time evolution of globally averaged ocean surface temperature (°C) for $1 \times CO_2$, $2 \times CO_2$, and transient CO_2 experiments; b time evolution of ocean surface temperature differences from part (a) (°C)

Washington and Meehl (1989).

Atm 4.5°x7.5°x9 Ocn 5°x5°x4 levels

In the control run, the global-average SST is reducing at a rate of 0.02°C/year.

If maintained, this means a 2°C SST fall in 100 year run.

Flux Corrections or Adjustments

- Atmosphere component run with SST obs.
- Ocean component run with observed wind stress and atmosphere surface variables.
- Fluxes of heat and fresh water in these runs subtracted to form the flux corrections.
- Or coupled run with very strong relaxation back to observed SST and surface salinity.
- These corrections are totally unphysical.

Sausen et al. (1988).

Ocean 3.5°x3.5° x 5 levels

Diagnostic atmosphere

Fig. 14. Temporal evolution of the global mean temperatures of the ocean in the coupled model, without flux correction *(dashed line)* and with flux correction *(solid line)*

Simulated Surface Currents Around Antarctica

0.1 degree Simulation

1 degree Simulation

0 10 20 30 40 50 60

Surface current speed in cm/s for October

The GM (1990) Parameterization

$$\frac{\partial T}{\partial t} + (\underline{u} + \underline{u}^*) \cdot \nabla T = \nabla_{\rho} \cdot (\kappa \nabla_{\rho} T)$$

$$W^* = -\underline{\nabla}.(\kappa \underline{\nabla}\rho / \rho_z), \underline{\nabla}.\underline{u}^* = 0.$$

Assumes that eddies advect temperature and salinity and diffuse them along constant density surfaces. The advection represents the effects of unresolved baroclinic instability, because it ensures a global sink of mean potential energy. (u, v, w) is velocity in directions (x, y, z)

continuity equation $u_x + v_y + w_z = 0$.

Integrate over depth $\int u_x dz + \int v_y dz = 0$ form 2-D barotropic streamfunction in Sverdrups (1 = 10⁶ m³/s).

Integrate over $x \int v_y dx + \int w_z dx = 0$ form 2-D overturning streamfunction. GLOBAL MERIDIONAL OVERTURNING STREAMFUNCTION (Sv)

3x3

CSM

MODEL

Original GM implementation in a very low resolution 4° x 3° x 20 levels global ocean model;

Danabasoglu et al. (1993).

Deep Water Formation 4°× 3°

Horizontal Mixing

GM 1990

Danabasoglu et al. (1993).

CSM 1 was the first climate model to produce a non-drifting control run without "flux corrections"

FIG 8

Components added to CCSM to make it into an Earth System Model (CESM)

- Carbon cycle components in the land, ocean & atm.
- A component that uses predictive chemistry.
- A whole atmosphere version of the atm (WACCM) that reaches up into the stratosphere and beyond.
- A land ice component that models the Greenland ice sheet, and will model the Antarctic ice sheet.

CO₂ in 20th Century Experiments

20th Century CO₂ Sinks from Atmosphere

A community ice sheet model in CESM

CESM1 includes Glimmer, the Community Ice Sheet Model & a new surface mass balance scheme for ice sheets in CLM.

Left: Greenland SMB: CLM on 1° grid forced by CAM output, downscaled to 10 km **Right:** Greenland SMB from a highresolution regional climate model (Ettema et al. 2009).

Greenland ice sheet discharge and sea level rise over the 20th Century and 21st Century (RCP8.5)

C) Actual sea level rise (orange): Rise is 58mm over 2005 – 2100. Rise due to change in surface mass balance (blue): Fall due to change in Greenland ice dynamics (pink). Lipscomb et al. (2013).

Climate Sensitivites

Equilibrium

- Globally-averaged surface temperature increase due to a doubling of CO₂.
- Calculated using a slab upper ocean model, so the integration comes into equilibrium in about 30 yrs.
- CCSM4 -- 3.20°C
- CESM1 -- 4.10°C

Transient

- Global surface temperature increase at doubling of CO₂ in a run where it increases at 1% per year: Average over years 60 -- 80.
- Calculated using the full depth ocean component.
- CCSM4 -- 1.73°C
- CESM1 -- 2.33°C

CESM1 includes secondary effects due to aerosols

Decadal Forecasts with the CESM

- Fully-coupled CESM1 simulations initialized from historical ocean and sea ice states for Jan 1st of 1961, 1966, ..., 2006
- Ocean & sea ice initial conditions from an ocean/sea-ice simulation of 1948-2007 forced by atmospheric observations.
- Full-field initialization (with bias correction)
- 10-member ensembles for each of 10 start dates
- Case study of the mid-1990s warming in the subpolar gyre of the North Atlantic Ocean.

Decadal Prediction in North Atlantic Subpolar Gyre

After bias correction, the CESM has significant skill in predicting SPG heat content & SST up to a decade in advance.

Yeager et al. (2012)

- The first coupled climate models were run in the early 1970s, and used very coarse resolution.
- These models had to use flux corrections in order to maintain the present climate in coupled runs.
- The CSM1 (run in 1996) was the first to maintain the present ocean temperatures in a coupled run.
- Earth System Models have interactive components for the carbon cycle, and possibly others, such as Chemistry, high-top Atmosphere and Land Ice.