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The ocean contains the largest active C reservoir on Earth
The global carbon budget (c. 1990s)
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The ocean has absorbed 25–30% of anthropogenic CO2 to date

Ocean Cant inventory (1990s)
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Definitions for soluble gases

Air-sea partitioning of soluble gases

Williams and Follows 2011

Definitions (for generic soluble gas A)

Mixing ratio

�A =
NAPn
i=1 Ni

where Ni = number of moles of gas i .

Partial pressure

pA = �A · Ptotal

and

Ptotal =
nX

i=1

pi (Dalton’s law)

Solubility

SA ⌘
[A]equilibrium

pA
(Henry’s law)

where SA is the solubility of A (molm�3 atm�1)
and [A]equilibrium is the equilibrium concentration
in solution (molm�3).

Fugacity

The ‘e↵ective’ partial pressure, corrected to
account for non-ideality. For CO2, the correction
is typically < 1%.
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Gas exchange
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Parameterizing gas exchange

The air-sea flux of a slightly soluble gas, A:

� = kw · ([A]w � [A]eq)

or in terms of partial pressure

� = kw · SA · (pA
w � pA

a )

where kw is the gas transfer velocity.

Parameterization of kw are empirical, but based
on a conceptual model involving aqueous
hydrodynamics near the air-sea interface.

kw is usually parameterized as function of wind
speed U

k = aSc�nUm

where m > 1 and 1/2  n  2/3.

Dependence on the Schmidt number, Sc = ⌫/D,
where

⌫ is the kinematic viscosity of water, and
D is the molecular di↵usivity,

allows kw measurements to be translated for
di↵erent gases and represents controls on the
thickness of the stagnant film.
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Gas exchange
Short-term wind-speed dependent gas exchange parameterizations

kw = 0.31 · U2 · (Sc/600)�0.5

Scco2 = 600 in freshwater at 20�C

Ho et al. 2006
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Gas exchange
Factors a↵ecting air-sea CO2 exchange

Wind

u*
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dynamics
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Wanninkhof et al. 2009
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Sea-air pCO2 di↵erence (�pCO2 = pCOocn
2 � pCOatm

2 )

Climatological �pCO2

 

 

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

 

 

   0
o
    30

o
E   60

o
E   90

o
E  120

o
E  150

o
E  180

o
W  150

o
W  120

o
W   90

o
W   60

o
W   30

o
W    0

o
    30

o
E 

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

6pCO
2
 (JFM) [+atm]

6pCO
2
 (JJA) [+atm]

ï��

ï��

ï��

0

20

��

60

supersaturated
(pCOocn

2 > pCOatm
2 )

equilibrium
(pCOocn

2 = pCOatm
2 )

undersaturated
(pCOocn

2 < pCOatm
2 )

Takahashi et al. 2009

:: Gas exchange :: 8



Inorganic carbon chemistry

Reactions in solution

The following series of equilibria occur when carbon dioxide dissolves in water:

CO2,g ⌦ CO2,aq (1)

CO2,aq +H2O ⌦ H2CO3 (2)

H2CO3 ⌦ H+ +HCO�
3 (3)

HCO�
3 ⌦ H+ + CO2�

3 (4)

It is di�cult to analytically distinguish between CO2,aq and H2CO3, therefore it
is common to use

H2CO
⇤
3 = CO2,aq +H2CO3

thus (1–3) become

CO2,g +H2O ⌦ H2CO
⇤
3 (5)

H2CO
⇤
3 ⌦ H+ +HCO�

3 (6)
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Dynamic equilibrium

Kinetic equation and equilibrium

H2CO
⇤
3

k+1⌦
k�1

H+ + HCO�
3

Kinetic equation

d [H2CO
⇤
3 ]

dt
= �k+1[H2CO

⇤
3 ] + k�1[HCO

�
3 ][H+]

with rate constants
k+1 (s�1) for the forward reaction and
k�1 ((mol kg�1)�1 s�1) for the reverse.

Equilibrium

At equilibrium,
d [H2CO

⇤
3 ]

dt = 0.

Therefore
[H+][HCO�

3 ]

[H2CO⇤
3 ]

=
k+1

k�1
= K1

Relaxation timescale of carbonate species following
a perturbation in CO2 (�CO2).

�
!

Zeebe and Wolf-Gladrow 2001
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Inorganic carbon chemistry
Equilibrium relationships

K0 =
[H2CO

⇤
3 ]

pCO2
, K1 =

[H+][HCO�
3 ]
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3 ]

, K2 =
[H+][CO2�

3 ]

[HCO�
3 ]

Carbonate speciation
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Inorganic carbon chemistry

Dissolved inorganic carbon (total CO2)

DIC = [H2CO
⇤
3 ] + [HCO�

3 ] + [CO2�
3 ]

Alkalinity

Alk = [HCO�
3 ] + 2[CO2�

3 ] + [OH�]� [H+] + [B(OH)�4 ] + minor bases

Additional reactions

H2O ⌦ H+ +OH�

H3BO3 +H2O ⌦ H+ + B(OH)�4

Kw = [H+][OH�], KB =
[H+][B(OH)�4 ]

[H3BO3]
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Inorganic carbon chemistry

Unknowns

pCO2, [H2CO
⇤
3 ], [HCO

�
3 ], [CO

2�
3 ], [H+], [OH�], [B(OH)�4 ], [H3BO3], Alk, DIC

Equations
Along with the definitions of Alk and DIC , we have

K0 =
[H2CO⇤

3 ]
pCO2

, K1 =
[H+][HCO�

3 ]
[H2CO⇤

3 ]
, K2 =

[H+][CO2�
3 ]

[HCO�
3 ]

,

Kw = [H+][OH�], KB =
[H+][B(OH)�4 ]

[H3BO3]
,

and total boron conservation, yielding constant proportionality to salinity

BT = [B(OH)�4 ] + [H3BO3] = c · S

yielding 8 equations; thus, the carbonate system can be solved by specifying
any two of the 10 unknowns.
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Inorganic carbon chemistry
Modeling ocean carbon

Prognostic variables (' = DIC , Alk)

@'
@t

+r · (~u')�r · (Kr') = J (')

where J(') = source/sink terms (biology, gas exchange, freshwater inputs).

Diagnostic variables

1. Rearrange expression for Alk, solve for [H+] numerically
(Newton-Raphson),

2. [HCO�
3 ] =

(DIC)K1[H
+]

[H+]2+K1[H+]+K1K2
, [CO2�

3 ] = (DIC)K1K2
[H+]2+K1[H+]+K1K2

,

3. [H2CO⇤
3 ] =

[H+][HCO�
3 ]

K1
,

4. pCO2 =
[H2CO

⇤
3 ]

K0
! gas exchange = f (�pCO2).
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Surface ocean distributions

Controls on pCO2

Direct solubility e↵ect

pCO2 =
[H2CO

⇤
3 ]

K0

Indirect chemical e↵ects

pCO2 =
K2

K0 · K1

[HCO�
3 ]2

[CO2�
3 ]

If we approximate Alk as

Alk ⇡ [HCO�
3 ] + 2[CO2�

3 ]

then we can write

pCO2 ⇡
K2

K0 · K1

(2 · DIC � Alk)2

Alk � DIC

Empirical equilibrium constants
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For instance:

lnK0 = 9345.17/T � 60.2409 + 23.3585 ln(T/100)

+ S
h
0.023517 � 0.00023656T + 0.0047036(T/100)2

i

Weiss (1974)
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Surface ocean distributions

Controls on pCO2

Direct solubility e↵ect
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Variation of pCO2 with S and T

For Alk and DIC constant:

1

pCO2

@pCO2

@T
⇡ 0.0423�C

S

pCO2

@pCO2

@S
⇡ 1
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Seasonal Variability in pCOocn
2 : thermal & biological e↵ects
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Seasonal pCO
2
 change (summer – winter)

Seasonal amplitude of comparable
magnitude to spatial variability in
annual mean.

Mechanisms:
! �SST
! Biology (�DIC, �Alk)

+ advection & gas exchange

Thermal e↵ect computed using:

�pCO2 = pCOwin
2 exp[0.0433(Tsum � Twin)

� 4.35 ⇥ 10�5((Tsum)2 � (Twin)2)]

Summer = JFM (south) and JAS (north)

Winter = JAS (south) and JFM (north)
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Inorganic carbon chemistry
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106 CO2 + 16NO�
3 + HPO2�

4 + 78 H2O + 18H+

⌦ C106H175O42N16P + 150O2

Formation/dissolution of CaCO3

Ca2+ + CO2�
3 ⌦ CaCO3

DIC = [H2CO
⇤
3 ] + [HCO�

3 ] + [CO2�
3 ]

Alk = [HCO�
3 ] + 2[CO2�

3 ] + [OH�]

� [H+] + [B(OH)�4 ] + . . .
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Modeled air-sea CO2 flux components

:: Surface ocean distributions :: 18



Discerning mechanisms governing variability in air-sea CO2 flux
Monthly anomalies

Y 0 = Y � Ymon

Taylor series approximation

Y 0 ⇡
X

i

@Y

@X
X 0
i +O(X 02

i ,X 0
i X

0
j )

Application to carbon system variables

J0co2 ⇡ (k�)0�pCO2 + (k�)�pCO0
2 +

⇣
(k�)0�pCO0

2 � (k�)0�pCO0
2

⌘

pCO0
2 ⇡ @pCO2

@T
T 0 +

@pCO2

@SFW
S 0 +

@pCO2

@DIC
sDIC0 +

@pCO2

@Alk
sAlk0

Z 100

0

✓
@DIC

dt

◆0
dz = J0co2 + J0virtual + J0bio + J0phy

Climate variability
Regress Taylor-series components ( @Y@X X 0

i ) on climate indices ( ):

@Y

@X
X 0
i = � 
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Air-sea flux response to ENSO

∆pCO2

∆pCO2

ka

sDICSST
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phy
vf

bio gas

ka

∆pCO2CORE
Coupled

SST
sDIC
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Biology
Adv/Mix 

Gas-ex
Virtual
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CO2 uptake

How does DIC respond to gas exchange?

DIC = [H2CO
⇤
3 ]

⇠0.5%

+ [HCO�
3 ]

⇠88.6%

+ [CO2�
3 ]

⇠10.9%

Williams and Follows, 2011

Assuming equilibrium, we know

[H2CO
⇤
3 ] = K0pCO

atm
2

We can recast the carbonate
equilibria as a bu↵ering reaction

H2CO
⇤
3 + CO2�

3 ⌦ 2HCO�
3

:: CO2 uptake :: 21



Gas exchange timescale for CO2

No lateral exchange;
fluxes at z = �h are zero:

@[A]

@t
=

kw
h

([A]eq � [A])

if [A]eq = constant, then this is a
first-order equation, with a characteristic
timescale

⌧gas-ex = h/kw

F
CO

2

Interior

l

Mixed
Layer

h

However, for CO2, the entire DIC pool must equilibrate, thus we have

@DIC

@t
=

@DIC

@[H2CO⇤
3 ]

@[H2CO⇤
3 ]

@t
=

kw
h

([H2CO
⇤
3 ]eq � [H2CO

⇤
3 ])

Solving for @[H2CO⇤
3 ]/@t, we find

@[H2CO⇤
3 ]

@t
=

✓
@DIC

@[H2CO⇤
3 ]

◆�1 kw
h

([H2CO
⇤
3 ]eq � [H2CO

⇤
3 ])

So

⌧gas-ex =
@DIC

@[H2CO⇤
3 ]

✓
h

kw

◆
⇡ 20

✓
h

kw

◆
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The Revelle Factor

Quantifying bu↵er capacity

@DIC

@[H2CO⇤
3 ]

=
@DIC

@(K0 · pCO2)

=
DIC

pCO2 · K0

✓
pCO2

DIC

@DIC

@pCO2

◆

=
↵

K0

1

�DIC

where

�DIC =
DIC

pCO2

@pCO2

@DIC
and ↵ =

DIC

pCO2

�DIC is known as the ‘Revelle Factor’ or ‘bu↵er
factor’.

⌧gas-ex =
@DIC

@[H2CO⇤
3 ]

✓
h

kw

◆

Sarmiento and Gruber 2006
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The Revelle Factor

Revelle Factor

�DIC =
DIC

pCO2

@pCO2

@DIC
Sabine et al. 2004

Ocean atmosphere partitioning

A pulse in atmospheric CO2

�Natm = ��CO2N
atm
tot

The increase in ocean carbon

�Nocn = �DIC · mocn

Assume that pCOocn
2 tracks pCOatm

2

�pCOocn
2 = �pCOatm

2 = ��CO2P
atm

We can use the Revelle Factor to estimate �DIC

�DIC = �pCOocn
2 ·

1

�DIC
·

DIC

pCOocn
2

= �pCOocn
2 ·

↵

�DIC

The ratio between the change in ocean and
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The Revelle Factor
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CO2 uptake

Ocean uptake fraction v.
penetration depth
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CO2 uptake

Equilibration to rising pCOatm
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CO2 uptake

Carbon-carbon feedback
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The ultimate fate of anthropogenic CO2

Ocean invasion
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Summary

Main points

1. Gas exchange parameterizations are based on a loose application of an
underlying conceptual model.

2. Wind speed is a dominant driver of the gas exchange velocity; a variety of
methods have been used to develop empirical estimates of of the gas
exchange velocity.

3. Carbon in seawater is distributed among DIC species according to
acid-base equilibria; the system can be solved using empirically-derived
equilibrium coe�cients.

4. Ocean uptake of CO2 is governed by reaction with carbonate ion;
nonlinear chemistry results in diminished uptake with increasing pCOatm

2 as
bu↵er capacity is consumed; the bu↵er capacity can be quantified by the
Revelle Factor.
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