Southern Ocean response to climate change in the CMIP5 models: Linking biology to physics

Anna Cabre Shirley Leung Irina Marinov

University of Pennsylvania https://climate.sas.upenn.edu/

7th August 2013, Carbon-Climate Connections in the Earth System, NCAR

AR 5 Models studied: (scenario RCP8.5)

CanESM2: (Canadian Earth System Model)

HadGEM2-ES: Hadley coupled Earth System Model, with dynamic terrestrial vegetation and carbon, ocean biology and carbonate chemistry, tropospheric chemistry

HadGEM2-CC: same as above but no tropospheric chemistry IPSL-CM5A-LR & IPSL-CM5A-MR (Institut Pierre Simon Laplace): atmosphere with low and medium resolution. LMDZ atmospheric model; NEMO ocean model

IPSL-CM5B-LR: same as above but new set of physical parametrizations

MIROC-ESM & MIROC-ESM-CHEM: Japanese Earth System Model with an NPZD ocean ecosystem model, and dynamic vegetation on land

MPI-ESM-LR & MPI-ESM-MR: The Max Planck Earth System Model: marine biogeochemistry and land biosphere, fully coupled carbon cycle

GFDL-ESM2G: ocean module depth-based vertical coordinate MOM

GFDL-ESM2M: sigma coordinate mixed layer and density-based vertical coordinate in the interior GOLD

CESM1-BGC: NCAR carbon cycle, POP ecosystem model

MRI-ESM1: (Meteorological Research Institute)

NorESM1-ME: (Norwegian Climate Centre)

CMCC-CESM : Pelagos Marine biogeochemistry model (Centro Europeo per l Cambiamenti Climatici)

CMIP5 simulated Primary production (integrated to 100m) in the present (1980-1999)

GLOBAL CHANGE						
Model	∆SST(°C)	PP(PgC/yr)	$\Delta PP(PgC/yr)$	Exp(PgC/yr)	∆Exp(PgC/yr)	∆(Dia
CanESM2	3.174	33.007	-4.697	0.904	0.009	
CESM1-BGC	2.495	57.98	-2.028	1.518	-0.246	-0
GFDL-ESM2G	2.007	65.353	-0.616	1.742	-0.12	-0
GFDL-ESM2M	1.927	82.149	-0.535	2.007	-0.13	-0
HadGEM2-CC	3.103	36.558	-5.162	2.774	-0.367	-0
HadGEM2-ES	3.297	36.142	-5.213	2.743	-0.384	-0
MIROC-ESM	3.383	28.74	-4.432	-	-	
MIROC-ESM-CHEM	3.576	28.784	-4.849	-	-	
IPSL-CM5A-LR	3.456	37.141	-3.461	1.288	-0.203	-0
IPSL-CM5A-MR	3.408	35.823	-4.377	1.323	-0.204	-0
MPI-ESM-LR	2.51	60.278	-8.807	4.133	-0.473	
MPI-ESM-MR	2.463	54.461	-7.109	3.962	-0.408	
NorESM1-ME	2.24	41.97	-3.412	2.516	-0.122	
MRI-ESM1	2.033	29.377	-2.749	1.177	-0.084	
CMCC-CESM	2.545	37.257	-3.998	-	-	0
Observations		52				

% of global production in each zone

Models / Zones	10S-10N (19%) Present Future ∆ (% of global)	15N to 40N (17%) Present Future Δ (% of global)	15S to 40S (22%) Present Future ∆ (% of global)	45N to 90N (9%) Present Future ∆ (% of global)	45S to 90S (17%) Present Future ∆ (% of global)
CanESM2	32.1 25.8 69.8	13.3 15.6 -0.3	13.6 12.5 20.0	8.4 9.1 4.7	9.2 12.5 -10.9
CESM1-BGC	25.8 25.6 31.2	17.5 16.6 41.5	21.6 20.9 39.4	7.5 7.7 0.5	9.7 11.0 -26.5
GFDL-ESM2G	30.0 29.9 37.0	15.0 14.2 105.3	20.3 21.1 -67.2	5.0 5.5 -49.4	11.2 11.1 19.3
GFDL-ESM2M	31.0 30.5 116.6	15.1 14.8 55.0	20.5 21.0 -55.1	5.1 5.3 -19.5	10.1 10.1 15.2
HadGEM2-CC	24.7 21.6 43.1	6.8 5.4 15.5	15.9 15.2 19.9	7.8 8.3 4.4	26.9 32.3 -5.7
HadGEM2-ES	25.5 21.8 47.5	6.8 5.2 16.3	16.0 15.5 18.8	7.8 8.4 4.7	26.1 32.1 -9.7
MIROC-ESM	18.9 14.4 43.9	12.0 10.5 20.5	26.0 25.9 26.6	6.1 5.9 7.2	17.8 22.7 -9.2
MIROC-ESM-CHEM	19.4 14.4 44.4	12.0 10.4 20.0	26.0 25.2 30.0	6.0 6.1 5.4	17.3 23.2 -11.6
IPSL-CM5A-LR	26.1 24.4 42.5	13.8 13.4 17.1	22.9 22.7 25.5	6.7 6.5 8.9	12.7 14.5 -5.2
IPSL-CM5A-MR	26.7 24.6 41.7	13.2 12.2 20.5	21.0 20.9 21.4	8.1 7.5 11.7	13.3 15.9 -5.6
MPI-ESM-LR	26.6 23.0 47.8	11.1 10.1 16.7	17.6 17.3 19.2	5.9 7.0 -0.7	21.6 25.3 -0.4
MPI-ESM-MR	25.5 22.1 47.8	10.3 9.2 17.6	16.6 16.3 18.8	6.4 7.1 1.6	24.0 28.1 -3.2
NorESM1-ME	21.5 19.8 40.5	12.0 11.5 18.5	19.3 18.0 33.1	7.9 8.7 -0.9	19.3 22.8 -19.8
MRI-ESM1	41.3 37.3 80.6	7.9 7.2 14.7	18.0 18.9 8.8	3.9 4.7 -3.5	11.6 14.5 -16.4
CMCC-CESM	33.6 28.0 79.5	11.9 11.7 13.2	20.5 23.4 -2.9	5.2 5.4 3.7	10.9 13.3 -8.6

Biomes

Change from (1980-1999) to (2080-2099). Mean over all the models.

Masked areas show high consistency among models.

 $\Delta \rightarrow$ (1980-1999) to (2080-2099).

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

-0.01

30

24

18

12

6

0

-6

-12

-18

-24

-30

0

Physical Mechanisms :

M1: Deeper max MLD \rightarrow higher nutrient pool \rightarrow more production in the spring/summer (e.g., Gruber et al. 2002)

M2: Deeper min MLD \rightarrow more light limitation \rightarrow less production in the spring/summer

 $\Delta \rightarrow$ (1980-1999) to (2080-2099).

And the nutrients?

Iron increase? Sediments, circulation? Misumi et al, 2013, studies iron budget in NCAR model

 $\Delta \rightarrow$ (1980-1999) to (2080-2099).

1st band: nitrate limited

3rd band: light limited

Proposed Southern Ocean response in the 21st century

Modify the picture proposed by Lovenduski and Gruber (2005) based on the response to a positive phase of SAM.

Future \rightarrow more SAM-like.

Increased production

 + temperature (+ heat convergence due to subtropical expansion)
 Despite nutrient & light decrease

SAM and MLD correlation

SAM and MLD anomaly monthly correlation

SAM (summer) and MLD_min yearly correlation

Change in production gC/yr/m² (1980-1999) to (2080-2099)

Change in surface phytoplannkton mmol/m³ (1980-1999) to (2080-2099)

Wind stress u-direction Pa in the present (1980-1999)

Change in wind stress u-direction Pa (1980-1999) to (2080-2099)

Change in light at surface W/m² (1980-1999) to (2080-2099)

Change in MLD min in meters (1980-1999) to (2080-2099)

Change in nitrate mmol/m³ (1980-1999) to (2080-2099)

IPSL-CM5A-MR

MIROC-ESM

CMCC-CESM

GFDL-ESM2G -5 40°E 140°E 160°W 60°W 40°E 140°E

-4

MRI-ESM1

Change in iron nmol/m³ (1980-1999) to (2080-2099)

In detail...

We studied three models (so far): GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR.

Which mechanisms remain important through different time scales?

a) Model GFDL-ESM2G: masked region between 30S and 40S where surface yearly max phytoplankton concentrations decrease between rcp8.5 (2050-99) and historical (1950-99)

b) Model GFDL-ESM2G: masked region between 40S and 50S where surface yearly max phytoplankton concentrations increase between rcp8.5 (2050-99) and historical (1950-99)

Model GFDL-ESM2G:

masked region between 50S and 65S where surface yearly max phytoplankton concentrations decrease between rcp8.5 (2050-99) and historical (1950-99)

MLD max (m)

+ light, MLDmin

Light (W/m2)

c) Model GFDL-ESM2G: masked region south of 65S where surface yearly max phytoplankton concentrations increase between rcp8.5 (2050-99) and historical (1950-99)

HadGEM2-ES \rightarrow light?

Summarizing Figure

Band north of 40S: *Production decrease* – Nitrate is most important Band at 40S-50S: *Production increase* – Sea surface temperature, iron, and light are most important

- **Band at 50S-65S**: *Production decrease* Photosynthetically available light supply is most important
- **Band south of 65S**: *Production increase* Iron and photosynthetically available light supply are most important

Conclusions: Southern Ocean phyto and climate change

- Proposed "Banded" response of the S. Ocean to future climate change (model average over 100 yrs) :
 - a) 40S-50S: Production increase: Temp + IPAR + shallower spring MLD (most models), Fe in GFDL model?
 b) 50S-65S: Production decrease: IPAR decrease
 c) S of 65S: Production increase: more IPAR + more Fe (rivers, continent)
- Fe supply pathways + Cloud details + Ice details : important for the productivity response.
- 100 yr Productivity response partially explained by increasing SAM ? Interannual correlations with SAM show 3 bands (similar to Lovenduski & Gruber 2005), more pronounced in the future. How to extend this analysis across all models ?

Δ Stratification

 Δ SST

Δ MLDmax

Clouds present

Δ clouds

160°W 60°W

IPSL-CM5A-MR

40°E 140°E

1**40°**E

40°E

160°W 60°W

MPI-ESM-LR

CMCC-CESM

160°W 60°W

MPI-ESM-MR

MIROC-ESM-CHEM

17

40°E 140°E

-18 -24

-30

Δ P-E

MPI-ESM-MR

MIROC-ESM-CHEM

MRI-ESM1

 Δ SSS

