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Motivation & Introduction

Motivation

1 Peta-scale Super Computing Resources.

2 Atmospheric Model in Non-Hydrostatic Regime.
3 Requirements for discretization methods

Existing methods have serious limitations to satisfy all of the following
properties:

1 Local and global conservation
2 High-order accuracy
3 Computational efficiency
4 Geometric flexibility (“Local” method, AMR)
5 Non-oscillatory advection (monotonic, positivity preservation)
6 High parallel efficiency (Petascale capability)

Discontinuous Galerkin Method (DGM) is a potential candidate

4 Efficient Time Integration Scheme Greatly Needed.
HEVI-horizontally explicit and vertically implicit is a good option.
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2D Euler System with orography

Idealized Non-Hydrostatic Atmospheric Model:

Based on conservation of momentum, mass and potential temperature
(without Coriolis effect) the classical compressible 2D Euler system can be
written in vector form:

∂ρ

∂ t
+∇ · (ρu) = 0

∂ρu
∂ t

+∇ · (ρ u⊗u+ pI) = −ρgk

∂ρθ

∂ t
+∇ · (ρθ u) = 0

Removal of hydrostatic balanced state.

d p
dz

=−ρg
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2D Euler System with orography

Terrain-Following z-Coordinates2

Physical Grid (x,z) Computational Grid (x,ζ )

ζ = 0

X (km) 

(x, ζ)ζ = zT Computational Domain

(x,ζ ) coordinates.

ζ = zT
z−h

zT −h
, z(ζ ) = h(x)+ζ

(zT −h)
zT

; h(x)≤ z≤ zT

The metric terms (Jacobians) and new vertical velocity w̃ are

√
G =

dz
dζ

,Gi j =

[
0 dζ

dx
0 0

]
; w̃ =

dζ

dt
=

1√
G
(w+

√
GG12 u)

2Gal-Chen & Somerville, JCP (1975)
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2D Euler System with orography

Terrain-Following z-Coordinates [2D Euler System]

In the transformed (x,ζ ) coordinates, the Euler 2D system becomes3:

∂

∂ t

 √
Gρ ′√
Gρu√
Gρw√

G(ρθ)′

+ ∂

∂x

 √
Gρu√

G(ρu2 + p′)√
Gρuw√
Gρuθ

+ ∂

∂ζ

 √
Gρw̃√

G(ρuw̃+G12 p′)√
Gρww̃+ p′√

Gρw̃θ

=

[ 0
0

−
√

Gρ ′g
0

]
.

In Cartesian Coordinates (no orography)(
√

G = 1,G12 = 1; w̃ = w)4:

∂

∂ t

[
ρ ′

ρu
ρw

(ρθ)′

]
+

∂

∂x

[
ρu

ρu2 + p′

ρuw
ρuθ

]
+

∂

∂ z

[
ρw
ρwu

ρw2 + p′

ρwθ

]
=

[ 0
0
−ρ ′g

0

]
.

Alternative formulations are also possible 5 for ζ , but the system of equations
remains in flux-from.

∂U
∂ t +∇ ·F(U) = S(U)

where U = [
√

Gρ ′,
√

Gρu,
√

Gρw,
√

G(ρθ)′]T

3Skamarock & Klemp (2008), Giraldo & Restelli, JCP (2008)

4Norman et al., JCP (2010)

5Schär (2002), Klemp (2011)
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DG discretization

Discontinuous Galerkin(DG) Components

Consider a generic form of Euler’s System in two dimension.

∂U
∂ t

+∇ ·F(U) = S(U), in D× (0, tT ); ∀(x,y) ∈ D

where U =U(x,y, t), ∇≡ (∂/∂x,∂/∂y), F = (F1,F2) is the flux function.

Ω

Ω

Ω Ω

Ω

i,j i+1,ji-1,j

i,j+1

i,j-1

∪Domain D = Ω i,j

Element

Weak Galerkin formulation:
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DG discretization

High-Order Nodal Spatial Discretization

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

x
h
(x

)

P
3
−DG GL Nodal Basis Functions

The resulting form of DG-NH model is a system of ODEs.

dUh
dt = L(Uh), t ∈ (0, tT )
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HEVI time-splitting scheme

Challenges for ODE system

Options & Challenges

Explicit time integration efficient and easy to implement.
Stringent CFL constraint ⇒ tiny ∆t, limited practical value.

C∆t
h̄

<
1

2N +1

1 Strong Stability-Preserving (SSP)-RK.

Heun’s method
(2-stage 2nd order)

0 0
1 1 0

1
2

1
2

Explicit Runge-Kutta (SSP-RK3)
(3-stage 3rd order)

0 0
1 1 0
1
2

1
4

1
4 0

1
6

1
6

2
3

Implicit time integration, unconditionally stable but generally expensive to
solve. Overall efficiency still questionable.

Semi-implicit time integration

Implicit solver for linear part and explicit solver for nonlinear parts. Needs
smart Helmholtz solver.
HEVI: horizontally explicit and vertically implicit.
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HEVI time-splitting scheme

DG-NH Time Stepping-HEVI

For the resulting ODE system

dUh

dt
= L(Uh), with

C∆t
h̄

<
1

2N +1

To overcome h̄ = min{∆x,∆z}, treat the vertical time discretization (z-direction) in
an implicit manner.

Benefit: The effective Courant number is only limited by the minimum
horizontal grid-spacing min{∆x,∆y}.
Bonus: The ‘HEVI’ split approach might retain the parallel efficiency of
HOMME for NH equations too.

Horizontal part and vertical part connected by Strang-type time splitting,
permitting O(∆t2) accuracy.

Remarks of HEVI.
Particularly useful for 3D NH modeling (∆z : ∆x = 1 : 1000).
Global NH models adopt the HEVI philosophy, NICAM6, MPAS7 etc.
Recent high-order FV-NH8 models based on operator-split method.

6Satoh et al. 2008

7Skamarock et al. 2012

8Norman et al. (JCP, 2011), Ulrich et al. (MWR, 2012)
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HEVI time-splitting scheme

DG-NH Time Stepping-HEVI

The Euler system for U = (
√

Gρ ′,
√

Gρu,
√

Gρw̃,
√

G(ρθ)′)T is split into
horizontal (x) and vertical (ζ or z) components:

(Euler sys)
∂U
∂ t

+
Fx(U)

∂x
+

Fz(U)

∂ z
= S(U)

(H-part)
∂U
∂ t

+
Fx(U)

∂x
= Sx(U) = (0,0,0,0)T (1)

(V -part)
∂U
∂ t

+
Fz(U)

∂ z
= Sz(U) = (0,0,−ρ

′g,0)T (2)

One possible option is to perform “H−V −H” sequence of operations:

Advance H-part by ∆t/2 to get U∗, from the initial value Un

Evolve V -part by a full time-step ∆t, to obtain U∗∗ from U∗
Advance H-part with U∗∗ by ∆t/2, to get the new solution Un+1

The vertical part may be solved implicitly with DIRK (Diagonally Implicit
Runge-Kutta) 9.

For the implicit solver:

Inner linear solver uses Jacobian-Free GMRES (Most expensive part).
It usually takes 1 or 2 iterations for the outer Newton solver.

9Durran, 2010
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HEVI time-splitting scheme

General IMEX

For the semi-implicit RK method

We define f im(U(t), t) = LV(U(t)) and f ex(U(t), t) = LH(U(t)).

d
dt

Uh = LH(Uh)+LV(Uh) in (tn, tn+1].

Some popular choices of IMEX schemes,

cex Aex

bT
cim Aim

bT
.

Semi-implicit Runge-Kutta
(IMEX2)

2-stage 2nd order, α = 1− 1√
2

0 0
1 1 0

1
2

1
2

α α

1−α 1−2α α

1
2

1
2

Third order IMEX (IMEX3, SIRK-3A)
(3-stage 3rd order, α = 5589

6524 +
75

233 ,β = 7691
26096 −

26335
78288 +

65
168 )

0 0
8
7

8
7 0

120
252

71
252

49
252 0

1
8

1
8

3
4

3
4

3
4

α
5589
6524

75
233

β
7691
26096 − 26335

78288
65
168

1
8

1
8

3
4
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Numerical Results
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Numerical Results

Inertia Gravity Wave10

Loading igw

Parameters

Widely used for testing time-stepping methods in NH models

Usually, ∆z� ∆x

10Skamarock & Klemp (1994)
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Numerical Results

Inertia Gravity Wave10

∆t = 0.04 s for explicit RK-DG
& ∆t = 0.4 s for HEVI-DG

∆x = 500m, ∆z = 50m

P2-GL grid.

10Skamarock & Klemp (1994)
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Numerical Results

Inertia Gravity Wave Convergence Study

The Courant number for HEVI-DG is only constrained by horizontal
grid-spacing (dx).

∆x = 10∆z

∆t for HEVI equals 10∆t for RK2.

h-convergence

204080160320
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

Resolution(m)

L
2
 E

rr
o

r 
N

o
rm

s

 

 

RK2

HEVI

2nd−order

3rd−order

Horizontal Profile of θ ′
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Numerical Results

Straka Density Current11

∆t = 0.075 s (both RK2 and HEVI), Diffusion Coeff ν = 75.0m2/s. Handled
by LDG.

Potential Thermal Temperature Perturbation

Loading Straka

11Straka et al. (1993)
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Numerical Results

Straka Density Current11

Grid convergence: No noticeable changes in the fields at 100 m or higher
resolutions

11Straka et al. (1993)
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Numerical Results

Linear Isolated Mountain 12

Potential Thermal Temperature Perturbation

Loading ISM

∆z≈ 222 m, ∆x≈ 832 m, ∆t = 0.15 s (HEVI)

12Satoh (MWR, 2002)
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Summary

Conclusion & Future Work

1 Moderate-order (PN ,N = {2,3,4}) DG-NH model performs well for
benchmark test cases.

2 HEVI time-splitting effectively relaxes the CFL constraint to the horizontal
dynamics only, and permits larger time-step.

3 Future work.

Incorporate HEVI in HOMME for full 3D DG-NH model
Improve the efficiency,for horizontal part: multi-rate time integration scheme,
subcycling.
Adopt proper preconditioning process for efficient implicit solver in vertical
part.
Test Hybrid DG for HEVI framework.(Vertical Implicit Solver, Block
Tri-diagonal Matrix, Reduce the degrees of freedom)

Lei Bao (CU-Boulder) HEVI Time Splitting Scheme April 8th, 2014 23 / 24



Summary

Conclusion & Future Work

1 Moderate-order (PN ,N = {2,3,4}) DG-NH model performs well for
benchmark test cases.

2 HEVI time-splitting effectively relaxes the CFL constraint to the horizontal
dynamics only, and permits larger time-step.

3 Future work.

Incorporate HEVI in HOMME for full 3D DG-NH model
Improve the efficiency,for horizontal part: multi-rate time integration scheme,
subcycling.
Adopt proper preconditioning process for efficient implicit solver in vertical
part.
Test Hybrid DG for HEVI framework.(Vertical Implicit Solver, Block
Tri-diagonal Matrix, Reduce the degrees of freedom)

Lei Bao (CU-Boulder) HEVI Time Splitting Scheme April 8th, 2014 23 / 24



Thank you

Thank you!

Questions?

This work is supported by
the DOE BER Program
#DE-SC0006959
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