A domain decomposition approach to exponential methods for PDEs

Luca Bonaventura

MOX - Politecnico di Milano
Boulder, 8.04.2014

Outline of the talk

Outline of the talk

- Short review of exponential integrators

Outline of the talk

- Short review of exponential integrators
- An accuracy and efficiency assessment of simple approaches to their application

Outline of the talk

- Short review of exponential integrators
- An accuracy and efficiency assessment of simple approaches to their application
- Local Exponential Methods:
a domain decomposition approach to exponential methods
\qquad

Outline of the talk

- Short review of exponential integrators
- An accuracy and efficiency assessment of simple approaches to their application
- Local Exponential Methods: a domain decomposition approach to exponential methods
- Some preliminary numerical results

Outline of the talk

- Short review of exponential integrators
- An accuracy and efficiency assessment of simple approaches to their application
- Local Exponential Methods: a domain decomposition approach to exponential methods
- Some preliminary numerical results
- Conclusions and perspectives for atmospheric modelling

Basic idea of exponential methods

Basic idea of exponential methods

- Cauchy problem for nonhomogeneous linear ODE system:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \mathbf{u}+\mathbf{g}(t) \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

Basic idea of exponential methods

- Cauchy problem for nonhomogeneous linear ODE system:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \mathbf{u}+\mathbf{g}(t) \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

- Representation formula for the exact solution:

$$
\mathbf{u}(t)=\exp (\mathbf{A} t) \mathbf{u}_{0}+\int_{0}^{t} \exp (\mathbf{A}(t-s)) \mathbf{g}(s) d s
$$

Basic idea of exponential methods

- Cauchy problem for nonhomogeneous linear ODE system:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \mathbf{u}+\mathbf{g}(t) \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

- Representation formula for the exact solution:

$$
\mathbf{u}(t)=\exp (\mathbf{A} t) \mathbf{u}_{0}+\int_{0}^{t} \exp (\mathbf{A}(t-s)) \mathbf{g}(s) d s
$$

- Exponential methods: turn this into a numerical method with errors indepentent of Δt for linear problems

Basic idea of exponential methods

- Cauchy problem for nonhomogeneous linear ODE system:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \mathbf{u}+\mathbf{g}(t) \quad \mathbf{u}(0)=\mathbf{u}_{0}
$$

- Representation formula for the exact solution:

$$
\mathbf{u}(t)=\exp (\mathbf{A} t) \mathbf{u}_{0}+\int_{0}^{t} \exp (\mathbf{A}(t-s)) \mathbf{g}(s) d s
$$

- Exponential methods: turn this into a numerical method with errors indepentent of Δt for linear problems
- Various extensions to nonlinear problems are available

Exponential Euler Rosenbrock methods

Exponential Euler Rosenbrock methods

- Linearize around initial datum at each timestep

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}^{n}\right)+\mathbf{J}^{n}\left(\mathbf{u}-\mathbf{u}^{n}\right)+\mathbf{R}(\mathbf{u}) \quad t \in\left[t^{n}, t^{n+1}\right]
$$

Exponential Euler Rosenbrock methods

- Linearize around initial datum at each timestep

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}^{n}\right)+\mathbf{J}^{n}\left(\mathbf{u}-\mathbf{u}^{n}\right)+\mathbf{R}(\mathbf{u}) \quad t \in\left[t^{n}, t^{n+1}\right]
$$

- Freezing nonlinear terms yields

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}+\Delta t \phi\left(\mathbf{J}^{n} \Delta t\right) \mathbf{f}\left(\mathbf{u}^{n}\right) \quad \phi(z)=\frac{\exp (z)-1}{z}
$$

Exponential Euler Rosenbrock methods

- Linearize around initial datum at each timestep

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}^{n}\right)+\mathbf{J}^{n}\left(\mathbf{u}-\mathbf{u}^{n}\right)+\mathbf{R}(\mathbf{u}) \quad t \in\left[t^{n}, t^{n+1}\right]
$$

- Freezing nonlinear terms yields

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}+\Delta t \phi\left(\mathbf{J}^{n} \Delta t\right) \mathbf{f}\left(\mathbf{u}^{n}\right) \quad \phi(z)=\frac{\exp (z)-1}{z}
$$

- Essentially exact for linear, constant coefficient problems, unconditionally A-stable, second order for nonlinear problems, higher order variants available (Hochbruck et al 1997)

Exponential Euler Rosenbrock methods

- Linearize around initial datum at each timestep

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u})=\mathbf{f}\left(\mathbf{u}^{n}\right)+\mathbf{J}^{n}\left(\mathbf{u}-\mathbf{u}^{n}\right)+\mathbf{R}(\mathbf{u}) \quad t \in\left[t^{n}, t^{n+1}\right]
$$

- Freezing nonlinear terms yields

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}+\Delta t \phi\left(\mathbf{J}^{n} \Delta t\right) \mathbf{f}\left(\mathbf{u}^{n}\right) \quad \phi(z)=\frac{\exp (z)-1}{z}
$$

- Essentially exact for linear, constant coefficient problems, unconditionally A-stable, second order for nonlinear problems, higher order variants available (Hochbruck et al 1997)
- Stiff one step, one stage second order solver with one evaluation of RHS: think of the physics...

Main computational problems and solutions

Main computational problems and solutions

- Exponential matrix cannot be stored for realistic PDE problems

Main computational problems and solutions

- Exponential matrix cannot be stored for realistic PDE problems
- $\exp (\Delta t \mathbf{A}) \mathbf{v}$ can be approximated by the same Krylov space techniques employed in GMRES (Saad 1992)

Main computational problems and solutions

- Exponential matrix cannot be stored for realistic PDE problems
- $\exp (\Delta t \mathbf{A}) \mathbf{v}$ can be approximated by the same Krylov space techniques employed in GMRES (Saad 1992)
- Krylov space dimension (and cost of time step) depend on the Courant number

Main computational problems and solutions

- Exponential matrix cannot be stored for realistic PDE problems
- $\exp (\Delta t \mathbf{A}) \mathbf{v}$ can be approximated by the same Krylov space techniques employed in GMRES (Saad 1992)
- Krylov space dimension (and cost of time step) depend on the Courant number
- Alternative techniques imply similar costs for large scale problems

Some numerical results

Some numerical results

- NUMA model (courtesy of F.X.Giraldo, NPS), spatial discretization employing CG with fifth order polynomials

Some numerical results

- NUMA model (courtesy of F.X.Giraldo, NPS), spatial discretization employing CG with fifth order polynomials
- Klemp-Skamarock test, Courant number approx. 23, density fields computed by second order exponential method and BDF2 at $t=400 \mathrm{~s}$.

Some numerical results

- NUMA model (courtesy of F.X.Giraldo, NPS), spatial discretization employing CG with fifth order polynomials
- Klemp-Skamarock test, Courant number approx. 23, density fields computed by second order exponential method and BDF2 at $t=400 \mathrm{~s}$.

Some numerical results

Some numerical results

- ICON shallow water model, low order mimetic spatial discretization

Some numerical results

- ICON shallow water model, low order mimetic spatial discretization
- Test case $5 t=360 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=1 \mathrm{~h}, C \approx 10$

Some numerical results

- ICON shallow water model, low order mimetic spatial discretization
- Test case $5 t=360 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=1 \mathrm{~h}, C \approx 10$
- Test case 6 at $t=240 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=0.5 \mathrm{~h} C \approx 10$

Some numerical results

- ICON shallow water model, low order mimetic spatial discretization
- Test case $5 t=360 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=1 \mathrm{~h}, C \approx 10$
- Test case 6 at $t=240 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=0.5 \mathrm{~h} \mathrm{C} \approx 10$
- Reference solution computed by explicit Runge Kutta method of order 4 with $\Delta t=180 \mathrm{~s}$

Some numerical results

- ICON shallow water model, low order mimetic spatial discretization
- Test case $5 t=360 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=1 \mathrm{~h}, C \approx 10$
- Test case 6 at $t=240 \mathrm{~h}, \Delta x \approx 80 \mathrm{~km}, \Delta t=0.5 \mathrm{~h} C \approx 10$
- Reference solution computed by explicit Runge Kutta method of order 4 with $\Delta t=180 \mathrm{~s}$

	h error			
	LP	CN	EX2	EX3
Test 5	$1.2 \mathrm{e}-2$	$9.1 \mathrm{e}-3$	$1.2 \mathrm{e}-3$	$1.1 \mathrm{e}-3$
Test 6	$5.9 \mathrm{e}-2$	$1.7 \mathrm{e}-2$	$3.8 \mathrm{e}-4$	$4.0 \mathrm{e}-4$

A cost benefit analysis

A cost benefit analysis

- Exponential vs high order IMEX methods

A cost benefit analysis

- Exponential vs high order IMEX methods
- Spectral discretization of incompressible NS Boussinesq in spherical geometry (Ferran, B., et al, JCP 2014)

A cost benefit analysis

- Exponential vs high order IMEX methods
- Spectral discretization of incompressible NS Boussinesq in spherical geometry (Ferran, B., et al, JCP 2014)

A cost benefit analysis

- Exponential vs high order IMEX methods
- Spectral discretization of incompressible NS Boussinesq in spherical geometry (Ferran, B., et al, JCP 2014)

A more local approach

A more local approach

- PDEs of interest are local in space: physical and numerical domain of dependence are finite

A more local approach

- PDEs of interest are local in space: physical and numerical domain of dependence are finite
- Local problems discretized by FD, FV, FE methods yield sparse matrices

A more local approach

- PDEs of interest are local in space: physical and numerical domain of dependence are finite
- Local problems discretized by FD, FV, FE methods yield sparse matrices
- Exponential of a sparse matrix is almost sparse (Iserles 2001)

A more local approach

- PDEs of interest are local in space: physical and numerical domain of dependence are finite
- Local problems discretized by FD, FV, FE methods yield sparse matrices
- Exponential of a sparse matrix is almost sparse (Iserles 2001)
- For s-banded $\mathbf{A}=\left(a_{i, j}\right)$ with $\left|a_{i, j}\right| \leq \rho$, let $\exp (\mathbf{A})=\left(e_{i, j}\right)$.

$$
\begin{aligned}
\left|e_{i, j}\right| & \leq\left(\frac{\rho s}{|i-j|}\right)^{\frac{|i-j|}{s}}\left[e^{\frac{|i-j|}{s}}-\sum_{k=0}^{|i-j|-1} \frac{(|i-j / s|)^{k}}{k!}\right] \\
& \approx\left(\frac{\rho s}{|i-j|}\right)^{\frac{|i-j|}{s}} \frac{(|i-j| / s)^{|i-j|}}{|i-j|!}
\end{aligned}
$$

Application to PDE problems

Application to PDE problems

- Advection diffusion problem: entries of matrix $\Delta t \mathbf{A}$ scale as

$$
\frac{u \Delta t}{\Delta x}+\frac{\mu \Delta t}{\Delta x^{2}}
$$

Application to PDE problems

- Advection diffusion problem: entries of matrix $\Delta t \mathbf{A}$ scale as

$$
\frac{u \Delta t}{\Delta x}+\frac{\mu \Delta t}{\Delta x^{2}}
$$

- Example: $\exp (\Delta t \mathbf{A})$ for 1D centered finite difference advection at Courant numbers $0.5,5,20$

Application to PDE problems

- Advection diffusion problem: entries of matrix $\Delta t \mathbf{A}$ scale as

$$
\frac{u \Delta t}{\Delta x}+\frac{\mu \Delta t}{\Delta x^{2}}
$$

- Example: $\exp (\Delta t \mathbf{A})$ for 1D centered finite difference advection at Courant numbers $0.5,5,20$

- There is no real need to compute a global exponential matrix: Local Exponential Methods (LEM)

LEM: a domain decomposition approach

LEM: a domain decomposition approach

- Decompose mesh in overlapping regions

$$
\mathcal{M}=\bigcup_{i=1}^{N} \mathcal{M}_{i} \quad \mathcal{M}_{i}=\mathcal{D}_{i} \cup \mathcal{B}_{i}
$$

where \mathcal{D}_{i} non overlapping, \mathcal{B}_{i} boundary buffer zones whose size depends on the Courant number

LEM: a domain decomposition approach

- Decompose mesh in overlapping regions

$$
\mathcal{M}=\bigcup_{i=1}^{N} \mathcal{M}_{i} \quad \mathcal{M}_{i}=\mathcal{D}_{i} \cup \mathcal{B}_{i}
$$

where \mathcal{D}_{i} non overlapping, \mathcal{B}_{i} boundary buffer zones whose size depends on the Courant number

- For $i=1, \ldots, N$, solve local problem restricted to \mathcal{M}_{i} by a local exponential method

$$
\mathbf{u}_{\mathcal{M}_{i}}^{n+1}=\mathbf{u}_{\mathcal{M}_{i}}^{n}+\Delta t \phi\left(\mathbf{J}_{\mathcal{M}_{i}}^{n} \Delta t\right) \mathbf{f}\left(\mathbf{u}_{\mathcal{M}_{i}}^{n}\right)_{\mathcal{M}_{i}}
$$

LEM: a domain decomposition approach

- Decompose mesh in overlapping regions

$$
\mathcal{M}=\bigcup_{i=1}^{N} \mathcal{M}_{i} \quad \mathcal{M}_{i}=\mathcal{D}_{i} \cup \mathcal{B}_{i}
$$

where \mathcal{D}_{i} non overlapping, \mathcal{B}_{i} boundary buffer zones whose size depends on the Courant number

- For $i=1, \ldots, N$, solve local problem restricted to \mathcal{M}_{i} by a local exponential method

$$
\mathbf{u}_{\mathcal{M}_{i}}^{n+1}=\mathbf{u}_{\mathcal{M}_{i}}^{n}+\Delta t \phi\left(\mathbf{J}_{\mathcal{M}_{i}}^{n} \Delta t\right) \mathbf{f}\left(\mathbf{u}_{\mathcal{M}_{i}}^{n}\right)_{\mathcal{M}_{i}}
$$

- Overwrite degrees of freedom belonging to \mathcal{B}_{i}

LEM: cons and pros

LEM: cons and pros

- Overhead increases with Courant number, both for computation and communication...

LEM: cons and pros

- Overhead increases with Courant number, both for computation and communication...
- ...but should not too bad for high order methods, anisotropic meshes and heavy physics

LEM: cons and pros

- Overhead increases with Courant number, both for computation and communication...
- ...but should not too bad for high order methods, anisotropic meshes and heavy physics
- No global matrix to be computed, local problems can be parallelized trivially

LEM: cons and pros

- Overhead increases with Courant number, both for computation and communication...
- ...but should not too bad for high order methods, anisotropic meshes and heavy physics
- No global matrix to be computed, local problems can be parallelized trivially
- For small enough \mathcal{D}_{i} local matrices can be stored: computational gain if Jacobian is frozen every few time steps and in the limit of large number of advected species

A 1D numerical example

A 1D numerical example

- Viscous Burgers equation with periodic boundary conditions, exact solution via Cole-Hopf transformation

A 1D numerical example

- Viscous Burgers equation with periodic boundary conditions, exact solution via Cole-Hopf transformation
- Fourth order finite differences for advection, second order finite differences for diffusion, Courant number 15

A 1D numerical example

- Viscous Burgers equation with periodic boundary conditions, exact solution via Cole-Hopf transformation
- Fourth order finite differences for advection, second order finite differences for diffusion, Courant number 15
- Second order exponential Rosenbrock method, stored local matrices computed without Krylov spaces

A 1D numerical example

- Viscous Burgers equation with periodic boundary conditions, exact solution via Cole-Hopf transformation
- Fourth order finite differences for advection, second order finite differences for diffusion, Courant number 15
- Second order exponential Rosenbrock method, stored local matrices computed without Krylov spaces

A 2D numerical example

A 2D numerical example

- Advection-diffusion equation with rotational velocity field

A 2D numerical example

- Advection-diffusion equation with rotational velocity field
- Monotonic finite volume method for advection, second order finite volume method for diffusion, Courant number 4

A 2D numerical example

- Advection-diffusion equation with rotational velocity field
- Monotonic finite volume method for advection, second order finite volume method for diffusion, Courant number 4
- Second order exponential Rosenbrock method with local matrices computed by Krylov space techniques

A 2D numerical example

- Advection-diffusion equation with rotational velocity field
- Monotonic finite volume method for advection, second order finite volume method for diffusion, Courant number 4
- Second order exponential Rosenbrock method with local matrices computed by Krylov space techniques

A 2D nonlinear example

A 2D nonlinear example

- Viscous Burgers equation

A 2D nonlinear example

- Viscous Burgers equation
- Centered finite volume method for advection, second order finite volume method for diffusion, anisotropic mesh with Courant number 6 in the vertical

A 2D nonlinear example

- Viscous Burgers equation
- Centered finite volume method for advection, second order finite volume method for diffusion, anisotropic mesh with Courant number 6 in the vertical
- Second order exponential Rosenbrock method with local matrices computed by Krylov space techniques

A 2D nonlinear example

- Viscous Burgers equation
- Centered finite volume method for advection, second order finite volume method for diffusion, anisotropic mesh with Courant number 6 in the vertical
- Second order exponential Rosenbrock method with local matrices computed by Krylov space techniques

Conclusions and perspectives

Conclusions and perspectives

- Straightforward implementation of exponential methods leads to very accurate but very costly solutions

Conclusions and perspectives

- Straightforward implementation of exponential methods leads to very accurate but very costly solutions
- For standard PDE problems, a local approximation of $\exp (\Delta t \mathbf{A}) \mathbf{v}$ is feasible

Conclusions and perspectives

- Straightforward implementation of exponential methods leads to very accurate but very costly solutions
- For standard PDE problems, a local approximation of $\exp (\Delta t \mathbf{A}) \mathbf{v}$ is feasible
- Computation of exponential matrix becomes trivially parallel

Conclusions and perspectives

- Straightforward implementation of exponential methods leads to very accurate but very costly solutions
- For standard PDE problems, a local approximation of $\exp (\Delta t \mathbf{A}) \mathbf{v}$ is feasible
- Computation of exponential matrix becomes trivially parallel
- Computational overhead due to boundary buffer regions is limited in the case of anisotropic meshes and high order finite elements

Conclusions and perspectives

- Straightforward implementation of exponential methods leads to very accurate but very costly solutions
- For standard PDE problems, a local approximation of $\exp (\Delta t \mathbf{A}) \mathbf{v}$ is feasible
- Computation of exponential matrix becomes trivially parallel
- Computational overhead due to boundary buffer regions is limited in the case of anisotropic meshes and high order finite elements
- Next on the to do list: use Local Exponential Methods in a high order FE framework and with complex forcing terms (multiple ARD with chemistry)

